001     1047031
005     20251009202053.0
037 _ _ |a FZJ-2025-04082
100 1 _ |a Kentzinger, E.
|0 P:(DE-Juel1)130754
|b 0
|u fzj
111 2 _ |a JCNS Workshop 2025, Trends and Perspectives in Neutron Scattering. Quantum Materials: Theory and Experiments
|c Evangelische Akademie Tutzing
|d 2025-10-07 - 2025-10-09
|w Germany
245 _ _ |a Inverse proximity effect in a ferromagnet-superconductor thinfilm heterostructure investigated by GISANS with polarizationanalysis
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1759989480_5510
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Three direct proximity effects in ferromagnet-superconducting thin film heterostructures of Nb andFePd with a lateral domain pattern have been found by temperature dependent electrical resistivitymeasurements, showing the influence of the magnetic domain structure on the superconductingstate: reversed domain superconductivity, domain wall superconductivity and generation of spintripletCooper pairs [1].In this system, the inverse proximity effect, i.e. the effect of the entrance in the superconducting stateon the magnetic structure has been studied by temperature dependent grazing incidence small angleneutron scattering (GISANS) on the KWS-3 diffractometer at the Heinz Maier-Leibnitz Zentrum [2]and by GISANS with polarization analysis on vSANS at the NIST Center for Neutron Research [3,4].Guided by micromagnetic simulations [5], we present in this contribution simulations of the GISANSdata within the distorted wave Born approximation [6,7]. We find that the domain walls width inFePd with strong perpendicular magnetic anisotropy increases when Nb enters the superconductingstate [8].[1] A. Stellhorn et al., New Journal of Physics, 22, 093001 (2020).[2] Heinz Maier-Leibnitz Zentrum, Journal of Large-Scale Research Facilities 1, A31 (2015)[3] J. Barker et al., Journal of Applied Crystallography, 55, 271 (2022)[4] W.C. Chen et al., Journal of Physics: Conference Series, 2481, 012006 (2023)[5] B. Vermeulen, Master Thesis, University of Liège and Forschungszentrum Jülich (2021) http://hdl.handle.net/2268.2/11448[6] B.P. Toperverg, The Physics of Metals and Metallography, 116, 1337 (2015)[7] E. Kentzinger et al., Physical Review B, 77, 104435 (2008)[8] A. Stellhorn, PhD Thesis, RWTH Aachen University (2021)
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Stellhorn, A.
|0 P:(DE-Juel1)172029
|b 1
700 1 _ |a Vermeulen, B.
|0 P:(DE-Juel1)187152
|b 2
700 1 _ |a Gommes, C.
|0 P:(DE-Juel1)184674
|b 3
700 1 _ |a Krycka, K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brückel, T.
|0 P:(DE-Juel1)130572
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:1047031
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130572
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21