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Disaggregated Municipal Energy 
Consumption and Emissions in  
End-use Sectors in Germany and 
Spain for 2022
Shruthi Patil   1,2, Noah Pflugradt   1 ✉, Jann M. Weinand   1, Jürgen Kropp   2,3 & 
Detlef Stolten1,4

Sectorally-detailed municipal energy consumption and emissions datasets are crucial for localized 
policy-making, resource allocation, and climate action planning. While some large municipalities 
develop bottom-up inventories, smaller ones often lack the capacity to do so. Existing studies have 
spatially disaggregated national totals, yet no dataset to date provides both energy consumption 
and emissions data across multiple sectors at the municipal level. This study addresses that gap by 
disaggregating national final energy consumption and emissions data in 2022 to the municipal level 
for Germany and Spain. The dataset covers five key end-use sectors: industry, transport, agriculture, 
households, and commerce. Where available, sub-sectors such as passenger and freight transport, or 
specific industries like chemical and paper manufacturing are further considered for disaggregation. 
Two main challenges are addressed: the limited availability of municipal-level proxies and the presence 
of missing values in proxy datasets. We apply XGBoost for imputation and implement a step-wise 
disaggregation using regional statistics. Using only open data, we ensure replicability, and assign 
confidence ratings to all values to support transparent interpretation.

Background & Summary
Sector-specific municipal energy consumption and greenhouse gas (GHG) emissions data is a valuable resource 
for the energy and climate research community. For instance, the energy consumption in road transport can 
support the planning of electric vehicle charging infrastructure, facilitating the transition to electric mobility 
and assessing its impact on grid load1. Such granular data is also critical for formulating localized climate strat-
egies, including Sustainable Energy and Climate Action Plans (SECAPs) led by the Covenant of Mayors2. These 
plans require comprehensive Final Energy Consumption (FEC) assessments —measuring the energy delivered 
to end users after conversion, transmission, and distribution losses —across key sectors including residential, 
Emissions Trading System (ETS) and non-ETS industries, and both public and private transport.

Few municipalities have developed their own bottom-up inventories3,4. When available, these inventories 
are often created independently, resulting in inconsistencies and data gaps across municipalities. This lack of 
standardisation hinders the aggregation of data to derive coherent totals at state or national levels. Furthermore, 
existing local inventories tend to be limited in scope; for instance, they frequently exclude cross-regional traffic, 
leaving a considerable share of national FEC and emissions unaccounted for in local inventories5. Currently, no 
bottom-up inventory offers comprehensive coverage of municipal-level FEC and emissions. For European Union 
(EU) Member States, comprehensive and official inventories are only available at the national level via Eurostat6.

Previous efforts to develop detailed sub-national inventories have commonly relied on spatial disaggregation 
techniques to construct top-down estimates. A variety of methods are documented in the literature, ranging 
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from straightforward approaches based on area or population proportions to more sophisticated techniques 
employing machine learning or geostatistical models7. Among these, proxy-based disaggregation is particularly 
prevalent due to its intuitive application and reliance on domain knowledge to select appropriate spatial proxies 
for the data in question. This method allocates national-level values to sub-national units according to the distri-
bution of the chosen proxy variable. For instance, national residential building emissions can be disaggregated 
to the municipal level using population shares, given that population density is a key driver of residential energy 
use and associated emissions.

Employing a proxy data-based approach, the Emissions Database for Global Atmospheric Research 
(EDGAR)8 provides GHG emissions from various sectors, including power generation, industry, residential 
activities, and transport, at the level of federal states globally. The federal state level, a coarser spatial resolution 
than municipalities, is chosen here due to the lack of relevant proxy datasets available at the municipal level 
across the globe. The work aimed to strike a balance between the accuracy and the granularity of the created 
data.

Municipal-scale disaggregation of sectoral emissions in Europe has been attempted in a previous study9, but 
relies on a single data source, OpenStreetMap10, as the primary spatial proxy. While this approach incorporates 
features such as fuel stations and buildings, it overlooks other potentially influential factors that could enhance 
accuracy. For example, incorporating heating degree days could better account for variations in energy demand, 
and thus emissions, across different climatic regions. Similarly, using data on vehicle fleets or traffic volumes, 
rather than the mere presence of fuel stations, would provide a more representative proxy for local road trans-
port emissions. Other studies have also undertaken spatial disaggregation of emissions, but they are typically 
limited in scope —focusing on a specific sector and/or operating at coarser spatial resolutions7.

Regarding the disaggregation of FEC, the Hotmaps project11 offers residential and non-residential FEC data 
at a high spatial resolution of 1 hectare across Europe. This granularity enables alignment with municipal bound-
aries to derive municipal-level estimates. However, to the best of the authors’ knowledge, no existing inventory 
currently provides both FEC and emissions data with detailed sectoral resolution at the municipal scale.

To address this data gap, the present study develops sectorally detailed, municipal-level inventories of FEC 
and GHG emissions for the year 2022. This is achieved by spatially disaggregating national-level data sourced 
from Eurostat to the municipal scale. The analysis encompasses five principal end-use sectors: industry, trans-
port, agriculture, households, and commerce. Where Eurostat provides additional sectoral granularity —such 
as within the transport sector (e.g., rail, passenger cars, motorcycles) or specific industrial sub-sectors (e.g., iron 
and steel, non-ferrous metals, textile and leather) —these disaggregated categories are retained to enhance the 
level of detail. The resulting inventories are thus both spatially and sectorally resolved, offering a comprehensive 
basis for local-level energy and climate analysis.

The key innovation of this work lies in addressing the limited availability of relevant spatial proxies at the 
municipal level. To overcome this challenge, a step-wise disaggregation approach is adopted. First, proxies avail-
able at intermediate spatial scales, such as districts or provinces, are disaggregated to the municipal level. These 
refined proxies are then used to disaggregate national FEC and emissions data. Beyond spatial resolution limi-
tations, many proxy datasets also suffer from missing values. To address this, a machine learning model, specif-
ically XGBoost12, is trained to impute missing data prior to disaggregation, thereby improving the robustness 
and completeness of the resulting inventories. Importantly, all proxy datasets used in this study are sourced from 
publicly available databases, enabling replication of the methodology and facilitating its application to countries 
beyond those examined here.

This study focuses on Germany and Spain. Germany is selected as it is the largest GHG emitter in the EU13, 
while Spain is included due to its national climate policies that emphasize the critical role of local governments 
in achieving climate targets, as outlined in its National Energy and Climate Plan14. In this context, the devel-
opment of top-down, spatially disaggregated FEC and emissions inventories can support the Spanish national 
government in tailoring policies to local needs, and assist municipal authorities in designing climate action plans 
that are aligned with national strategies.

By providing detailed, spatially disaggregated energy and emissions data, this work offers municipalities a 
valuable resource for meeting inventory preparation and reporting requirements. These datasets are particu-
larly beneficial for local governments with limited statistical infrastructure or technical capacity to compile 
sector-specific baseline inventories. Moreover, because the generated inventories are methodologically con-
sistent across municipalities, they enable meaningful comparisons that can inform localized policy-making, 
resource allocation, and the alignment of municipal strategies with national climate goals.

Methods
The spatial disaggregation of FEC and emissions data is carried out in four steps, as illustrated in Fig. 1. The 
following sub-sections describe each step in detail.

Data collection.  For the disaggregation work, this study utilizes three types of data: (i) FEC data for various 
sub-sectors (ii) emissions data for various sub-sectors and (iii) proxy data relevant to each sub-sector, which 
facilitates the disaggregation of FEC and emissions data.

FEC and emissions data are collected at the national level, whereas proxy datasets are collected at various 
sub-national spatial resolutions. Figure 2 illustrates the Nomenclature of Territorial Units for Statistics (NUTS) 
spatial hierarchy in Germany and Spain. Beginning at the national level (NUTS0), the hierarchy increases in 
spatial resolution through successive subdivisions: NUTS1 (federal states), NUTS2 (provinces), and NUTS3  
(districts). Below NUTS3, municipalities —referred to as Local Administrative Units (LAUs) —represent the 
most granular level of administrative geography in both countries. The size of LAUs varies significantly. In 
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Germany, the smallest LAU is Insel Lütje Hörn, covering just 0.096 km2, while the largest is Berlin at 891.80 km2. 
In Spain, Emperador is the smallest LAU (0.026 km2) and Cáceres the largest (1,750.26 km2).

The details regarding the collection of each dataset are discussed in the following sections.

Final energy consumption.  The FEC data, reported at the national level, is imported from the energy balance 
sheet published on Eurostat15, for the year 2022. While the FEC data for both energy and non-energy use is 
reported on Eurostat, only the energy use FEC is considered here. The breakdown of the end-use sectors for 
emissions reporting on Eurostat is shown in Fig. 3.

