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 A B S T R A C T

Effective governance of energy system transformation away from fossil resources requires a quantitative 
understanding of the diffusion of green technologies and its key influencing factors. In this article, we propose 
a novel machine learning approach to diffusion research focusing on actual decisions and spatial aspects 
complementing research on intentions and temporal dynamics. We develop machine learning models that 
predict regional differences in the accumulated peak power of household-scale photovoltaic systems and the 
share of battery electric vehicles from a large set of demographic, geographic, political, and socio-economic 
features. Tools from explainable artificial intelligence enable a consistent identification of the key influencing 
factors and quantify their impact. Focusing on data from German municipal associations, we identify common 
themes and differences in the adoption of green technologies. Specifically, the adoption of battery electric 
vehicles is strongly associated with income and election results, while the adoption of photovoltaic systems 
correlates with the prevalence of large dwellings and levels of global solar radiation.
1. Introduction

The mitigation of climate change requires a rapid transformation 
of our energy system [1]. Renewable energy sources, especially solar 
photovoltaics (PV), are abundant and cost competitive [2,3]. Similarly, 
battery electric vehicles (BEVs) have experienced remarkable advance-
ments over the past decade, characterized by reduced costs, extended 
range, and increased longevity [4]. However, the transition to sustain-
able energy and mobility is not just a matter of technology availability 
and costs [5]. The adoption of renewable power sources or battery 
electric vehicles usually depends on decisions by public or private 
investors. Understanding the determinants of these decisions is crucial 
for grasping the potential for transformation of the energy system.

The diffusion of green technologies shows large regional differences, 
even within a single country. In Germany, the diffusion of household-
size PV systems has progressed fastest in the south and slowest in 
the northeast as well as some areas in the west (see Fig.  1). The 
diffusion of BEVs shows notable differences between western and east-
ern federal states and some hotspots of rapid adoption (see Fig.  1). 
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These hotspots include municipal associations in the commuter belts 
of larger cities such as Munich, cities with automobile manufacturers 
such as Wolfsburg, but also smaller municipal associations. Notably, 
some neighboring municipal associations reveal strong differences in 
the level of adoption of PVs or BEVs which cannot be explained by dif-
ferent legal or geographic conditions. What causes these strong regional 
differences and what can we learn about the drivers and barriers to the 
adoption of green technologies?

Various studies have examined determinants of PV [8,9] and BEVs 
adoption [10–12], each providing valuable insights while approaching 
the subject from different perspectives. Statistical research mostly relies 
on regression models that analyze a limited set of potential influencing 
factors. Survey-based studies typically investigate investment intentions 
and are thus prone to the intention-behavior gap which is a central 
theme in green consumption [13]. Agent-based models are routinely 
used in innovation research [14], but are often fitted to simplified 
socio-economic or spatial data [15,16]. Finally, theoretical work on the 
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Fig. 1. Regional differences in the adoption of green technologies in Germany. 
Left: Aggregated peak power of house-hold scale PV systems normalized by 
the number of households installed until December 31, 2021. Right: Share 
of battery electric vehicles among all privately owned vehicles as of April 
1, 2024. Data has been obtained from Marktstammdatenregister, an open-
access registry by the Bundesnetzagentur (Federal Network Agency) [6], and 
Kraftfahrt-Bundesamt (Federal Motor Transport Authority) [7] and aggregated 
on the level of municipal associations.

geography of sustainable transitions has also contributed to the field 
but often neglects differences between technology groups [17]. Overall, 
these approaches highlight important facets of technology adoption, 
but a comprehensive data-driven analysis of the regional diffusion of 
green technologies is lacking.

We address this gap by proposing a different approach to diffusion 
research based on data-driven analyses relying on eXplainable AI. 
In contrast to some of the prior research, our analysis focuses on 
actual decisions and spatial characteristics of the diffusion process. 
Furthermore, we point out similarities and differences in the adoption 
of two different technology groups. Most importantly, we avoid a 
priori assumptions about the putative factors driving the diffusion, but 
propose to identify these factors directly from large-scale datasets using 
methods from eXplainable AI (XAI). XAI provides new methods for 
data analysis and enables new routes to scientific insight [18], with 
several advantages: First, machine learning (ML) models can describe 
any nonlinear relationship and feature interaction and thus go well 
beyond established linear regression models. Second, ML models can 
handle many possibly correlated input features, so we do not need 
to impose prior assumptions or manually select features. Finally, XAI 
provides a method for mathematically consistent model explanation 
which reveals the contribution of each feature to the model prediction. 
In contrast to classical sensitivity analysis, this approach avoids the 
restrictions imposed by the ceteris paribus assumption.

Specifically, we develop two machine learning models that pre-
dict the accumulated peak power of household-scale PV systems and 
the share of BEVs per municipal association from a common set 
of demographic, geographic, and socio-economic features. We focus 
on Germany, where PV and BEV adoption started early and high-
quality statistical data is available. Using SHapley Additive exPlana-
tions (SHAP) [19], we can identify key influencing factors by sys-
tematically comparing the adoption across all municipal associations. 
Applying the same modeling approach to PV and BEVs reveals which 
features constitute general drivers of green adoption and which are 
technology specific. All data is publicly available to guarantee trans-
parency. The source code used in this work is available at Ref. [20] to 
facilitate a translation to other datasets.
2 
2. Literature review

2.1. The geography of sustainable transitions

Early research in the diffusion of innovations has focused on the 
temporal aspects of the diffusion process, revealing different phases 
of the diffusion process over time [21]. More recently, spatial distri-
bution has gained a lot of interest in regional research and economic 
geography. This strand of research is commonly referred to as the 
geography of environmental innovation or the geography of sustainable 
transitions. The early review article [22] identifies five main research 
themes in the geography of sustainable transitions: regional policies, 
localized institutions, local natural resources, local industrial special-
ization and local market formation. Several early studies, including 
perspectives on the diffusion of solar PV, were summarized in the 
special issue [23]. A recent review on the spatial conditions that affect 
environmental innovations is provided in Ref. [24], which distinguishes 
between actors, institutions and technological elements.

