| Home > Publications database > Folding lattice proteins confined on minimal grids using a quantum-inspired encoding > print |
| 001 | 1047045 | ||
| 005 | 20251129202118.0 | ||
| 024 | 7 | _ | |a 10.1103/8n7p-7lh2 |2 doi |
| 024 | 7 | _ | |a 2470-0045 |2 ISSN |
| 024 | 7 | _ | |a 2470-0061 |2 ISSN |
| 024 | 7 | _ | |a 1063-651X |2 ISSN |
| 024 | 7 | _ | |a 1095-3787 |2 ISSN |
| 024 | 7 | _ | |a 1538-4519 |2 ISSN |
| 024 | 7 | _ | |a 1539-3755 |2 ISSN |
| 024 | 7 | _ | |a 1550-2376 |2 ISSN |
| 024 | 7 | _ | |a 2470-0053 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-04091 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-04091 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Irbäck, Anders |0 0000-0003-1384-0626 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Folding lattice proteins confined on minimal grids using a quantum-inspired encoding |
| 260 | _ | _ | |a Woodbury, NY |c 2025 |b Inst. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1764417915_31362 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Steric clashes pose a challenge when exploring dense protein systems using conventional explicit-chain methods. A minimal example is a single lattice protein confined on a minimal grid, with no free sites. Finding its minimum energy is a hard optimization problem, with similarities to scheduling problems. It can be recast as a quadratic unconstrained binary optimization (QUBO) problem amenable to classical and quantum approaches. We show that this problem in its QUBO form can be swiftly and consistently solved for chain length 48, using either classical simulated annealing or hybrid quantum-classical annealing on a D-Wave system. In fact, the latter computations required about 10 s. We also test linear and quadratic programming methods, which work well for a lattice gas but struggle with chain constraints. All methods are benchmarked against exact results obtained from exhaustive structure enumeration, at a high computational cost. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Knuthson, Lucas |0 0000-0003-1080-200X |b 1 |
| 700 | 1 | _ | |a Mohanty, Sandipan |0 P:(DE-Juel1)132590 |b 2 |
| 773 | _ | _ | |a 10.1103/8n7p-7lh2 |g Vol. 112, no. 4, p. 045302 |0 PERI:(DE-600)2844562-4 |n 4 |p 045302 |t Physical review / E |v 112 |y 2025 |x 2470-0045 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1047045/files/8n7p-7lh2.pdf |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1047045/files/maxcomp.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:1047045 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132590 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2024-12-10 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-10 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-10 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-10 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV E : 2022 |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|