The industry sector is broken down into energy-intensive and non-energy-intensive industries. 
Energy-intensive industries include iron and steel, chemical and petrochemical, non-ferrous metals, 
non-metallic minerals, mining and quarrying, paper, pulp, and printing, and wood and wood products manu-
facturing industries16. Non-energy-intensive industries include transport equipment, machinery, food, bever-
ages, and tobacco, textile and leather manufacturing industries, construction, and other industries that are not 
specified elsewhere16. A similar categorisation is provided by Eurostat.

The transport sector is categorized into rail, road, domestic aviation, and domestic navigation. Additionally, 
the commerce and agriculture and forestry sectors are included, though they are not further broken down.

Greenhouse gas emissions.  The GHG emissions data used in this study is sourced from Eurostat17, for the year 
2022. Figure 4 illustrates how end-use sectors are categorized for emissions reporting by Eurostat. Compared to 
the FEC sector classification, the industry sector emissions data provided by Eurostat is less detailed. Notably, 
emissions from the chemical industry are not reported for Germany, and as such, these emissions are not disag-
gregated in this study.

In contrast, the transport sector is more granular in the Eurostat data compared to the FEC categorisation. 
Here, sub-sectors such as rail, road, domestic aviation, and domestic navigation, are further broken down into 
categories like light-duty trucks, heavy-duty trucks and buses, cars, and motorcycles. For the purposes of this 
study, emissions from light-duty trucks and heavy-duty trucks and buses are grouped under freight transport, as 
specific proxies for these vehicle types are not available in publicly accessible datasets.

It is important to highlight that GHG emissions in the sectors examined here primarily stem from fuel 
combustion. Process-related emissions in the industrial sector are excluded, with one exception: the agri-
culture sector, which includes non-combustion emissions. Agricultural emissions are considered under two 
categories-livestock and cultivation. Although Eurostat provides further disaggregation into subcategories such 
as enteric fermentation, manure management, agricultural soil management, and crop residue burning, only 
livestock and cultivation are included in this study due to the absence of matching proxies in open-source data.

Proxy data.  Proxy data serves as the foundation for spatially disaggregating FEC and emissions across different 
end-use sectors. Unlike the FEC and emissions data, which is collected for the year 2022, proxy data spans mul-
tiple years, as certain datasets —such as land use and land cover —are not updated annually. However, all proxy 
datasets used represent the most recent year for which data was available at the time of collection.

The selection of proxy data was guided by the following criteria: 

•	 Availability in open databases: The data must be accessible through publicly available databases to enhance 
transparency and reproducibility.

Na�onal-level 
greenhouse gas emissions 

and final energy 
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Data collec�on

Proxy data at NUTS3, 
NUTS2, and LAU level
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Fig. 1  The steps involved in the spatial disaggregation of emissions and Final Energy Consumption (FEC) data 
from country (NUTS0) to municipal (LAU) level.
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•	 Sub-national resolution: The data should be available at a sub-national scale, such as NUTS1, NUTS2, 
NUTS3, or LAU, to facilitate the disaggregation of emissions and FEC data reported at NUTS0.

•	 Relevance to end-use sectors: The selected data must be relevant to at least one of the end-use sectors ana-
lyzed in this study. For instance, population data can be used to disaggregate household-related emissions and 
FEC. Heating degree days help refine the spatial distribution of FEC by accounting for higher heat demand in 
colder regions. In addition, industrial locations and employment data provide insights into the spatial distri-
bution of industrial emissions and FEC. Furthermore, vehicle stock data supports the disaggregation of road 
transport emissions and energy consumption. Finally, land use and land cover classifications (e.g., rice fields, 
vineyards) assist in distributing cultivation-related FEC and emissions.

•	 Data completeness: The dataset should have minimal missing values to ensure a robust analysis. Here, less 
than 20% missing data is preferred.

The proxies are obtained from various publicly available databases, including Eurostat, Corine Land 
Cover18 and OpenStreetMap. A comprehensive overview of all data sources is provided in Fig. 2. The following 
sub-sections provide an overview of the collected proxy data at different spatial levels, beginning with the LAU 
level.

Proxy data at LAU level. The datasets collected at the LAU level for Germany and Spain are summarized 
in Tables 1 and 2. These include general demographic and geographic statistics, such as population and area, 
sourced from Eurostat, which are directly available for each LAU region. However, not all relevant datasets are 

Eurostat

Hotmaps
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Environmental Agency

The Na�onal Sta�s�cs Ins�tute of Spain

Corine Land Cover
Eurogeographics

OpenStreetMapESPON
EURO-CORDEX

Food and Agriculture 
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Cross-country missing 
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Emissions and final 
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Desta�s Eustat

Proxies

EDGAR Hotmaps
Disaggrega�on 

valida�on

secruos ataD

Fig. 2  The spatial hierarchy in Germany and Spain, showing the availability of various proxy datasets from 
public data sources at different spatial levels. The data sources highlighted in orange and blue provide data 
only for Germany and Spian, respectively. Proxy data undergoes a step-wise spatial disaggregation to achieve 
final proxies at the LAU level. Emissions and FEC data, available at the NUTS0 level from Eurostat, is then 
disaggregated to LAU based on these final proxies.
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directly available at the LAU level. In such cases, fine-scale gridded or vector datasets are spatially overlaid with 
LAU geometries to derive region-specific aggregates.

For example, land use and land cover information, including classes such as continuous urban fabric, is 
obtained from the Corine Land Cover database. This source provides raster data at a spatial resolution of 100 
square meters, which allows for accurate spatial aggregation of land cover types within each LAU boundary. 
Similarly, air pollution data is sourced from the European Environment Agency19, available as gridded data at a 
resolution of 1 square kilometer.

In addition to raster sources, vector datasets are also used. The railway network data is obtained from 
EuroGeographics, while OpenStreetMap provides detailed information on road networks and building counts. 
These vector datasets are intersected with LAU geometries to extract relevant spatial indicators for each 
municipality.

Data on industrial sites was available in three databases: sEEnergies20, Global Steel Plant Tracker21, and 
Hotmaps. To determine the most suitable source, the datasets were compared for their level of detail and 
coverage. 

•	 sEEnergies provides industrial site locations along with fuel and electricity demand information for indus-
tries such as iron and steel, chemicals, non-ferrous metals, non-metallic minerals, paper and printing, and 
refineries.

•	 Global Steel Plant Tracker focuses solely on iron and steel plant locations, annotating them with energy 
demand and employment data, though many sites lack complete information.

•	 Hotmaps includes locations for cement and glass industries in addition to those covered by sEEnergies, with 
emissions data provided for each site, though data is missing for many locations.

A comparative analysis was performed to select the most comprehensive source for each sector. For the iron 
and steel industry, a comparison of site counts across the three datasets was conducted, as illustrated in Fig. 5. 
For other industries, a comparison between sEEnergies and Hotmaps was performed (see Table 3). Hotmaps 
reports a higher number of industrial sites across most categories, except for paper and printing industries in 
Germany, where sEEnergies provides higher counts. Based on this analysis, the Hotmaps database was selected 

Fig. 3  Breakdown of end-use FEC sectors as reported in Eurostat, with Germany at the top and Spain at the 
bottom.
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as the primary source for obtaining LAU-level industry data, ensuring comprehensive coverage and consistency 
across sub-sectors.

Proxy data at NUTS3 level. Table 4 provides an overview of the data collected for the German and Spanish 
NUTS3 regions. Basic statistical information, such as employment and gross domestic product, is published 

Fig. 4  Breakdown of end-use emission sectors as reported in Eurostat, with Germany at the top and Spain at 
the bottom. Note: Emissions from the chemical industry are not reported for Germany on Eurostat and are 
therefore absent from the figure. Consequently, emissions from energy-intensive industries appear lower than 
those from non-energy-intensive industries.

Coverage Data source Variable Unit

Germany and Spain

Eurostat31
Population number

Area square kilometer

Hotmaps32

Number of iron and steel industries number

Number of cement industries number

Number of refineries number

Number of paper and printing industries number

Number of chemical industries number

Number of glass industries number

Number of non-ferrous metals industries number

Number of non-metallic minerals industries number

European Environmental Agency19

Average air pollution due to PM2.5 ug/m3

Average air pollution due to NO2 ug/m3

Average air pollution due to O3 ug/m3

Average air pollution due to PM10 ug/m3

Spain The National Statistics Institute of Spain23 Utilized agricultural area square kilometer

Table 1.  LAU-level proxy data collected from Eurostat, Hotmaps, European Environmental Agency, and The 
National Statistics Institute of Spain.
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by Eurostat at this spatial level. Heating and cooling degree days and livestock population datasets are avail-
able in raster format. With a resolution of approximately 10 square kilometers, these datasets align well with 
NUTS3 regions, enabling spatial overlap and aggregation at the NUTS3 level. Additionally, some datasets are 
available only in one of the two countries —for example, sectorally detailed employment data from the Federal 
Employment Agency22 in Germany and company counts from the National Statistics Institute of Spain23.