Our article contributes to three topical research directions in the 
geography of environmental innovations outlined in Ref. [17]. First, 
a large part of research on environmental innovations treats green 
technologies as a homogeneous technology group [17]. In this arti-
cle, we compare two key technologies and demonstrate pronounced 
differences. Second, there is a strong research tradition on regional 
supply-side factors that promote environmental innovations [25]. Our 
article focuses on the demand-side to quantify which factors facilitate 
the adoption of environmental innovations (cf. Ref. [26]). Finally, there 
is a need for empirical research on the role of institutional factors as 
well as societal norms and beliefs [17]. We will partially incorporate 
norms via local election outcomes. Furthermore, strong differences 
between model predictions and actual values may point to municipal 
associations with a particular institutional framework that deserve 
further study.

2.2. The adoption of household-scale PV systems

A large and growing body of literature has examined exogenous 
and endogenous factors that drive the adoption of photovoltaic systems 
and other renewable energy technologies, see [8,9] for recent review 
articles.

Empirical research typically focuses either on individual households 
(see, e.g., [27,28]) or on an aggregated level (see, e.g., [29,30]). Peer 
and neighborhood effects have been studied in [31–33]. While prior 
works generally rely on the analysis of a few manually pre-selected 
influencing factors, we compile a large data set and identify the rel-
evant factors from the model. To do so, we utilize state-of-the-art XAI 
methods instead of established regression models.

For the case of Germany, several articles analyze the dependence of 
PV adoption on the housing and settlement structure. Previous studies 
find a strong correlation with the (inverse) housing density [34,35] and 
the share of (semi-) detached or single-family houses [34,36,37]. Due to 
their larger roof area and the undivided incentive and decision power 
to install PV systems, these types of houses are better suited for PV 
installations than multi-story buildings [31].

Costs and expected revenues play a major role in the decision-
making process for or against PV installations as evidenced by sur-
veys [27,38]. Aggregated studies show a strong positive correlation 
with the estimated return on investment, which depends on both tem-
poral and spatial factors [39]. Other studies report a strong correlation 
with local solar radiation [34,35], which determines the yield of a PV 
system. The impact of the socio-economic status has been studied in 
Refs. [34,35,39] using different proxy variables. A positive correlation 
with mean income is reported in Refs. [35,39]. Remarkably, Baginski 
and Weber observe a converse relation, i.e., a negative correlation with 
mean income [34]. This finding is attributed to the effect of feature 
correlations, emphasizing the importance of advanced data analysis 
methods.
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2.3. The diffusion of battery electric vehicles

Research on the exogenous and endogenous factors driving the 
adoption of BEVs has been reviewed in Ref. [10–12,40,41]. Below we 
summarize results for six categories of importance: policies, personal 
preferences, perceived properties of BEVs, costs, and socio-economic 
and demographic factors. We note that most prior studies analyze the 
effects of a few categories or even the sole effect of a single feature 
within a category. Overall, the mutual analysis of different categories 
within one methodological framework is rare.

Many governments have implemented policies that provide finan-
cial and non-financial incentives for adopting BEVs. Subsidy programs 
supporting either BEV purchases or charging infrastructure effectively 
increased BEV sales, e.g., in Norway [42], the US [43] and Ger-
many [44]. Similarly, carbon taxes leading to higher operating costs 
for internal combustion vehicles (ICVs) and thus a relative financial 
benefits of BEVs lead to increasing BEV registrations in Sweden [45].

Personal preferences have an influence on the adoption of BEVs. 
Both survey and statistical studies found that a high level of techno-
logical competence, higher education, and a strong interest in climate 
change are positively related to BEV adoption [46–49]. Social reinforce-
ment can strongly influence the adoption of BEVs as analyzed in terms 
of neighborhood effects in Ref. [50]. Notably, peer effects can be quite 
heterogeneous: Ali et al. found a strong effect for high earners but not 
middle earners in India [51].

The perceived properties of BEVs in comparison to ICVs strongly 
affect preferences and decisions. The limited range of early BEVs was 
an important factor for many potential customers, summarized under 
the term ‘‘range anxiety’’ [52]. Similarly, several studies find a negative 
relation between customers’ average travel distance and their willing-
ness to purchase a BEV [48,53]. In addition, the longer charging time 
of a BEV had a negative impact on attitudes towards BEVs [54]. Against 
this background, several studies have found that the availability of 
public charging infrastructure is positively related to the adoption of 
BEVs [48,53–56]. However, the geographic aspects of this relation are 
complicated, as public chargers are often used by commuters rather 
than residents [49].

Purchase costs for BEVs are higher than for ICVs, while operating 
costs are typically lower [57]. Several studies have found that these 
higher purchase costs have a negative impact on (stated) preferences 
for BEVs [51,54]. Similarly, the potential cost of battery replacement 
discourages potential consumers [58]. Given these cost differences, it 
is not surprising that socio-economic factors have a strong influence 
on BEV adoption. Several studies report a positive correlation between 
income and the likelihood of a BEV purchase [47,48,53,59].

Demographic factors, particularly age, gender and household size, 
strongly affect the adoption of BEVs. Several studies agree on the influ-
ence of customers’ age [46,55,59,60]. In particular, male consumers up 
to 45 years are more likely to purchase a BEV [46,54,60], while women 
are typically underrepresented [46,60]. Households with two vehicles 
are more likely to own a BEV [49], while opposing results have been 
obtained for household size [46,60].

Urbanity may affect the diffusion of BEVs, but prior studies do not 
provide a coherent picture [47,55,60]. The share of commuters crossing 
municipalities was found to be positively related to BEV adoption [53].

2.4. XAI in energy research

A variety of ML applications have been proposed in energy sci-
ence, but the vast majority focus on purely technical or economic 
aspects. For example, ML methods are routinely used in power system 
planning and operation [61] or electricity price forecasting [62]. Fur-
thermore, most applications are based on black-box models that lack 
any interpretability, which severely limits scientific insights [18].

Explainable ML is a very recent and rapidly growing research field 
with various applications in energy research (see [63] for a recent 
3 
review). However, most applications focus on purely technical or eco-
nomic applications, while socio-technical aspects have received little 
attention so far. Most notably, a recent study by Alova et al. used 
explainable AI to predict and explain the success or failure of power 
generation projects on the African continent [64]. A recent analysis 
of energy poverty in the Global South using SHAP was provided in 
Ref. [65].

