001047025 001__ 1047025
001047025 005__ 20251023202109.0
001047025 037__ $$aFZJ-2025-04081
001047025 041__ $$aEnglish
001047025 1001_ $$0P:(DE-Juel1)185897$$aDaniel, Davis Thomas$$b0$$eCorresponding author
001047025 1112_ $$a46. FGMR Annual Discussion Meeting 2025$$cBonn$$d2025-09-15 - 2025-09-18$$gFGMR 2025$$wGermany
001047025 245__ $$aIltPy: A python library for inverse Laplace transform of magnetic resonance data
001047025 260__ $$c2025
001047025 3367_ $$033$$2EndNote$$aConference Paper
001047025 3367_ $$2DataCite$$aOther
001047025 3367_ $$2BibTeX$$aINPROCEEDINGS
001047025 3367_ $$2DRIVER$$aconferenceObject
001047025 3367_ $$2ORCID$$aLECTURE_SPEECH
001047025 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1761201702_19442$$xAfter Call
001047025 520__ $$aRelaxation and diffusion processes offer rich information about interactions anddynamics in materials and can be correlated to chemical composition and structure. [1]Experimental magnetic resonance data obtained from relaxation and diffusionmeasurements are often analysed by fitting a suitable mathematical function to the datafor extracting underlying relaxation time and diffusion rate constants. However,depending on the compositional heterogeneity, processes may exhibit functionaldependencies which are not governed by a single characteristic parameter but adistribution. Therefore, experimentally measured data may feature a superposition ofdifferent contributions, and their disentanglement becomes challenging by conventionaldata analysis methods. In such cases, inversion algorithms allow for quantitativeanalysis by inverting the data with a suitable kernel, mitigating the need for possiblyambiguous assumptions regarding the number of components or the shape of theunderlying distribution. Herein, IltPy,[2] an open-source python library is introduced forperforming regularized inverse Laplace transforms (ILT) of one- and multi-dimensionaldata. Conventional approaches to ILT of magnetic resonance data require anassumption of signal contributions to be strictly positive. [3] However, this approachsuppresses negative contributions which may be physically relevant, particularly insystems undergoing chemical exchange or cross-relaxation.[4]IltPy implements regularized inverse Laplace transform (ILT) without requiring non-negativity (NN) constraints.[5] Tikhonov regularization in its generalized form is used,and the solution is stabilized with a uniform penalty and a zero-crossing penaltyallowing for extraction of parameter distributions preserving both positive and negativefeatures in the data without preferring one of the signs. IltPy supports user-definedkernels and validity of NN constraint can be tested by comparing inversions with andwithout NN. For large data sets, singular value decomposition is used to compressdata. For experimental data with non-uniform noise or oscillatory features, such asESEEM, IltPy supports weighted inversions. Furthermore, resolution of multi-dimensional data may be improved by regularization of non-inverted dimensions.[2]IltPy is particularly suited for EPR and NMR spectroscopic data. The performance ofthe library is demonstrated using application examples from relaxation and diffusiondata sets, revealing insights into interactions and environments in complex systems.[1] Daniel, D.T. et. al. Phys. Chem. Chem. Phys. 2023, 25, 12767–12776[2] https://apps.fz-juelich.de/iltpy [Accessed 17.04.2025][3] Provencher, S. Comput. Phys. Commun. 1982, 27, 213−227[4] Rodts S, Bytchenkoff D. Journal of Magnetic Resonance. 2010, 205, 315-318.[5] Granwehr, J. et. al. Journal of chemical theory and computation. 2012, 8,3473-3482
001047025 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001047025 536__ $$0G:(GEPRIS)441255373$$aDFG project G:(GEPRIS)441255373 - Design polymerbasierter organischer Dünnschicht-Batterien hin zu IoT Anwendungen. (441255373)$$c441255373$$x1
001047025 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001047025 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
001047025 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x2
001047025 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001047025 7001_ $$0P:(DE-Juel1)187114$$aBartsch, Christian Hippolyt$$b1
001047025 7001_ $$0P:(DE-Juel1)186816$$aBereck, Franz Philipp$$b2
001047025 7001_ $$0P:(DE-Juel1)184961$$aScheurer, Christoph$$b3
001047025 7001_ $$0P:(DE-Juel1)192562$$aKöcher, Simone Swantje$$b4
001047025 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b5$$ufzj
001047025 8564_ $$uhttps://apps.fz-juelich.de/iltpy
001047025 909CO $$ooai:juser.fz-juelich.de:1047025$$pVDB
001047025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185897$$aForschungszentrum Jülich$$b0$$kFZJ
001047025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186816$$aForschungszentrum Jülich$$b2$$kFZJ
001047025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184961$$aForschungszentrum Jülich$$b3$$kFZJ
001047025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192562$$aForschungszentrum Jülich$$b4$$kFZJ
001047025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b5$$kFZJ
001047025 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b5$$kRWTH
001047025 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001047025 9141_ $$y2025
001047025 920__ $$lyes
001047025 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001047025 980__ $$aconf
001047025 980__ $$aVDB
001047025 980__ $$aI:(DE-Juel1)IET-1-20110218
001047025 980__ $$aUNRESTRICTED