Proxy data at NUTS2 level. Table 5 summarizes the data available for the German and Spanish NUTS2 
regions. All the datasets collected at this level are sourced from Eurostat.

Data source Variable Unit

Corine Land Cover18

Continuous urban fabric cover square kilometer

Discontinuous urban fabric cover square kilometer

Industrial or commercial units cover square kilometer

Port areas cover square kilometer

Airports cover square kilometer

Mineral extraction sites cover square kilometer

Dump sites cover square kilometer

Construction sites cover square kilometer

Green urban areas cover square kilometer

Sport and leisure facilities cover square kilometer

Non irrigated arable land cover square kilometer

Permanently irrigated land cover square kilometer

Rice fields cover square kilometer

Vineyards cover square kilometer

Fruit trees and berry plantations cover square kilometer

Olive groves cover square kilometer

Pastures cover square kilometer

Permanent crops cover square kilometer

Complex cultivation patterns cover square kilometer

Agriculture with natural vegetation cover square kilometer

Agroforestry areas cover square kilometer

Broad leaved forest cover square kilometer

Coniferous forest cover square kilometer

Mixed forest cover square kilometer

Natural grasslands cover square kilometer

Moors and heathland cover square kilometer

Sclerophyllous vegetation cover square kilometer

Transitional woodland shrub cover square kilometer

Beaches dunes and sand cover square kilometer

Bare rocks cover square kilometer

Sparsely vegetated areas cover square kilometer

Burnt areas cover square kilometer

Glaciers and perpetual snow cover square kilometer

Inland marshes cover square kilometer

Peat bogs cover square kilometer

Salt marshes cover square kilometer

Salines cover square kilometer

Intertidal flats cover square kilometer

Water courses cover square kilometer

Water bodies cover square kilometer

Coastal lagoons cover square kilometer

Estuaries cover square kilometer

Sea and ocean cover square kilometer

Eurogeographics33 Railway network kilometer

OpenStreetMap10
Road network kilometer

Number of buildings number

Table 2.  LAU-level proxy data collected from Corine Land Cover, Eurogeographics, and OpenStreetMap. All 
the variables are available for both Germany and Spain.
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Missing value imputation.  The collected proxy datasets exhibit missing values. Imputing these values is a 
critical step in spatial disaggregation workflows, as complete proxy data is essential for distributing national totals. 
Table 6 provides an overview of the number and percentage of missing values identified in the collected proxy 
data. These gaps are primarily found in datasets that are available only for either Germany or Spain, often due to 
strict data protection regulations preventing certain regions from reporting data. Consequently, missing values 
must be imputed using relevant statistical indicators, such as land use and land cover data when estimating the 
utilized agricultural area.

To impute these missing values XGBoost model is employed. Since the spatial distribution process is rela-
tive, data quality in one region directly influences the accuracy of all others. Therefore, it is crucial to assess the 
model’s performance. To this end, we conduct two evaluations: (1) assessing the predictive accuracy within a 
country by setting aside a portion of the data for validation, and (2) evaluating the model’s predictive capacity in 
a country where the dataset is entirely absent. The latter is achieved by leveraging available data at intermediate 
spatial levels, such as states, within the country. The data sources employed in this cross-country missing value 

Fig. 5  The distribution and number of iron and steel industries as reported by three open databases: Global 
Steel Plant Tracker, Hotmaps, and sEEnergies. The figure highlights the differences in coverage among these 
sources, with Hotmaps providing the most comprehensive dataset.

Industry

Hotmaps sEEnergies

Germany Spain Germany Spain

Chemical industries 118 25 44 8

Non-ferrous metals industries 40 4 17 3

Non-metallic minerals industries 160 77 289 52

Paper and printing industries 140 159 65 59

Refineries 26 19 9 8

Table 3.  Number of different industries as reported by Hotmaps and sEEnergies open databases.
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imputation evaluation are listed in Fig. 2. The training and validation of the model, as well as the evaluation of 
the missing value prediction across countries is explained in the following.

XGBoost model training. The datasets with missing values at the LAU level are imputed by training an 
XGBoost model using all other LAU-level variables as potential predictors. Before selecting the final predictors, 
two preprocessing steps are performed to eliminate certain variables: 

•	 Removal of non-informative predictors: Any predictors that have the same value across all regions are dis-
carded because they lack predictive capability.

•	 Correlation analysis: A pairwise correlation among all potential predictors is examined. If two variables 
exhibit an absolute correlation of 0.9 or higher, only one is retained to prevent over-representation of highly 
similar variables in the model.

The final dataset used as input for the XGBoost model consists of the selected predictors and the variable 
to be imputed, with only complete records included. Prior to training, 10% of the data is reserved for model 
validation, while the remaining 90% is utilized for two experimental setups. In the first setup, predictors with an 
absolute Pearson correlation of at least 0.1 with the variable to be imputed are included. In the second setup, the 

Coverage Data source Variable Unit

Germany and Spain

Eurostat

Gross domestic product34 million Euros

Road transport of freight35 Mt

Employment in manufacturing36 number

Employment in construction36 number

Employment in agriculture, forestry and fishing36 number

ESPON37 Soil sealing square kilometer

EURO-CORDEX38
Heating degree days heating degree days

Cooling degree days cooling degree days

Food and Agriculture 
Organization of the UN39

Number of buffaloes number

Number of cattle number

Number of pigs number

Number of sheeps number

Number of chickens number

Number of goats number

Germany

Bundesagentur für Arbeit40

Employment in textile and leather manufacturing number

Employment in food and beverage manufacturing number

Employment in mechanical and automotive engineering number

Employment in mechatronics, energy and electrical number

Employment in wood processing number

Destatis24

Number of passenger cars emission group euro 1 number

Number of passenger cars emission group euro 2 number

Number of passenger cars emission group euro 3 number

Number of passenger cars emission group euro 4 number

Number of passenger cars emission group euro 5 number

Number of passenger cars emission group euro 6r number

Number of passenger cars emission group euro 6dt number

Number of passenger cars emission group euro 6d number

Number of passenger cars emission group euro other number

Residential building living area square kilometer

Non-residential building living area square kilometer

Spain
The National Statistics Institute 
of Spain23 Number of commercial and service companies number

DATAESTUR41 Average daily traffic - light duty vehicles number

Table 4.  NUTS3-level proxy data collected from different data sources.

Data source Variable Unit

Eurostat

Number of motorcycles42 number

Air transport of passengers43 number

Air transport of freight44 Mt

Table 5.  NUTS2-level proxy data collected from Eurostat. All the variables are available for both Germany and 
Spain.
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correlation threshold is increased to 0.5. Figure 6 presents the correlations between “utilized agricultural area” 
and the various predictors used.

In both sets of experiments, hyperparameter tuning is performed using a grid search on the XGBoost model. 
The hyperparameters tuned include n_estimators, learning_rate, and max_depth, with the model optimized for 
minimal Root Mean Squared Error (RMSE). To calculate the RMSE, 5-fold cross-validation is applied on the 
training data, splitting it into five folds. The RMSE is computed for each fold by training the model on four folds 
and validating on the remaining fold, and the average RMSE across all folds is used as the performance metric 
for hyperparameter optimization. The final model for data imputation is the one with hyperparameter combi-
nation that yields the lowest RMSE.

A similar approach is used in the case of variables with missing values at the NUTS3 level. Here, the potential 
predictors are all variables at NUTS3 level without missing values, as well as LAU variables with no missing data, 
aggregated to the NUTS3 level. Figures 7, 8, 9, and 10 illustrate the correlations between the NUTS3 variables 
with missing values and various predictors.

XGBoost model validation. Table 7 presents the training and validation errors corresponding to the pre-
viously discussed correlation thresholds. While a lower RMSE indicates better model performance, its lack of 
fixed upper or lower bounds makes accuracy interpretation challenging. Therefore, the R-squared error is also 
provided, where values closer to 1 signify better performance.

To ensure transparency regarding the quality of the generated values in this work, a five-level confidence schema 
is introduced: VERY HIGH, HIGH, MEDIUM, LOW, and VERY LOW. This qualitative labeling system facilitates eas-
ier interpretation of data quality compared to conventional statistical measures such as RMSE or R-squared values.

Confidence assignment begins at the data collection stage: all non-missing values are automatically labe-
led as VERY HIGH. Missing values, in contrast, are assigned one of the remaining confidence levels based on 
the R-squared score of the chosen imputation model. Specifically, the thresholds are defined as follows: HIGH 
for >0.8, MEDIUM for >0.5 and ≤0.8, LOW for >0.2 and ≤0.5, and VERY LOW for ≤0.2.