3. Methods

3.1. Methods overview

To analyze spatial differences in the adoption of green technologies, 
we trained two machine learning models to predict (i) the accumulated 
peak power of all PV systems up to 10 kWpeak normalized by the num-
ber of households, and (ii) the share of BEVs among all private vehicles 
respectively for all municipal associations in Germany (see Fig.  2). 
The model includes about 200 demographic, geographic, political, and 
socio-economic features. The data sources are described in Section 3.2 
below. We use gradient boosted trees as they combine state-of-the-
art performance with the possibility of ex-post explainability [19] 
(see Section 3.3 for details). To facilitate explainability, we further 
apply recursive feature elimination, i.e., we recursively remove the 
least important features while maintaining a high model performance 
(see Section 3.5 for details). We assess the robustness of the analysis 
by repeating model training and feature elimination in 10 runs with 
different random test-train splits.

The trained model corresponds to a nonlinear function 𝑓 ∶ → R
that maps the input features 𝑥(1), 𝑥(2),… to the respective target for 
each municipal association. We explain this model to identify impor-
tant features and quantify dependencies between the features. We use 
SHapley Additive exPlanations (SHAP), which provide a mathemati-
cally consistent method for additive feature attribution [66–68]. SHAP 
values are defined locally for each data point 𝑥, but also provide a 
global understanding of a model [19]. This approach goes far beyond 
previous studies employing machine learning to detect PV from satellite 
imagery [69] or using less sophisticated measures of feature impor-
tance to identify correlations between socioeconomic variables and PV 
diffusion detected by a random forest model [70].

Using SHAP values, we can disentangle each prediction of our 
models into the contribution of the individual features, 

𝑓
(

𝑥(1)𝑛 ,… , 𝑥(𝑃 )𝑛
)

= 𝜙0 +
𝑃
∑

𝑖=1
𝜙𝑖
(

𝑥𝑛; 𝑓
)

, (1)

where 𝜙𝑖(𝑥𝑛; 𝑓 ) is the SHAP value of the 𝑖th feature, 𝜙0 is the mean 
over all data points, and 𝑥(𝑖)𝑛  is the value of the 𝑖th feature for the 𝑛th 
data point. The global importance of a feature is then quantified by 
averaging the magnitude of the respective SHAP values over all 𝑁 data 
points, 

𝐹𝐼𝑖 =
1
𝑁

𝑁
∑

𝑛=1
|𝜙𝑖

(

𝑥𝑛; 𝑓
)

|. (2)

Using this approach, we can quantify whether and how strongly any 
feature is related to the predicted accumulated peak power of
household-scale solar PV and the predicted share of BEVs.

3.2. Spatial granularity and data sources

Regional statistical data in Germany is mostly available at the level 
of municipal associations. Individual municipalities are less suited for 
statistical analysis because the average size of a municipality differs 
strongly between German federal states. Here, we follow the definition 
of municipal associations of the INKAR database published by the 
Federal Institute for Research on Building, Urban Affairs and Spatial 
Development [71]. We discard 210 municipal associations from the set, 
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Fig. 2. An eXplainable AI (XAI) model for analyzing the diffusion of green technologies. We train a gradient boosted tree (GBT) model to predict the normalized 
accumulated peak power of PV systems per municipal association from a large set of socio-economic, demographic, and geographic features. A similar model is 
trained for the share of BEVs. SHapley Additive exPlanations (SHAP) provide a local explanation for each data point 𝑥𝑛: The model prediction 𝑓 (𝑥𝑛) is decomposed 
into the contributions of the individual features 𝜙𝑖(𝑥𝑛; 𝑓 ) in an additive and mathematically consistent way. Combining all local explanations enables a global 
understanding of the model [19]: The importance of a feature 𝑖 is measured by the average magnitude of the SHAP values |𝜙𝑖(𝑥𝑛; 𝑓 )|. The impact of a feature is 
quantified in a dependence plot showing 𝜙𝑖(𝑥𝑛; 𝑓 ) versus the feature value 𝑥𝑖𝑛.
in most cases due to zero population (see supplementary material). We 
end up with a data set of 4408 municipal associations for the analysis.

Data on solar PV systems was obtained from the Marktstammdaten-
register, an open-access registry by the Bundesnetzagentur (Federal 
Network Agency) [6]. Registration in this database is mandatory for 
all grid-connected PV systems in Germany. For the overall analysis, 
we include all entries that (i) were installed in 2021 or earlier, (ii) 
registered before November 1, 2022, and (iii) had a net nominal power 
of at most 10 kWpeak . Finally, we aggregated the peak power on the 
level of municipal associations.

Data on the diffusion of BEVs was obtained from the Kraftfahrt-
Bundesamt (Federal Motor Transport Authority) [7]. We consider ve-
hicles owned by private persons as of 1st of April 2024 and aggregate 
the number of vehicles on the level of municipal associations.

We consulted several data sources to create a set of 198 explana-
tory variables. The INKAR database alone provides 182 of these [71]. 
These variables cover, among other things, the domains of age, gen-
der, income, housing and settlement structure, the level of urbanity, 
and construction activity. We further included data from the German 
2011 Census on the size of households and the owner-occupation of 
dwellings [72] and results of the elections for the Bundestag in 2017
published by the Federal Statistical Office and the regional bureaus of 
statistics [73]. We approximate the average global radiation in munici-
pal associations based on the average global radiation on an optimally 
inclined surface as available in the SARAH Solar Radiation Data pub-
lished by the Joint Research Centre of the European Commission [74]. 
The supplementary information provides further information on the 
data preprocessing and a complete list of all explanatory variables. 
Notably, some variables are available only at the county level, so we 
allocated the same values to all municipal associations in the respective 
region. In the GBT model for the diffusion of BEVs we also use the 
aggregated power of household-scale PV systems and the number of 
public charging stations as explanatory variables.
4 
3.3. Gradient boosted trees

Gradient boosted trees (GBTs) offer a state-of-the-art performance 
for many machine learning applications [75] and are especially suited 
for explainable AI approaches [19]. The output of a GBT model is 
the weighted sum of the predictions of individual decision trees [76]. 
During training, new trees are added to reduce the prediction error 
quantified by the L2 loss function. GBTs perform inherent feature 
selection, which makes them robust to the presence of correlated or 
irrelevant features. This is essential for the given data set. To fit our 
GBT model, we used LightGBM, which is a scalable gradient tree 
boosting implementation that includes several advanced techniques to 
speed up the training process [77].

