001     1047033
005     20251009202054.0
037 _ _ |a FZJ-2025-04084
100 1 _ |a Corkett, A.
|0 P:(DE-Juel1)208590
|b 0
|u fzj
111 2 _ |a JCNS Workshop 2025, Trends and Perspectives in Neutron Scattering. Quantum Materials: Theory and Experiments
|c Evangelische Akademie Tutzing
|d 2025-10-07 - 2025-10-09
|w Germany
245 _ _ |a Transition metal carbodiimides –A new playground for solid-statephysics?
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1759989444_5795
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Transition metal oxides, particularly those with partially filled 3d shells, have been the playgroundfor solid-state physics for many decades. These correlated oxides exhibit a competition betweencoulombic repulsion, which tends to localize electrons, and hybridization, which promotes delocalization,that leads to numerous many-body effects such as metal-insulator transitions, colossalmagnetoresistance and superconductivity, to name but a few. Traditionally the modification of suchphases, to imbue different physical properties, has relied on the doping of one cation for another toadjust both the electron count and degree of correlation. However, an alternative strategy may alsobe employed via anion substitution. Enter the divalent carbodiimide anion, N=C=N,which is well considered a pseudo-oxide, but with enhanced covalent character [1]. Indeed, numerousquasi-binary transition metal carbodiimides, Mx(NCN)y, have nowbeen prepared, including CuNCN which exhibits spin-liquid behavior and a resonating-valencebond ground-state [2]. Here, however, we will take a closer look at MnHf(NCN)3 andFeHf(NCN)3, which are the first examples of transition metal carbodiimides with aperovskite-like AB(NCN)3 composition [3]. These quasi-ternary phases adopt a chiralcrystal structure, with P6322 symmetry, and magnetometry measurements on MnHf(NCN)3evidence strong AFM coupling of Mn2+ centers, but no evidence for long-range order.This suggests a degree of magnetic frustration in MnHf(NCN)3 and highlights that thetypes of quantum behavior observed in correlated oxides may also be accessible to their carbodiimideanalogs.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Grzechnik, A.
|0 P:(DE-Juel1)194570
|b 1
|u fzj
700 1 _ |a Friese, K.
|0 P:(DE-Juel1)145694
|b 2
|u fzj
909 C O |o oai:juser.fz-juelich.de:1047033
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)208590
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194570
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145694
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21