For each variable, between the two experimental settings that are considered —with correlation thresholds of 
≥0.1 and ≥0.5 —the configuration yielding the higher R-squared score is selected for imputing missing values. 
Although the XGBoost model is trained to minimize RMSE, R-squared scores are employed for quality ratings 
due to their bounded range (≤1), which provides a consistent and interpretable scale across variables. The final 
model selected for each variable, along with its corresponding confidence level, is presented in Table 8.

The trained XGBoost models effectively predict missing values for most variables (see Table 8). However, 
the variables “employment in the food and beverage manufacturing sector” have LOW prediction quality, and 
“employment in textile and leather manufacturing” is classified as VERY LOW. The poor predictions for food 
and beverage manufacturing can be attributed to the lack of relevant predictor data at the NUTS3 level. In addi-
tion to this limitation, the low prediction quality for textile and leather manufacturing is further exacerbated 
by a higher proportion of missing values, with 34 out of 401 records missing, compared to other datasets at the 
NUTS3 level. The variable “Average daily traffic - light duty vehicles” shows the poorest prediction results. The 
R-squared values are negative (see Table 7), indicating that none of the predictors contribute meaningfully to the 

Spatial level Variable

Number of missing values

(Percentage of missing values)

Germany Spain

LAU Utilized agricultural area — 348 (4.33%)

NUTS3

Number of commerical and service companies — 3 (5.77%)

Average daily traffic - light duty vehicles — 10 (19.23%)

Employment in textile and leather manufacturing 34 (8.48%) —

Employment in food and beverage manufacturing 2 (0.5%) —

Employment in mechanical and automotive engineering 1 (0.25%) —

Employment in mechatronics, energy and electrical 1 (0.25%) —

Employment in wood processing 2 (0.5%) —

Number of passenger cars emission group euro 1 2 (0.50%) —

Number of passenger cars emission group euro 2 2 (0.50%) —

Number of passenger cars emission group euro 3 2 (0.50%) —

Number of passenger cars emission group euro 4 2 (0.50%) —

Number of passenger cars emission group euro 5 2 (0.50%) —

Number of passenger cars emission group euro 6r 2 (0.50%) —

Number of passenger cars emission group euro 6dt 2 (0.50%) —

Number of passenger cars emission group euro 6d 2 (0.50%) —

Number of passenger cars emission group euro other 2 (0.50%) —

Residential building living area 1 (0.25%) —

Non-residential building living area 1 (0.25%) —

Table 6.  Number of missing values per variable with missing values. Note: The number of data records at LAU-
level in Germany and Spain are 11087 and 8043, respectively. The number of data records at NUTS3-level in 
Germany and Spain are 401 and 52, respectively.
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predictions. Out of 52 records, 10 have missing values. Reserving 10% of the remaining data for validation fur-
ther reduces the number of records available for training a reliable XGBoost model. Therefore, the XGBoost pre-
dictions are discarded, and missing values are imputed using the mean of the existing data. Since this approach 
is not robust, the imputed values are assigned a LOW prediction quality.

Evaluation of missing value prediction across countries. As previously mentioned, missing values are 
observed only in the country-level datasets for Germany or Spain. Consequently, the validation using the 10% 
of data set aside specifically assesses how well missing values can be imputed within regions of the same country. 
Here, the trained models are applied to predict data for regions in the other country, and the results are analyzed.

For instance, “utilized agricultural area” is available at the LAU level for Spain. A trained model, initially devel-
oped to impute missing values, is also applied to predict values for German LAU regions. These predictions are then 
validated against data from the Federal Statistical Office of Germany24, which provides agricultural area figures only 
at the NUTS1 level. To enable comparison, the predicted values are aggregated accordingly. Figure 11 demonstrates 
a strong alignment between the predictions and the validation data. This suggests that agricultural land use patterns 
in Spain and Germany are similar. The distribution of utilized agricultural area in both countries is well explained 
by highly correlated predictors such as total available area and non-irrigated arable land cover (Fig. 6). Given this 
successful validation, the XGBoost model is used to impute missing data for German LAU regions.

A similar validation is conducted at the NUTS3 level, where the number of passenger cars per emission 
group is estimated for the Spanish NUTS3 regions. The data is then aggregated into a single dataset representing 
the total number of passenger cars per NUTS3 region. A further aggregation to the NUTS2 level is performed, 
for comparison with data from Eustat25, which provides the number of cars for the three provinces of the Basque 
Country. Figure 11 presents this comparison, revealing significant deviations between the predictions and the 
validation data. A similar pattern is observed in other datasets at the German NUTS3 level. These discrepancies 
suggest that cross-country imputation is not universally reliable, potentially depending on the spatial level of 
analysis. The availability of more data at the LAU level provides greater variance, allowing for improved learning, 
whereas similar attempts at the NUTS3 level yield less accurate results. Additionally, sector-specific factors influ-
ence the effectiveness of imputation. For example, agricultural indicators exhibit similar spatial distributions in 
both countries, making cross-country imputation more feasible, whereas transport-related indicators do not 
follow the same pattern. Due to these inconsistencies, the predictions are discarded.

Step-wise spatial disaggregation.  Figure 2 shows that only some proxy data is readily available at the 
LAU level, while most statistical data is typically available at NUTS3 or NUTS2 levels. Additionally, most proxy 

Fig. 6  The absolute correlations between utilized agricultural area and different predictors at LAU level. The 
figure is divided into two sections: the top half displays the least correlated variables, while the bottom half 
highlights the most correlated ones. For imputing missing values in utilized agricultural area, predictors with 
correlations of at least 0.1 are used in one set of experiments, while those with correlations of at least 0.5 are 
considered in another.
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datasets do not cover the Canary Islands in Spain. Due to this limitation, these regions are excluded from the 
scope of this study.

Fig. 7  The absolute correlations between number of commercial and service companies and average daily traffic 
by light duty vehicles, and different predictors at NUTS3 level. The figure is divided into two sections: the top half 
displays the least correlated variables, while the bottom half highlights the most correlated ones. For imputing 
missing values, predictors with correlations of at least 0.1 are used in one set of experiments, while those with 
correlations of at least 0.5 are considered in another.

Fig. 8  The absolute correlations between employment data and different predictors at NUTS3 level. The figure 
is divided into two sections: the top half displays the least correlated variables, while the bottom half highlights 
the most correlated ones. For imputing missing values, predictors with correlations of at least 0.1 are used in one 
set of experiments, while those with correlations of at least 0.5 are considered in another.
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In this work, we perform a step-wise spatial disaggregation. Initially, proxy data available at the NUTS3 level 
is disaggregated using LAU proxy data, to achieve finer resolution. Subsequently, NUTS2 proxy data is disag-
gregated to the LAU level using both the LAU data and the previously disaggregated NUTS3 data as proxies. 
Finally, the emissions and FEC data are disaggregated to the LAU level. This approach improves the accuracy of 
the disaggregated data by progressively refining estimates.

Among the various spatial disaggregation approaches found in the literature, proxy data-based and machine 
learning-based methods are the most suitable for disaggregating emissions and FEC data7. The proxy data-based 
approach distributes the target data based on the proportion of the chosen spatial proxy. In contrast, the machine 
learning-based approach trains a predictive model, such as XGBoost, to learn the relationships between all avail-
able proxy data and the target data at the source spatial level (e.g., NUTS0), and then uses this model to predict 
the target values in each target region.

Initially, a machine learning-based approach for disaggregation was considered. The approach was eventually 
discarded due to the following reasons: 

•	 The imputation of missing values resulted in poor predictions in certain cases. Applying an additional layer of 
prediction on top of this may further degrade the results.

•	 In Spain, there are only 52 NUTS3 regions, which may constitute a sample size too small to generate reliable 
predictions at the LAU level.

•	 Some variable pairs, such as population and gross domestic product, exhibited strong correlations at the 
NUTS3 level but weaker correlations at the LAU level. These differences in correlation raise concerns about 
whether the statistical relationships among variables, upon which the predictions are based, remain valid at 
the LAU level.

•	 For most variables, no validation data is available at the LAU level, making it challenging to assess the perfor-
mance of this disaggregation approach.

Therefore, in this study, a proxy data-based spatial disaggregation method is employed. Here, the quality of 
disaggregated data primarily depends on how effectively the chosen proxy captures the spatial distribution of 
the target data. The selection of a spatial proxy is inherently constrained by the availability of data at fine-scale 
resolution. For each target dataset, potential proxies are initially identified based on theoretical considerations. 
If the most suitable proxy is unavailable in open databases with sufficient non-missing values, the closest alter-
native is selected. For example, in disaggregating employment data for textile and leather manufacturing, the 

Fig. 9  The absolute correlations between the number of passenger cars per emission group and different 
predictors at NUTS3 level. The figure is divided into two sections: the top half displays the least correlated 
variables, while the bottom half highlights the most correlated ones. For imputing missing values, predictors 
with correlations of at least 0.1 are used in one set of experiments, while those with correlations of at least 0.5 are 
considered in another.
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ideal proxy would be the total size of textile and leather manufacturing facilities in each LAU region. If that data 
is unavailable, the next best option would be the number of such facilities, followed by a broader proxy such as 
“industrial or commercial units cover.” Since no data on textile and leather manufacturing facilities is accessible, 
“industrial or commercial units cover” is ultimately chosen as the proxy.