The fitted ML model predicts the targets with sufficient accuracy 
as quantified by the 𝑅2 score, which describes the proportion of vari-
ation in the target data that is explained by the model. To facilitate 
explainability, we further apply recursive feature elimination, i.e., we 
recursively remove the least important features while maintaining high 
model performance (see Section 3.5 for details) The model for accu-
mulated PV power shows an 𝑅2 score of slightly below 90% until the 
number of features falls below 15 (see Fig.  3). We therefore fix the 
input features to these 15 most important features for the subsequent 
analysis. The resulting score 𝑅2 = 88.7% on the test set is very high 
given the heterogeneity of the data and the socio-economic context. 
Similarly, the model for the share of BEVs shows a performance of 
around 80% until the number of feature drops below 15. We thus fix the 
input features to these 15 most important ones in the following, reach-
ing a score of 𝑅2 = 79.3%. The GBT models significantly outperform a 
LASSO regression trained for comparative benchmarking purposes for 
the adoption of PV (see supplementary information).
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Fig. 3. Performance of the developed GBT models. We apply recursive feature elimination to improve the interpretability of the developed GBT model. The figure 
shows the model performance quantified by the 𝑅2 score as a function of the number of features for the training folds (blue) and test folds (green) observed 
during 5-fold cross-validation. Based on these results, we fixed the number of features to 15 as a good compromise between performance and interpretability for 
further analysis. Different splits of the data into training, validation, and test sets are used to test the robustness of the model. We select the split with the best 
performing 15-feature model for further analysis (see Section 3 for details).
3.4. SHapley Additive eXplanations (SHAP)

SHapley Additive eXplanations (SHAP) provide a consistent method 
for the ex-post analysis of a given machine learning model [66]. For 
each data point 𝑥𝑛, the model outcome 𝑓 (𝑥𝑛) is attributed to the 
individual features in an additive way, cf. Eq. (1). SHAP is based on 
the concept of Shapley values from cooperative game theory [78]. It has 
been rigorously established that SHAP values are unique in satisfying 
three highly desirable axioms [66,68]:

1. Local Accuracy: The feature attributions assigned to all features 
and the mean over all data points sum up to the output of the 
function we intend to explain, cf. Eq. (1).

2. Missingness: If a feature 𝑖 does not contribute to the outcome of 
the model, the feature attribution vanishes, 𝜙𝑖(𝑥𝑛; 𝑓 ) = 0.

3. Consistency: If a model changes so that a feature contribution 
increases or stays the same, then the attribution should not 
decrease. More precisely, let 𝑆 be an arbitrary subset of features 
and let 𝑓 (𝑥𝑛;𝑆) be the model output where the values of all 
features not in 𝑆 are replaced by their baseline values. If for two 
models 𝑓 and 𝑔 and all subsets of features 𝑆 we have
𝑓 (𝑥𝑛;𝑆) − 𝑓 (𝑥𝑛;𝑆∖𝑖) ≥ 𝑔̃(𝑥𝑛;𝑆) − 𝑔̃(𝑥𝑛;𝑆∖𝑖),

then the attribution of feature 𝑖 must satisfy
𝜙𝑖(𝑥𝑛; 𝑓 ) ≥ 𝜙𝑖(𝑥𝑛; 𝑔).

Being the only feature attribution method satisfying these axioms, 
SHAP values have gained enormous popularity in the field of XAI. 
In particular, SHAP enables a global understanding of the developed 
model [19] while other feature attribution methods such as LIME focus 
on individual predictions [79]. We emphasize that both SHAP and 
LIME explain statistical relations learned by the model and cannot by 
themselves identify causal effects.

The definition of SHAP values holds for arbitrary ML models, but the 
direct application is computationally prohibitive. Tree algorithms allow 
for several simplifications that enable an efficient computation [19,67]. 
Hence, we use gradient boosted trees as machine learning models in 
the current article. We then apply the SHAP package by Lundberg 
to compute SHAP values, feature importances, and SHAP interaction 
values [80].
5 
3.5. Model training and recursive feature elimination

For model training and hyperparameter optimization, we randomly 
divide the dataset into training, validation, and test sets. We perform 
10 runs of training and feature elimination with different random splits 
to assess the robustness of the results. The modeling pipeline was 
implemented in Python using the package scikit-learn [81].

We apply recursive feature elimination to the GBT models to im-
prove the explainability of the models. To this end, we iterate over the 
following steps:

(i) For a given set of features 𝑆, we train models for 50 random 
sets of hyperparameters. We use early stopping on the validation set to 
determine the number of trees in the ensemble and random search via 
5-fold cross-validation on the training set for all other hyperparameters.

(ii) Determine the best-performing model for the feature set 𝑆, 
i.e., the model demonstrating the highest mean 𝑅2 score on the respec-
tive test sets during cross-validation.

(iii) Compute the SHAP feature importances of the best-performing 
model on the validation set.

(iv) Eliminate the 𝑙 features with the smallest SHAP feature impor-
tances from the feature set 𝑆. We start with 𝑙 = 10 and then use 𝑙 = 1
for lower feature numbers.

A detailed analysis of SHAP dependence and interaction was pro-
vided for one selected split where the performance, as quantified by 
the 𝑅2 score, was highest for a fixed number of 15 features. A more 
extensive description of the machine learning pipeline is given in the 
supplementary information.

4. Results and discussion

4.1. Influencing factors and dependencies of PV adoption

We first consider the model for the accumulated peak power of PV 
systems per household (i.e., in units of kWp/hh). We find that seven 
classes of features are robustly used in all runs and yield the highest 
feature importances (see left panel of Fig.  4):

1. Three of the four most important features describe the housing 
situation, i.e., the share of 4- and 5-person households and the 
number of large flats.
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Fig. 4. Key factors influencing the diffusion of green technologies. The bars blot show the SHAP feature importances (2) after feature elimination in the GBT 
models for the diffusion of household-scale PV systems (left) and BEVs (right). To test the models’ robustness, we evaluate 10 runs with different test-train splits 
and calculate the mean. The color code indicates the number of runs in which the feature is kept after recursive feature elimination, and the error bars indicate 
the standard deviation. Several important features in the PV model quantify the housing situation, which relates to the rooftop area eligible for household-scale 
PV systems and the owner-occupation.
2. The second most important feature is the global radiation relat-
ing to the economic viability of a PV system.

