001     1047032
005     20251023202109.0
037 _ _ |a FZJ-2025-04083
100 1 _ |a Singh, Ankita
|0 P:(DE-Juel1)203530
|b 0
|u fzj
111 2 _ |a JCNS Workshop 2025, Trends and Perspectives in Neutron Scattering. Quantum Materials: Theory and Experiments
|c Evangelische Akademie Tutzing
|d 2025-10-07 - 2025-10-09
|w Germany
245 _ _ |a Magnetic and Transport Signatures of Strain in SrRuO3 Thin Films:Insights from STO and Si-Based Substrates
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1761201540_19442
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a SrRuO3 (SRO), a widely studied ferromagnetic metallic perovskite oxide, exhibits perpendicular magneticanisotropy (PMA) when subjected to appropriate strain conditions. Its excellent lattice matchingwith SrTiO3 (STO) enables nearly perfect epitaxial growth, making it an ideal platform for investigatingstrain-induced effects in functional oxide systems [1]. Although strain-tuned ferromagnetismhas been examined in several perovskite heterostructures, the influence of strain on the magneticanisotropy and transport behavior of SRO remains an ongoing research focus. The anomalous Halleffect (AHE) in SRO displays non-traditional characteristics that are highly sensitive to strain, filmthickness, and elemental doping, warranting further studies on how epitaxial strain modulates itselectronic and magnetic responses. To delve deeper into these phenomena, ~20 nm SRO thin filmswere fabricated using high oxygen pressure sputtering (HOPS) on TiO₂-terminated STO (001) singlecrystals and on STO-buffered (4 nm) Si (001) substrates, under identical deposition conditions. X-raydiffraction (XRD) confirmed epitaxial growth, and X-ray reflectivity (XRR) provided precise informationof film thickness and interfacial roughness. Magnetization studies indicated a Curie temperature(Tc) of 155 K for both film types but revealed contrasting magnetic anisotropies. The SRO/STO filmdemonstrated a stronger out-of-plane magnetic component, whereas the SRO/STO/Si film favored inplanemagnetization. This directional dependence was further reflected in magnetoresistance (MR%)measurements, which peaked when the magnetic field aligns with each sample’s easy axis. Notably,AHE results for the SRO/STO/Si film showed an anomalous peak, potentially arising from Ru-sitevacancies [2], implying the coexistence of multiple magnetic contributions within the film. Theseresults highlight the pivotal influence of epitaxial strain in controlling both the magnetic orientationand electronic transport properties in SRO-based heterostructures. To further unravel the role of theSTO buffer layer in modulating interfacial magnetism, we plan to conduct detailed polarized neutronreflectometry (PNR) measurements on SRO films grown on STO-buffered Si and single-crystal STOsubstrates. These experiments, scheduled for October 2025 at the Spallation Neutron Source (SNS),ORNL, USA, will offer deeper insights into strain-driven magnetic phenomena at the atomic scalein complex oxide systems.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Bednarski-Meinke, C.
|0 P:(DE-Juel1)184662
|b 1
|u fzj
700 1 _ |a Kentzinger, E.
|0 P:(DE-Juel1)130754
|b 2
|u fzj
700 1 _ |a de Oliveira Lima, V. A.
|0 P:(DE-Juel1)191333
|b 3
|u fzj
909 C O |o oai:juser.fz-juelich.de:1047032
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)203530
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)184662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)191333
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21