To provide transparency regarding the reliability of the disaggregated data, each proxy is assigned a confi-
dence level —classified as HIGH, MEDIUM, LOW, or VERY LOW —to indicate its relevance and explanatory 
strength with respect to the target data. The confidence level reflects the degree of alignment between the proxy 
and the target dataset. For instance, in the example above, the total size of textile and leather manufacturing 
facilities would receive a HIGH confidence rating, the number of such facilities would receive a MEDIUM rating, 
and “industrial or commercial units cover” would be rated as LOW.

The confidence level assigned to the final disaggregated values at the LAU level is determined by taking the 
minimum of the confidence level of the proxy data and that of the proxy assignment. For instance, if a proxy 
value in a LAU region is of MEDIUM confidence, influenced by the missing value imputation, and the proxy 
assignment is of LOW confidence, then the disaggregated value will be assigned a LOW confidence. The selec-
tion of proxies for the step-wise spatial disaggregation process is outlined in the following.

1. NUTS3 variables to LAU. Tables 9, 10, and 11 list the NUTS3 variables together with their potential 
proxies. For each variable, the most suitable proxy is first identified. If this proxy is available in any public data-
base, it is selected and assigned a HIGH confidence level. If the most suitable proxy is unavailable, the next best 
alternative is considered, assigning a MEDIUM confidence level, and the process is repeated as necessary until a 
suitable proxy dataset is obtained for disaggregation.

It is important to note that some proxies are added although they have different measurement units. For 
example “construction sites cover” and “road network” are expressed in square kilometer and kilometer. To 

Fig. 10  The absolute correlations between the building living area and different predictors at NUTS3 level. 
The figure is divided into two sections: the top half displays the least correlated variables, while the bottom half 
highlights the most correlated ones. For imputing missing values, predictors with correlations of at least 0.1 are 
used in one set of experiments, while those with correlations of at least 0.5 are considered in another.
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ensure comparability, all variables are first normalized by their maximum values, preserving true zeros while 
scaling all other values relative to the highest observed value. This normalization allows proxies to be summed 
without introducing inconsistencies.

The “industrial or commercial units cover” data is sourced from the Corine Land Cover database, which 
includes only industrial and commercial units spanning 25 hectares or more. Due to this threshold, many 

Variable

Correlation threshold ≥ 0.1 Correlation threshold ≥ 0.5

Training Validation Training Validation

RMSE R2 RMSE R2 RMSE R2 RMSE R2

Utilized agricultural area 20.31 0.87 20.01 0.89 22.01 0.85 23.28 0.85

Number of commerical and service companies 49877.05 0.58 27353.46 0.61 47208.70 0.66 30192.07 0.53

Average daily traffic - light duty vehicles 689.45 0.18 719.52 −0.45 847.75 −0.89 973.89 −1.67

Employment in textile and leather manufacturing 290.16 0.27 529.56 0.10 311.57 0.14 505.69 0.18

Employment in food and beverage manufacturing 737.97 0.22 1482.62 0.29 720.42 0.29 1724.07 0.04

Employment in mechanical and automotive engineering 2083.65 0.79 1208.13 0.91 1764.42 0.83 1110.13 0.92

Employment in mechatronics, energy and electrical 1148.96 0.84 1023.46 0.82 1028.12 0.87 830.13 0.88

Employment in wood processing 427.62 0.51 259.76 0.51 464.37 248.52 376.86 0.02

Number of passenger cars emission group euro 1 378.22 0.84 155.81 0.92 355.74 0.84 167.48 0.91

Number of passenger cars emission group euro 2 1481.89 0.86 758.39 0.90 1519.40 0.85 752.10 0.91

Number of passenger cars emission group euro 3 1769.34 0.87 781.02 0.93 1785.75 0.86 1033.32 0.87

Number of passenger cars emission group euro 4 7027.27 0.88 3294.12 0.92 6786.87 0.89 3687.20 0.90

Number of passenger cars emission group euro 5 6157.90 0.91 3386.32 0.92 5917.91 0.91 3050.37 0.93

Number of passenger cars emission group euro 6r 6978.70 0.90 3579.00 0.92 6967.55 0.89 3269.41 0.94

Number of passenger cars emission group euro 6dt 4320.35 0.85 2555.25 0.87 4317.94 0.85 1461.44 0.95

Number of passenger cars emission group euro 6d 7072.20 0.70 8294.98 0.52 7472.18 0.59 8127.21 0.54

Number of passenger cars emission group euro other 2113.87 0.78 1627.34 0.78 2164.24 0.76 1289.55 0.86

Residential building living area 3.26 0.89 1.03 0.96 3.37 0.88 1.78 0.89

Non-residential building living area 0.09 0.83 0.06 0.91 0.08 0.84 0.07 0.88

Table 7.  RMSE and R-squared scores on the training and validation datasets when using the XGBoost model 
for missing value imputation.

Variable

Value confidence level

For correlation 
threshold ≥ 0.1

For correlation 
threshold ≥ 0.5

Utilized agricultural area HIGH —

Number of commerical and service companies MEDIUM —

Average daily traffic - light duty vehicles VERY LOW —

Employment in textile and leather manufacturing — VERY LOW

Employment in food and beverage manufacturing LOW —

Employment in mechanical and automotive engineering — HIGH

Employment in mechatronics, energy and electrical — HIGH

Employment in wood processing MEDIUM —

Number of passenger cars emission group euro 1 HIGH —

Number of passenger cars emission group euro 2 — HIGH

Number of passenger cars emission group euro 3 HIGH —

Number of passenger cars emission group euro 4 HIGH —

Number of passenger cars emission group euro 5 — HIGH

Number of passenger cars emission group euro 6r — HIGH

Number of passenger cars emission group euro 6dt — HIGH

Number of passenger cars emission group euro 6d — MEDIUM

Number of passenger cars emission group euro other — HIGH

Residential building living area HIGH —

Non-residential building living area HIGH —

Table 8.  The value confidence levels assigned based on the R-squared score obtained for the better-performing 
model between two predictor sets: those with a correlation threshold ≥0.1 and those with a correlation 
threshold ≥0.5. The corresponding confidence levels for R-squared thresholds are: HIGH for  >0.8, MEDIUM 
for  >0.5 and ≤0.8, LOW for  >0.2 and ≤0.5, and VERY LOW for ≤0.2.
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regions have zero values. Since this limitation is consistent across all regions, data imputation was not feasible. 
Consequently, this proxy is used in conjunction with population data in this study. Furthermore, “employment 
in construction” uses “construction sites cover” and “road network” as proxies because construction encom-
passes both building and road construction.

2. NUTS2 variables to LAU. Table 12 details the proxy assignment process in the case of the NUTS2 varia-
bles “number of motorcycles”, “air transport of passengers”, and “air transport of freight”.

3b. FEC (NUTS0 data) to LAU. Table 13 presents the FEC end-use sectors for which final proxies were avail-
able in both countries. Table 14 lists the FEC end-use sectors for which final proxies were available exclusively for 
Germany. Here, emissions from passenger car road transport are disaggregated according to the passenger car fleet 
categorized into different emission groups. These groups define the vehicle emission standards used in Europe26, 
with each group setting caps on specific air pollutants. The initial emission group, Euro 1, was introduced in July 
1992. Over the years, the standards have become increasingly stringent with the introduction of new emission caps. 
The caps for diesel passenger cars concerning pollutants such as carbon monoxide (CO), hydrocarbons and nitro-
gen oxides (HC + NOX), and particulate matter (PM) are detailed in Table 15. For each emission group, the caps 
for these three pollutants are summed to obtain a weighting factor for the proxies. The passenger car data provides 
information for emission group 5 but does not differentiate between Euro 5a and 5b. In this case, the more lenient 
tier, Euro 5a, is considered to assign more emissions to cars in tier 5. The data also includes an emission group 

Fig. 11  [Top] Results of training an XGBoost model to predict utilized agricultural area in Spain at the LAU 
level, and applying this model to estimate values for German LAU regions. The predicted data is compared with 
the available utilized agricultural area data at the NUTS1 level in Germany. The results indicate that the model’s 
predictions closely align with the actual data, with minimum and maximum deviations of 9.34 and 5106.56 
square kilometers, respectively. [Bottom] Results of training an XGBoost model to predict passenger car stock 
in Germany at the NUTS3 level, and applying this model to estimate values for Spanish NUTS3 regions. The 
predicted data is compared with the available data for the 3 NUTS3 regions in the Basque Country, Spain. 
The results indicate that the model’s predictions deviate significantly from the actual data, with minimum and 
maximum deviations of 108957.0 and 276023.0 cars, respectively.