3. In every run, the model chooses the unemployment rate, either 
in total or among women.

4. The number of apprentices or the share of apprentices per young 
inhabitant is chosen in every model run.

5. The model selects 2–3 features related to the degree of urban-
ity (habitat density, recreational area, and regional population 
potential).

6. In every but one run, the model selects one feature relating to 
income, either the mean gross income (in industry), income tax, 
or median income (professional qualification).

7. The model chooses the number of completed buildings with 
renewable heat energy systems in nine out of ten runs.

We conclude that the overall findings are highly consistent across 
different runs, while the model frequently changes between strongly 
correlated features of a very similar socioeconomic type.

Dependence plots provide a detailed picture of how the key influ-
encing factors relate to the model target – the normalized accumulated 
peak power of household-scale PV (see Fig.  5). Here, the SHAP value 
𝜙𝑖(𝑥𝑛; 𝑓 ) of a feature 𝑖 is plotted against the value of the respective 
feature 𝑥(𝑖)𝑛  for all data points. We focus on the four most important 
features for one selected run here and provide the remaining plots in 
the supplementary information.
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Three features relate to the housing and settlement structure: the 
shares of 4-person households, 5-person households, and flats with 
5+ rooms. In all cases, we observe a nonlinear positive correlation. 
The dependence plots reveal a sigmoid-like relationship of the shares 
of 4- and 5-person households and the level of PV adoption. We 
further observe a superlinear relation for the share of flats with 5+ 
rooms. All three features indicate the share of (semi-) detached houses, 
which provide the rooftop area eligible for household-scale PV systems. 
Previous studies consistently reported a positive correlation [34,35,37]. 
However, these studies were limited to linear correlation and regression 
models and thus did not uncover the nonlinearity.

Other socio-economic reasons may contribute to the observed de-
pendence. First, high owner-occupation of (semi-) detached houses 
comes along with undivided decision power to install PV systems [34], 
and thus undivided financial incentive [82]. Second, 4- and 5-person 
households are often owned by (young) families with persistence of 
residence and thus a willingness for long-term investments [36].

Solar radiation determines the revenue of a PV system and consti-
tutes the second key influencing factor of PV adoption. Accordingly, the 
dependence plot shows a positive relation. We provide a more detailed 
analysis in the discussion of feature interactions below. The importance 
of expected revenues in the decision-making process for or against 
PV installations has been previously evidenced by surveys [27,38]. 
Consistent results have been obtained in linear statistical analyses in 
Refs. [34,35,39].
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Fig. 5. SHAP dependence plots for the GBT models for the adoption of household-scale PV systems and battery-electric vehicles in the top and bottom row, 
respectively. The plots show the SHAP value 𝜙𝑖(𝑥𝑛; 𝑓 ) of a feature 𝑖 against the value of the respective feature 𝑥(𝑖)𝑛 , where every dot corresponds to one data point 
𝑛. We focus our analysis on the four most important features from one model run, with features ordered according to their overall importance across all runs. 
We provide further results on all 15 features in the supplementary information.
Moreover, the SHAP analysis reveals a strongly nonlinear negative 
relation to the unemployment rate and a positive relation to the mean 
gross income (see supplementary information). Both features describe 
the average socio-economic status in a municipal association. The 
higher the income and the lower the unemployment rate, the more 
individuals have the financial means to invest in a PV system. Previous 
studies confirm a positive correlation with mean income [35,39] and 
a negative correlation with the share of welfare recipients and the 
unemployment rate [34,39]. Yet, given their research design, they did 
not find nonlinear relationships. Remarkably, Baginski and Weber [34] 
observe a converse negative relation with mean income. This finding 
is attributed to the effect of feature correlations, emphasizing the 
importance of advanced data analysis methods.

Surprisingly, the SHAP analysis reveals a strong, positive relation 
between the PV adoption and the number of apprentices employed in 
a municipal association. This finding has not been discussed in the 
literature and may be attributed to different reasons. The number of 
apprentices may provide an indicator of the general level of education, 
the overall economic activity, or the number of craftsmen and special-
ized enterprises offering technical services. This finding highlights the 
need for further investigation beyond the scope of the given data.

Finally, the accumulated peak power of PV is negatively correlated 
with habitat density and recreational area. The relationship with recre-
ational area is strongly nonlinear. Both features provide a proxy for 
the urbanity of municipal associations. Urban, densely populated areas 
provide less rooftop area for PV systems per person. Prior research led 
to contrasting results on this topic [34,35].

4.2. Influencing factors and dependencies of BEV adoption

We now turn to the second model, which predicts the share of BEVs. 
The SHAP analysis reveals that the key influencing features are sur-
prisingly different to PV adoption despite being derived from the same 
dataset (see right panel of Fig.  4). Four features are robustly chosen in 
every model run and show the highest average feature importances: the 
income tax per capita, the accumulated peak power of household scale 
PV systems, and the share of votes for the Green Party and the far-right 
party AfD in the last federal election. In addition, the regional potential 
of the population, the share of commuters traveling more than 150 km 
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to work, the share of certificates of secondary education and the votes 
for other, smaller parties are chosen in most model runs.

For a more detailed analysis, we turn to dependence plots, again 
focusing on a single run and the most important features. Per capita 
income tax is the most important one. It has an almost linear relation 
to the share of BEVs, reflecting that the higher the average income, 
the more individuals have the financial means to purchase a BEV. 
The positive role of income has previously been shown both for stated 
preferences [46,48] and actual decisions [47,53,59].

The accumulated peak power of household scale PV systems ranks 
second in the selected run and on average. We find a positive relation 
that saturates for larger feature values. This finding could be related 
to the strong synergy effects between PV and BEVs, as electricity from 
the PV system can be used to charge the BEV, reducing the operating 
costs [46,49].