NUTS3 Variable

Potential proxies

Most suitable Alternative proxy 1 Alternative proxy 2

Employment in manufacturing Industrial or commercial units cover + Population — —

Employment in construction Number of construction companies Construction sites cover + Road network —

Road transport of freight Number of heavy duty vehicles Number of fuel stations Road network

Heating degree days Temperature (No proxy. Same value for all child regions) —

Number of cattle Size of cattle farms Number of cattle farms Utilized agricultural area

Number of pigs Size of pig farms Number of pig farms Utilized agricultural area

Number of buffaloes Size of buffalo farms Number of buffalo farms Utilized agricultural area

Employment in agriculture, forestry, and fishing Utilized agricultural area + Agroforestry areas 
cover + Number of fishers

Utilized agricultural area + Agroforestry areas 
cover + Water bodies cover + Water courses 
cover

—

Table 9.  The potential proxies for disaggregating each NUTS3 variable, commonly collected for both Germany 
and Spain. The confidence level for the final selected proxy reflects the strength of its relationship with the target 
variable: HIGH if it is the most suitable, MEDIUM if it is the first alternative, and so forth.
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labeled “Other.” Due to the lack of additional information from the data source regarding this category, it is treated 
as the Euro 1 group. Since this data was unavailable for Spain, “average daily traffic - light duty vehicles” is used as a 
proxy. Similarly, Table 16 outlines the FEC end-use sectors for which final proxies were available for Spain.

3a. GHG emissions (NUTS0 data) to LAU. Tables 17, 18, and 19 present the proxy assignments in the case 
of emissions end-use sectors. The proxies are similar to those used for FEC. The differences arise from a different 
breakdown of the source sub-sectors.

In Germany, except for energy-intensive industries, all proxies correspond directly to relevant emission 
sources. As a result, most emissions end-use sector proxies are classified as having HIGH confidence (see 
Table 18). In contrast, Spain lacks detailed employment data and spatial data on residential and non-residential 
areas, limiting the availability of HIGH confidence proxies for several emissions end-use sectors (see Table 19).

Data validation.  Finally, the spatial disaggregation results are compared with the values reported in local 
inventories (NetZeroCities4) and an open-source sub-national emissions dataset (EDGAR8), ensuring alignment 

NUTS3 Variable

Potential proxies

Most suitable Alternative proxy 1 Alternative proxy 2

Employment in textile and leather manufacturing Size of textile and leather manufacturing industries Number of textile and leather 
manufacturing industries

Industrial or commercial 
units cover + Population

Employment in food and beverage manufacturing Size of food and beverage manufacturing industries Number of food and beverage 
manufacturing industries

ndustrial or commercial 
units cover + Population

Employment in mechanical and automotive engineering Size of mechanical and automotive engineering 
industries

Number of mechanical and 
automotive engineering industries

Industrial or commercial 
units cover + Population

Employment in mechatronics, energy and electrical Size of mechatronics, energy and electrical industries Number of mechatronics, energy 
and electrical industries

Industrial or commercial 
units cover + Population

Employment in wood processing Size of wood processing industries Number of wood processing 
industries

Industrial or commercial 
units cover + Population

Number of passenger cars emission group euro 1 Age distribution of passenger cars Number of fuel stations Population

Number of passenger cars emission group euro 2 Age distribution of passenger cars Number of fuel stations Population

Number of passenger cars emission group euro 3 Age distribution of passenger cars Number of fuel stations Population

Number of passenger cars emission group euro 4 Age distribution of passenger cars Number of fuel stations Population

Number of passenger cars emission group euro 5 Age distribution of passenger cars Number of fuel stations Population

Number of passenger cars emission group euro 6r Age distribution of passenger cars Number of fuel stations Population

Number of passenger cars emission group euro 6dt Age distribution of passenger cars Number of fuel stations Population

Number of passenger cars emission group euro 6d Age distribution of passenger cars Number of fuel stations Population

Number of passenger cars emission group euro other Age distribution of passenger cars Number of fuel stations Population

Residential building living area Population — —

Non-residential building living area Industrial or commercial units cover + Population — —

Table 10.  The potential proxies for disaggregating each NUTS3 variable, collected only for Germany. The 
confidence level for the final selected proxy reflects the strength of its relationship with the target variable: 
HIGH if it is the most suitable, MEDIUM if it is the first alternative, and so forth.

NUTS3 Variable

Potential proxies

Most suitable Alternative proxy 1 Alternative proxy 2

Number of commerical and service companies Industrial or commercial units 
cover + Population — —

Average daily traffic - light duty vehicles Number of light duty vehicles Number of fuel stations Population

Table 11.  The potential proxies for disaggregating each NUTS3 variable, collected only for Spain. The 
confidence level for the final selected proxy reflects the strength of its relationship with the target variable: 
HIGH if it is the most suitable, MEDIUM if it is the first alternative, and so forth.

NUTS2 Variable

Potential proxies

Most suitable Alternative proxy 1 Alternative proxy 2

Number of motorcycles Number of motorcycle service stations Number of fuel stations Road network

Air transport of passengers Airports cover — —

Air transport of freight Airports cover — —

Table 12.  The potential proxies for disaggregating each NUTS2 variable, commonly collected for both 
Germany and Spain. The confidence level for the final selected proxy reflects the strength of its relationship with 
the target variable: HIGH if it is the most suitable, MEDIUM if it is the first alternative, and so forth.
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with the sub-sectors considered in this study. The details of this validation process are presented in the technical 
validation section of this manuscript.

Data Record
The generated datasets offer sectorally-detailed municipal/LAU level FEC and GHG emissions data, for Germany 
and Spain, for the year 202227. The datasets are available on Zenodo at https://zenodo.org/records/14097217. 
There are two sub-folders in this repository, one for the FEC data and the other for the emissions data. Within 
each sub-folder, several .csv files exist. Each .csv file provides data for one sub-sector.

Emission source

Potential proxies

Most suitable Alternative proxy 1

Iron and steel industries Capacity of iron and steel industries Number of iron and steel industries

Non-ferrous metals industries Capacity of non-ferrous metals industries Number of non-ferrous metals industries

Chemical industries Capacity of chemical industries Number of chemical industries

Non-metallic minerals industries Capacity of non-metallic minerals industries Number of non-metallic minerals industries

Mining and quarrying Mineral extraction sites cover —

Paper, pulp, and printing industries Capacity of paper, pulp, and printing industries Number of paper and printing industries

Construction Employment in construction —

Rail transport Railway network —

Domestic aviation Air transport of freight + Air transport of passengers —

Domestic navigation Port areas cover —

Agriculture and forestry Employment in agriculture, forestry, and fishing —

Table 13.  FEC end-use sectors with final proxies commonly available for both Germany and Spain. The 
confidence level for the final selected proxy reflects the strength of its relationship with the target variable: 
HIGH if it is the most suitable, MEDIUM if it is the first alternative, and so forth.

FEC source Most suitable proxy

Wood and wood products industries Employment in wood processing

Transport equipment industries Employment in mechanical and automotive engineering

Machinery industries Employment in mechatronics, energy and electrical

Food, beverages, and tobacco industries Employment in food and beverage manufacturing

Textile and leather industries Employment in textile and leather manufacturing

Road transport

(Road transport of freight) + (3.83 * Number of passenger cars emission group euro 1) + (1.78 * 
Number of passenger cars emission group euro 2) + (1.25 * Number of passenger cars emission group 
euro 3) + (0.825 * Number of passenger cars emission group euro 4) + (0.735 * Number of passenger 
cars emission group euro 5) + (0.6745 * Number of passenger cars emission group euro 6r) + (0.6745 
* Number of passenger cars emission group euro 6dt) + (0.6745 * Number of passenger cars emission 
group euro 6d) + (3.83 * Number of passenger cars emission group euro other)

Households Residential building living area * Heating degree days

Commerce Non-residential building living area * Heating degree days

Table 14.  FEC end-use sectors with final proxies available for Germany. The confidence level for the final 
selected proxy reflects the strength of its relationship with the target variable: HIGH if it is the most suitable, 
MEDIUM if it is the first alternative, and so forth.

Tier CO HC + NOX PM Total

Euro 1 2.72 0.97 0.14 3.83

Euro 2 1.0 0.7 0.08 1.78

Euro 3 0.66 0.56 0.05 1.25

Euro 4 0.50 0.30 0.025 0.825

Euro 5a 0.50 0.230 0.005 0.735

Euro 5b 0.50 0.230 0.0045 0.7345

Euro 6b 0.50 0.170 0.0045 0.6745

Euro 6c 0.50 0.170 0.0045 0.6745

Euro 6d-temp 0.50 0.170 0.0045 0.6745

Euro 6d 0.50 0.170 0.0045 0.6745

Euro 6e 0.50 0.170 0.0045 0.6745

Table 15.  Emission caps for different air pollutants, per emission group.
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The .csv files contain “region_code”, “value”, and “value_confidence_level” columns. The “region_code” is in the 
format  < NUTS3 > _ < LAU > i.e., the NUTS3 code is prepended with an “_” to the LAU code, to identify parent 
NUTS3 regions for each LAU region. The “value” column provides the values in the region. The FEC values are 
expressed in MWh and the emissions values are expressed in Mt. The “value_confidence_level” is an aggregate of the 
confidence in spatial proxy missing value imputation and the confidence in the appropriateness of the spatial proxy.

The LAU codes are taken from Eurostat for the year 2019 and the parent NUTS3 codes are for the year 
2016. These can be accesed on Eurostat under https://ec.europa.eu/eurostat/web/gisco/geodata/statistical-units/
local-administrative-units.

FEC source

Potential proxies

Most suitable Alternative proxy 1

Wood and wood products industries Employment in wood processing Employment in manufacturing

Transport equipment industries Employment in mechanical and automotive engineering Employment in manufacturing

Machinery industries Employment in mechatronics, energy and electrical Employment in manufacturing

Food, beverages, and tobacco industries Employment in food and beverage manufacturing Employment in manufacturing

Textile and leather industries Employment in textile and leather manufacturing Employment in manufacturing

Road transport Road transport of freight + Average daily traffic - light duty vehicles —

Households Residential building living area * Heating degree days Population * Heating degree days

Commerce Non-residential building living area * Heating degree days Number of commercial and service 
companies * Heating degree days

Table 16.  FEC end-use sectors with final proxies available for Spain. The confidence level for the final selected 
proxy reflects the strength of its relationship with the target variable: HIGH if it is the most suitable, MEDIUM if 
it is the first alternative, and so forth.

Emission source

Potential proxies

Most suitable Alternative proxy 1

Iron and steel industries Capacity of iron and steel industries Number of iron and steel industries

Non-ferrous metals industries Capacity of non-ferrous metals industries Number of non-ferrous metals industries

Chemical industries Capacity of chemical industries Number of chemical industries

Non-metallic minerals industries Capacity of non-metallic minerals industries Number of non-metallic minerals industries

Paper, pulp, and printing industries Capacity of paper, pulp, and printing industries Number of paper and printing industries

Rail transport Railway network —

Road freight transport Road transport of freight —

Road transport using motorcycles Number of motorcycles —

Domestic aviation Air transport of freight + Air transport of passengers —

Domestic navigation Port areas cover —

Cultivation Utilized agricultural area —

Livestock Number of cattle + Number of pigs + Number of buffaloes —

Table 17.  GHG emissions end-use sectors with final proxies commonly available for both Germany and Spain. 
The confidence level for the final selected proxy reflects the strength of its relationship with the target variable: 
HIGH if it is the most suitable, MEDIUM if it is the first alternative, and so forth.

Emission source Most suitable proxy

Food, beverages, and tobacco industries Employment in food and beverage manufacturing

Other manufacturing industries and construction
Employment in mechanical and automotive engineering + Employment in 
mechatronics, energy and electrical + Employment in textile and leather manufacturing 
+ Employment in construction

Road transport using cars

(3.83 * Number of passenger cars emission group euro 1) + (1.78 * Number of 
passenger cars emission group euro 2) + (1.25 * Number of passenger cars emission 
group euro 3) + (0.825 * Number of passenger cars emission group euro 4) + (0.735 
* Number of passenger cars emission group euro 5) + (0.6745 * Number of passenger 
cars emission group euro 6r) + (0.6745 * Number of passenger cars emission group 
euro 6dt) + (0.6745 * Number of passenger cars emission group euro 6d) + (3.83 * 
Number of passenger cars emission group euro other)

Households Residential building living area * Heating degree days

Commerce Non-residential building living area * Heating degree days

Table 18.  GHG emissions end-use sectors with final proxies available for Germany. The confidence level for 
the final selected proxy reflects the strength of its relationship with the target variable: HIGH if it is the most 
suitable, MEDIUM if it is the first alternative, and so forth.
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Emission source

Potential proxies

Most suitable Alternative proxy 1

Food, beverages, and tobacco industries Employment in food and beverage manufacturing Employment in manufacturing

Other manufacturing industries and construction
Employment in mechanical and automotive engineering 
+ Employment in mechatronics, energy and electrical 
+ Employment in textile and leather manufacturing + 
Employment in construction

Employment in manufacturing + 
Employment in construction

Road transport using cars Average daily traffic - light duty vehicles —

Households Residential building living area * Heating degree days Population * Heating degree days

Commerce Non-residential building living area * Heating degree days Number of commerical and service 
companies * Heating degree days

Table 19.  GHG emissions end-use sectors with final proxies available for Spain. The confidence level for 
the final selected proxy reflects the strength of its relationship with the target variable: HIGH if it is the most 
suitable, MEDIUM if it is the first alternative, and so forth.

Fig. 12  Comparison of reported and disaggregated FEC [left] and emissions [right] across selected Spanish 
municipalities, for the buildings sector [top] and road transport sector [bottom]. In each subplot, bars represent 
the reported and disaggregated values (left y-axis), while the black line indicates the absolute percentage 
deviation between them (right y-axis). The figure highlights deviations between top-down disaggregated 
estimates and values reported in local inventories. Notable discrepancies in Zaragoza and Seville are examined 
in detail, illustrating the influence of differences in spatial reporting levels and sectoral definitions. Emissions 
deviations underscore the impact of regional variations in energy mix, while inconsistencies in transport sector 
reporting contribute to further disparities.
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The Zenodo repository also includes a readme file detailing this information.

Technical Validation
This study introduces a spatial disaggregation workflow that requires technical validation at two critical stages: 
(1) the imputation of missing values in proxy data, and (2) the final disaggregation of FEC and emissions data. 
The validation of the missing value imputation was shown already in the Methods section.

Validating the disaggregated data is more challenging due to the absence of data on energy consumption and 
emissions at municipal/LAU level in official databases. This lack of data is the primary reason for performing 
spatial disaggregation of national data. Here, technical validation is carried out through the following approaches: 

Sector

Germany Spain

EDGAR value Eurostat value Percentage deviation EDGAR value Eurostat value Percentage deviation

Industry 188.81 115.80 38.67 81.24 37.86 53.40

Buildings 128.05 109.69 14.34 36.88 24.32 34.06

Transport 143.38 147.27 −2.71 83.51 90.21 −8.02

Agriculture 55.81 51.72 7,33 44.46 34.86 21.59

Table 20.  Comparison of sectoral values reported by EDGAR database and Eurostat values at NUTS0 level, to 
determine matching sectors. Note: The unit of measure of the values is kt CO2 equivalent.

Fig. 13  Comparison of aggregated transport emissions at the NUTS2 level between this study’s disaggregated 
dataset and the EDGAR database for Germany [top] and Spain [bottom]. Bars represent emissions values from 
both datasets (left y-axis), while the black line indicates the absolute percentage deviation between them (right 
y-axis). Despite close alignment at the national level, notable regional discrepancies emerge due to factors such 
as differences in regional coverage and spatial proxy selection in both works.
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•	 City-level inventories: Bottom-up inventories reported by selected Spanish cities are used for validation.
•	 Cross-validation with disaggregated product: The results are evaluated against another spatially disag-

gregated dataset, namely EDGAR. While such datasets are useful for comparative analysis, none provide 
comprehensive coverage of all the sub-sectors addressed in this study at the municipal level. Furthermore, 
these alternative datasets are themselves the outcome of spatial disaggregation processes rather than being 
grounded in official statistics, and therefore warrant independent critical assessment.

•	 Visual assessment: For sectors lacking direct reference datasets, visual inspections are performed to confirm 
that the spatial distribution of emissions aligns with the patterns of the proxy data used.

The results are discussed in the following sub-sections.

Validation against city-level inventories.  We compare the disaggregated results with the FEC and emissions 
reported by seven Spanish cities —Barcelona, Madrid, Valencia, Valladolid, Vitoria-Gasteiz, Zaragoza, and Seville —
as part of the Climate-Neutral and Smart Cities initiative28. The climate action plans developed by these cities align in 
terms of baseline year (2019) and sectoral coverage4. Accordingly, we used 2019 national values for disaggregation to 
ensure comparability with the reported bottom-up inventories for matching end-use sectors. Two sectors —buildings 
and road transport —could be aligned across datasets, and comparisons were therefore limited to these sectors.

Fig. 14  [top-left] “Employment in food and beverage manufacturing” for Germany [top-right] “Employment 
in manufacturing” in Spain. These proxies are used todisaggregate the emissions in food, beverages, and tobacco 
industries. [bottom] Disaggregated emission values.
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Figure 12 presents a comparison of the reported and disaggregated values. For the building sector, which 
includes both household and commerce sectors, in most cases, the absolute deviation in FEC values remains 
below 20%, with notable exceptions in Zaragoza and Seville.