Remarkably, election results play a strong role in the model for 
BEV adoption. The reduced model includes the share of votes for the 
Green party, the far-right AfD, and other parties. The positive relation 
with the votes for the Green party is not surprising, as environmental 
awareness is an important factor in the decision for a BEV [46,48,49]. 
The share of votes for the AfD exhibits a strongly nonlinear relationship 
with a threshold effect at about 12.4% of votes. Above this threshold, 
all SHAP values are constantly negative. This reflects the importance 
of political attitudes: The far-right AfD publicly doubts anthropogenic 
climate change and repeatedly published statements that show their 
distrust of electric mobility [83]. However, a further mechanism is 
possible. The AfD is particularly strong in Eastern Germany such that 
the model may use the vote share as a geographical proxy variable. A 
negative relation is also found for the votes for other parties, including 
in particular the ‘‘Freie Wähler’’. This party does not generally reject 
BEVs but has repeatedly opposed plans to ban internal combustion 
vehicles. The negative relation could either again reflect political at-
titudes or a geographical effect, as ‘‘Freie Wähler’’ is especially strong 
in Bavaria.

The share of long-distance commuters is positively related to the 
share of BEVs, with exceptions for very high values of the feature 
(see supplementary information). Commuters are an important group 
of potential customers [53], as BEVs typically have higher purchase 
costs but lower running costs.
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Fig. 6. Disentangling main effects and feature interactions in the SHAP framework. The SHAP value 𝜙𝑖 of a feature 𝑖 can be decomposed into the main effect 
𝛷𝑖𝑖 and the interactions 𝛷𝑖𝑗 with other features 𝑗 ≠ 𝑖, see Eq. (3). Upper row: Interaction in the PV adoption model for the most important feature 𝑖 = ‘‘share 
of 4-person households’’. We choose the features 𝑗 = ‘‘votes other parties’’ and ‘‘global radiation’’ as interacting features, which are among the features with the 
highest interaction values. Bottom row: Interaction in the BEV adoption model for the most important feature 𝑖 = ‘‘income tax’’. The strongest interactions are 
observed for the features 𝑗 = ‘‘votes AfD’’ and ‘‘photovoltaic power’’. The remaining interactions are omitted for brevity.
The model chooses three demographic features due to their impor-
tances. A positive relation is observed for the rate of young dependants, 
indicating the number of (larger) families in a municipal association. 
It seems plausible that families are more likely to own two vehicles 
and thus more likely to purchase a BEV [49]. Furthermore, we find a 
positive correlation with the regional potential of population in most 
models. This feature measures the population living within a distance 
of 100 km. It is high in urban as well as suburban regions, where 
many families and commuters live. The share of (male) inhabitants 
with certificates for secondary education shows a strongly nonlinear 
dependence. Prior research showed that higher education positively 
affects BEV adoption [46–49].

4.3. Feature interactions

The SHAP framework can be readily extended beyond the impact 
of a single feature. The SHAP interaction values 𝛷𝑖𝑗 quantify the 
interactions between two features 𝑖 and 𝑗 learned by the model [68]. 
More precisely, the SHAP value 𝜙𝑖 of a feature 𝑖 can be decomposed 
into the main effect 𝛷𝑖𝑖 and its interactions 𝛷𝑖𝑗 with other variables 
𝑗 ≠ 𝑖, 
𝜙𝑖
(

𝑥𝑛; 𝑓
)

= 𝛷𝑖𝑖
(

𝑥𝑛; 𝑓
)

+
∑

𝑗≠𝑖
𝛷𝑖𝑗

(

𝑥𝑛; 𝑓
)

. (3)

In analogy to the SHAP feature importances, we can identify the most 
important interaction effects by averaging the magnitude |𝛷𝑖𝑗 | over all 
data points. In the following, we restrict ourselves to the most impor-
tant feature and selected interactions. For a comprehensive overview, 
see the supplementary information.

In the PV adoption model, we focus on the feature 𝑖 = ‘‘share of 
4-person households’’. The SHAP value 𝜙𝑖 increases nonlinearly with 
the feature value 𝑥(𝑖). However, the dependence plot displays a strong 
vertical dispersion, i.e., a strong scattering of the SHAP values 𝜙𝑖 for 
a given feature value 𝑥(𝑖). This dispersion reflects the fact that the 
SHAP value is not only determined by the feature value itself, but 
also depends on other features, as quantified by the SHAP feature 
interactions 𝛷𝑖𝑗 , 𝑗 ≠ 𝑖. Indeed, the SHAP main effect 𝛷𝑖𝑖 shows a 
superlinear increase with almost no dispersion (see Fig.  6).
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Strong interactions are found with 𝑗 = ‘‘votes other parties’’ and 𝑗 =
‘‘global radiation’’. In both cases, we find that the increase of the SHAP 
value with 𝑥(𝑖) is amplified in municipal associations with a high value 
of the interacting features 𝑥(𝑗), and attenuated for low values of 𝑥(𝑗). 
That is, the positive effects of the three features do not simply add up, 
but mutually reinforce each other.

In the BEV adoption model, we observe the strongest feature in-
teractions between income tax and vote share for AfD, followed by 
the total photovoltaic power (see Fig.  6). In the first case, we observe 
the strongest interaction effects in municipal associations with small 
‘‘income tax’’, where the SHAP main effect shows a steep drop. This 
drop is mostly suppressed if the vote share for the AfD is low, but 
persists otherwise. That is, we find a set of municipal associations with 
low income and strong support for the far-right where BEV adoption 
drops sharply. In the second case, we find that a weak PV adoption 
attenuates the increase in BEV adoption with income tax. That is, two 
mitigating factors of BEV adoption mutually reinforce each other.

4.4. Dynamics of diffusion and influencing factors

The diffusion of green innovations is a highly dynamic process with 
potential differences in the characteristics of early and late adopters
[21,38]. Hence, we expect that feature importances and dependencies 
may change strongly over time. We focus our analysis of temporal 
aspects on household-scale PV where sufficient data is available.

The diffusion of household-scale PV in Germany can be divided 
into distinct phases (see Fig.  7) determined by changes in the policy 
framework. For a long period of time, PV systems were not profitable. 
During this phase, subsidies played an essential role [84]. We identify 
four major changes in the regulatory framework:

1991: The ‘‘Stromeinspeisegesetz’’ [Electricity Feed-In Law] (replaced 
by the ‘‘Erneuerbare Energien-Gesetz’’ [Renewable Energy
Sources Act], EEG in 2001) provides the legal basis for the 
installation and refunding of household-scale PV systems.