In the case of Zaragoza, further investigation revealed that the reported FEC corresponds to NUTS3 level 
rather than the LAU level. This is confirmed by the municipality’s SECAP29, where the building sector FEC is 
reported as 3,664,235 MWh. Our disaggregated estimate for Zaragoza municipality is 3,670,931 MWh —result-
ing in a deviation of only 0.18%. When disaggregated values are summed to represent the entire NUTS3 region, 
the resulting FEC is 6,187,351 MWh, which deviates by just 7.26% from the reported value.

In Seville, the discrepancy arises because only residential electricity consumption is reported under the 
building sector, excluding other significant components such as commercial and non-electrical energy con-
sumption. This leads to a larger deviation from the disaggregated estimate. These findings highlight the value of 
top-down disaggregation approaches as a complementary tool to bottom-up inventories, particularly in identi-
fying inconsistencies or omissions in local reporting.

Figure 12 also presents a comparison of emission values. Although the same proxies were used for disaggre-
gating both FEC and emissions, the disaggregated emission figures show greater deviation from those reported in 
bottom-up inventories compared to FEC values. This discrepancy can be attributed to differences in the energy mix 
between national and regional levels. For instance, according to Eurostat’s national energy balance data, the com-
merce sector uses 19.16% natural gas. In contrast, the share of natural gas usage in the commerce sector in the prov-
inces of Araba, Bizkaia, and Gipuzkoa is 26.32%, 24.38%, and 19.71%, respectively30. These variations in energy mix 
can significantly impact emission estimates. Therefore, when developing local inventories using top-down datasets, 
it is crucial to recalculate emissions if the regional energy mix diverges notably from the national average.

The local inventories also include data for the road transport sector; however, the reporting practices for 
this sector are often unclear and inconsistent. For instance, in Vitoria-Gasteiz, the reported FEC appears to 
cover only road transport, whereas in Barcelona, railway transport is also included. In contrast, Valencia’s plan 
explicitly states that only road transport within the city limits is considered. These inconsistencies in sectoral 
definitions and reporting scope likely contribute to the significant deviations observed in Fig. 12.

Cross-validation with EDGAR.  EDGAR provides disaggregated emissions data by sector at the NUTS2 
level for the year 2022. As a first step, we conduct a sectoral comparison to identify categories that align between 
datasets. Table 20 lists the sectors identified as comparable, along with the corresponding national totals reported 
by both EDGAR and Eurostat.

With the exception of the transport sector, all categories exhibit absolute deviations exceeding 20%. These 
discrepancies may arise from differences in the inclusion or exclusion of certain sub-sectors. For instance, chem-
ical industry emissions are not reported for Germany in Eurostat, and thus are not considered here. Moreover, 
emissions from power plants appear to be included under the industrial sector in EDGAR, whereas they are 
excluded in our categorisation.

Given the relatively minor deviation observed in the transport sector at the national scale, a more granular 
comparison at the NUTS2 level was conducted. To facilitate this, emissions data from all LAU regions were 
aggregated to their corresponding NUTS2 regions. Figure 13 presents this comparison, alongside the associated 
percentage deviations.

Despite the low national-level discrepancies, significant regional variations are evident across both countries 
in the two datasets. These regional discrepancies can be attributed to several factors: 

•	 Propagation of national-level differences: Although national totals exhibit only minor deviations, these dis-
crepancies are distributed across regions, potentially amplifying inconsistencies at the sub-national level.

•	 Differences in regional coverage: In the case of Spain, the Canary Islands were excluded from our analysis due 
to the unavailability of suitable proxy datasets. Conversely, EDGAR includes this NUTS2 region but omits the 
autonomous cities of Ceuta and Melilla, which are accounted for in our dataset.

•	 Choice and availability of spatial proxies: Our approach leverages openly available regional-level datasets as prox-
ies for spatial disaggregation. While EDGAR also employs open data sources, the specific proxies used are not 
always transparent, making it difficult to isolate the precise causes of spatial discrepancies between the datasets.

Visual assessment for non-matching sub-sectors.  Figure 14 illustrates the spatial distribution of the 
proxy data, namely “employment in food and beverage manufacturing” and “employment in manufacturing” for 
Germany and Spain, respectively. These proxies are used to disaggregate emissions in the food, beverages, and 
tobacco industries. The figure also displays the disaggregated emission values. It can be observed that the spatial 
distribution of the disaggregated values mirrors that of the proxy data, confirming that the disaggregation has 
been performed accurately. Figures pertaining to other sub-sectors are available on GitHub along with the code. 
The link can be found under the Code Availability section.

Limitations and prospects.  This study aimed to generate spatially and sectorally detailed energy consump-
tion and emissions data for Germany and Spain using a proxy data-based spatial disaggregation approach built on 
publicly available datasets. The use of open data was intentional to ensure replicability and applicability in other 
national contexts. However, several limitations emerged that influence the accuracy and completeness of the results.

A key limitation lies in the availability and granularity of suitable proxy data. Sector-specific proxies at the 
municipal level were rarely available, necessitating a step-wise disaggregation approach —first from intermedi-
ate spatial units to municipal level, and subsequently national values to municipalities. Even with this method, 
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suitable proxies could not be identified for all sectors in both countries. In particular, sectors such as textile 
manufacturing or light-duty vehicle traffic lacked strong, relevant proxy indicators, and thus generalized prox-
ies were employed. This likely introduced spatial inaccuracies and contributed to variability in disaggregation 
accuracy across sectors and regions.

Additionally, several proxy datasets contained missing values. While XGBoost was used to impute these gaps 
effectively in most cases, its predictive performance was constrained for certain variables, primarily due to a lack 
of strong predictor variables. This further reduced confidence in the imputed values and, by extension, in the 
disaggregated estimates for affected sectors.

Validation of the results presents another limitation. Only a small set of city-level inventories from Spain 
and one external dataset were available for benchmarking. These validation sources were limited in both spatial 
coverage and sectoral completeness. In particular, the Spanish city inventories covered only seven municipalities 
and lacked representation for all sectors modeled in this study. No equivalent bottom-up inventories were avail-
able for German municipalities, precluding any robust cross-country validation. The external dataset, although 
covering both countries, is itself a product of spatial disaggregation and showed significant deviations from our 
results, further complicating the assessment of overall accuracy.

The study also captures only a single reference year (2022) and does not incorporate temporal dynamics or 
trends. This constrains the direct applicability of the results for time-sensitive planning or forecasting and under-
scores the static nature of the current dataset. Additionally, the disaggregation approach employed does not 
account for potential spatial autocorrelation within the data. Incorporating spatial autocorrelation-particularly 
relevant in sectors such as transport where cross-regional interactions are common-could further enhance the 
accuracy of the disaggregated results.

Given these constraints, the outputs of this study should be interpreted with caution, particularly in regions 
or sectors where data coverage is sparse or confidence scores are low. Nevertheless, as data availability improves, 
particularly at the municipal level, and as more reliable and comprehensive bottom-up inventories become 
accessible, there is significant scope to improve the accuracy and robustness of the results presented here. The 
integration of more targeted proxy indicators and a broader validation framework would enhance the credibility 
and utility of the datasets. Continued efforts in data harmonization, transparency, and open-access publication 
of sub-national inventories will be essential to support this advancement.

Usage Notes
This study employed the 2019 LAU definitions. It is important to note that LAU boundaries can change annu-
ally. As such, future analyses using updated LAU definitions may require reconfiguration of the disaggregation 
process to ensure alignment with the revised regional boundaries. Additionally, any spatial proxy data collected 
at the LAU level would need to be reprocessed accordingly. At broader spatial scales, such as NUTS3, boundary 
definitions are typically updated on a four-year cycle. For this study, we used the 2016 NUTS definitions.

The choice of reference year for regional definitions, as well as the year of data collection, is critical, as both 
can significantly influence disaggregation outcomes. In this analysis, emissions and FEC data were collected for 
the year 2022. Proxy data, however, originate from various years, with preference given to the most recent data 
available from each source. For example, population data from 2019 was used in conjunction with the 2019 LAU 
definitions, while land cover information was derived from the Corine Land Cover dataset, last updated in 2018.

Therefore, if the disaggregation workflow presented here is applied using updated regional definitions and/or 
more recent datasets, the resulting outputs may differ from those reported in this study.

Code availability
The spatial disaggregation workflow developed for this work is implemented in Python and is available on GitHub 
under https://github.com/FZJ-IEK3-VSA/EnergyEmissionsRegio. The core functions can be accessed in the 
“energyemissionsregio” directory, while the sections on missing value imputation and disaggregation are in the 
“experiments” directory.
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