2009: A revised version of the EEG, including a large number of 
detailed regulations, came into force on January 1, 2009. Subse-
quently, feed-in tariffs were continuously reduced based on the 
amount of newly installed PV capacity.
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Fig. 7. Key influencing features during different phases of PV diffusion in Germany. Left: Newly built and total accumulated peak power of household-scale PV 
systems in Germany. We identify four different phases of the diffusion process with strongly differing additions of installed peak power: (i) a slow early stage 
until 2008, (ii) a first boom after the EEG revision in 2009, (iii) a stagnation phase after the EEG revision in 2012, (iv) the current boom after the most recent 
EEG revision in 2022. Right: The three most important features and their importances (2) for the four phases of the diffusion process. While solar radiation was 
most important in the early stages, features related to the housing situation became dominant in later stages. These features relates to the rooftop area eligible 
for household-scale PV systems and the owner-occupation.
2012: The EEG is revised on July 1, 2012. Feed-in tariffs are substan-
tially reduced. Additional measures are implemented to dampen 
the deployment of PV.

2022: A new revision of the EEG includes a slight increase of feed-in 
tariffs. The European energy crisis leads to soaring electricity 
prices [85].

We analyze how key influencing factors and dependencies change 
during the diffusion process by training separate ML models to predict 
the accumulated peak power of the PV systems newly installed in the 
four phases of the diffusion process. The right panel of Fig.  7 shows 
how the most important features change.

The most important finding is the declining importance of global 
radiation. While it is the most important feature in the early phase 
until 2009, it drops to rank 6 in 2022 and 2023. Household-scale PV 
systems were much more expensive in the early phase. At that time, a 
high energy yield was decisive to break even.

After 2022, the two most important features relate to the housing 
and settlement structure. We conclude that the availability of rooftop 
area has recently become the decisive influencing factor. The third most 
important feature is the number of completed (semi-) detached houses. 
A possible reason for this finding is that, in contrast to earlier periods, 
new houses are routinely equipped with PV systems. As a result, the 
number of completed houses gained importance and is now a central 
driving factor.

4.5. International comparison

The adoption of green technologies can differ strongly between 
countries due to different framework conditions [8]. Thus, the question 
arises as to whether our findings can be generalized to other countries. 
Developing full XAI models for additional countries is beyond the scope 
of this article as data availability is limited and regional knowledge 
should complement the analysis. Therefore, we focus on selected results 
from our prior analysis and provide a comparative study of raw data.

We found that the adoption of BEVs and solar PV differs strongly 
in terms of the importance of election results, which are interpreted 
as a proxy for regional differences in norms and values. In Germany, 
the vote share for the Green Party and the far-right AfD are among 
the most important features in the BEV adoption model. However, 
these features are generally eliminated in the PV adoption model. This 
striking difference is also evident in the raw data (Fig.  8 g,h). There is 
a strong correlation between the share of BEVs and the Green Party’s 
vote share, with a Kendall rank correlation of 𝜏 = 0.45. A much smaller 
correlation coefficient is observed for the accumulated peak power 
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of household-scale PV. In the context of the XAI model results, we 
hypothesize that this residual correlation is due to correlated features. 
This finding is highly relevant to innovation research, as many prior 
studies have treated green technologies as a homogeneous group [17].

We repeat this analysis for three different countries: Italy, the 
Netherlands and the United States of America (USA). To this end, we 
collected data for the results of a recent national elections, the number 
of BEVs and total vehicles [86–88], the aggregated household-scale 
peak PV power [89–91] and the total number of households [92,93] 
in each region. Here, we used data from the 2022 Italian parliament 
election [94], from the 2023 Dutch election to the house of representa-
tives [95], and the 2024 presidential election in the USA [96]. For Italy 
and the Netherlands, we use data on the NUTS-2 level, while we use 
data on the level of federal states for the USA. The spatial resolution 
for these countries is coarser than that used for Germany due to data 
availability.

Using this data, we plot the two target features of the XAI analysis, 
i.e., the aggregated peak power of household-scale PV per household 
and the share of BEVs, as a function of the share of votes of parties that 
most likely promotes green technologies given each country’s political 
spectrum (see Fig.  8). Furthermore, we calculate the Kendall rank 
correlation coefficient to quantify the relation of the two targets to the 
share of votes.

We find that our main conclusion – namely that support for green 
parties are more important for BEV adoption than for PV adoption – 
holds true for all countries under investigation (see Fig.  8). Specifically, 
we observe that the Kendall rank correlation coefficient is higher for 
BEV adoption than for PV adoption in all countries. It has to be 
noted, however, that we consider the share of votes for the Democratic 
candidate instead of the Green candidate for the USA data because of 
the two-party nature of the American political system.

However, there are also striking differences to the results for Ger-
many. In the Netherlands, we find a positive correlation between the 
adoption of BEVs and the share of votes for the Green-Left party, but a
negative correlation for the adoption of household scale PV. Note that 
large 𝑝-values suggest that the null hypothesis cannot be rejected for 
both household-scale PV in Italy and BEVs in the Netherlands. In the 
USA, we find a pronounced positive correlation for both BEV and PV 
adoption, but the correlation coefficient is still higher for BEVs. Future 
research will be needed to conduct a more comprehensive analysis of 
the transferability of the findings to other countries.

4.6. Contextualizing the results

Effective governance of the transition to sustainable energy requires 
a better understanding of the adoption of green technologies. Sci-
entific analyses must evolve beyond aggregated optimization models 
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Fig. 8. The relationship between the diffusion of green technologies and election results in different countries. We plot the aggregated peak power of house-hold 
scale PV systems per household (top row) and share of BEVs (bottom row) in different regions versus the vote share of the Green party in national elections 
(Netherlands, Italy, Germany) or the Democratic candidate in the presidential election (USA). In the case of Italy and the Netherlands (panels a-d), the regions 
are the NUTS-2 administrative divisions, and for the United States (panels e and f), we chose federal states. The histogram for Germany in panels g and h uses 
the same data as was used for the analysis shown before. The Kendall rank correlation coefficient 𝜏 for the respective data set is given in the legend.
to capture political actions and individual motivations, and improve 
empirical validation [97].

Against this background, we propose explainable Artificial Intelli-
gence (XAI) for empirical research on the diffusion and adoption of 
green technologies. We have developed a machine learning model that 
predicts spatial differences in the adoption of household-scale photo-
voltaic (PV) systems and battery-electric vehicles (BEVs) in Germany at 
the level of municipal associations. This approach complements current 
research on the adoption of green technologies in several ways: (i) XAI 
can readily deal with large heterogeneous data sets and thus mitigates 
the need for a priori assumptions in empirical studies. SHapley Additive 
exPlanations (SHAP) identify key influencing factors in the XAI model 
in a mathematically consistent way. (2) Our focus on actual decisions 
and spatial differences complements sociological research on intentions 
and temporal dynamics. (3) The model reveals technology-specific 
effects that are often neglected in the literature [17].

We find that PV adoption is primarily explained by physical and eco-
nomic conditions, while BEV adoption is influenced more strongly by 
income levels, the prevalence of PV systems, and political attitudes. The 
importance of existing PV systems points to a strong co-diffusion [59] 
due to synergy effects.

Attitudes and values are known to be important in decisions on 
green technologies but are notoriously difficult to capture in statisti-
cal studies. We tried to capture this aspect by incorporating political 
preferences via election results on the level of municipal associations. 
While the Green Party and AfD vote shares are highly relevant in 
BEV adoption model, they play no significant role in the PV adoption 
models. We conclude that a differentiated view of green technologies is 
needed in socio-technical research, cf. the discussion in Ref. [17]. We 
hypothesize that polarization of opinions and, thus, the importance of 
individual attitudes may differ strongly for different technologies.

The results thus suggest targeted policy interventions to effectively 
promote the diffusion of green technologies. Policymakers may con-
sider the socio-economic factors influencing adoption decisions, which 
vary significantly even within seemingly similar categories of innova-
tions such as green technologies. For rooftop PV systems, policies may 
target financial incentives that account for structural and geographic 
differences, particularly in roof area availability and regional solar 
radiation levels. In contrast, BEV adoption is strongly associated with 
income and attitudinal factors according to the model. Consequently, 
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policy interventions aimed at improving affordability across income 
groups alongside educational and communication campaigns to en-
hance public awareness and understanding of these technologies could 
be considered. Given the observed co-diffusion of PV and BEVs, joint 
policy incentives may yield synergistic effects.

Despite these meaningful insights and their potential policy im-
plications, it is important to reiterate that XAI does not provide any 
causal evidence. The inferred relations could also, for example, reflect 
reverse causality (e.g., between Green Party election results and renew-
able technology adoption) or be influenced by confounding variables 
(e.g., education confounding the effect of income on adoption). To 
disentangle the relationships identified in this study and assess causal-
ity, future research may focus on context-specific econometric analyses 
employing identification strategies which allow for a causal interpreta-
tion. In addition, while our model robustly identifies features with high 
predictive relevance, it must be considered that some of these features 
may function as proxies for unobserved or latent factors influencing 
technology adoption. Political preferences, for example, inferred from 
election results, do not necessarily reflect individual adoption decisions 
but may capture broader regional socio-political contexts. Similarly, 
a feature like the number of apprenticeships may indicate structural 
characteristics of regional education or economic performance. The 
occurrence of such proxy features is inherent in the correlational pat-
terns identified and requires a cautious interpretation of the underlying 
mechanisms. Although the internal validity of the feature selection 
remains unaffected, further empirical analyses are necessary to examine 
the actual factors represented by the identified predictors and to better 
understand their causal relationships. Therefore, combining system-
atic feature identification through XAI with context-specific empirical 
validation, involving local expertise, is essential for a more accurate 
interpretation of the identified predictors.

XAI can promote socio-technological energy research in manifold 
ways. We envision three ways to generalize the methodology intro-
duced in this article. First, the developed XAI model can be readily 
adapted to different technologies. Second, the adoption of green tech-
nologies can differ strongly between countries [8] due to different 
policies and a different institutional framework. Comparing XAI models 
for different countries can reveal differences in the important features 
and dependencies and thus help to assess national policies and the 
role of institutions. Investigations should ideally include partners with 
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a local background to facilitate the access to regional statistical data 
and to enable an informed interpretation of the results, in particular 
in view of possible causal effects. We provide the source code of our 
the model under an open license at [20] to foster such investigations. 
Finally, it would be highly desirable to improve the spatial resolution of 
empirical models for technology diffusion. Household scale PV systems 
can be identified from satellite images (see, e.g., [69,70]). XAI models 
at the household level can quantify the importance of neighborhood 
effects [33] in comparison to socio-economic factors.

5. Conclusion

This study demonstrates how eXplainable Artificial Intelligence 
(XAI) can uncover the drivers of green technology adoption using 
high-resolution spatial data enhancing existing strands of research. 
By applying machine learning models to the diffusion of household-
scale photovoltaic systems and battery electric vehicles in Germany, 
we identify the key factors associated with actual adoption decisions at 
the level of municipality associations.

A central finding is that the adoption of PV systems and BEVs is 
correlated with markedly different factors, despite both being green 
technologies. PV adoption is primarily shaped by structural geographi-
cal and economic conditions, especially the availability of rooftop area 
and regional solar radiation determining the generated revenues of PV 
systems. These factors suggest that physical infrastructure and local 
resource potential remain critical constraints for distributed energy 
technologies.

In contrast, BEV adoption is influenced more by socio-economic 
conditions and political attitudes. High income levels emerge as the 
strongest predictor in our model, followed by existing PV adoption 
and regional voting patterns. Support for pro-environmental parties 
correlates positively with BEV adoption, while support for far-right 
parties correlates negatively, revealing a clear role of attitudes in 
shaping technology preferences.

Our analysis also highlights how feature importances evolve over 
time. As PV costs decline, economic viability becomes less dominant, 
and structural features gain prominence. This shift underscores the 
need for dynamic policy approaches that adjust to the changing land-
scape of technology costs and public perception.

More broadly, this work illustrates the potential of explainable AI 
as a tool for empirical research on innovation and technology diffu-
sion. By identifying relevant influencing factors from large and com-
plex datasets, XAI can reveal differentiated adoption patterns across 
technologies, regions, and time. This approach opens new pathways 
for data-driven insights in sustainability transitions, complementing 
existing theoretical and qualitative research traditions.
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