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Effective governance of energy system transformation away from fossil resources requires a quantitative
understanding of the diffusion of green technologies and its key influencing factors. In this article, we propose
a novel machine learning approach to diffusion research focusing on actual decisions and spatial aspects
complementing research on intentions and temporal dynamics. We develop machine learning models that
predict regional differences in the accumulated peak power of household-scale photovoltaic systems and the
share of battery electric vehicles from a large set of demographic, geographic, political, and socio-economic
features. Tools from explainable artificial intelligence enable a consistent identification of the key influencing
factors and quantify their impact. Focusing on data from German municipal associations, we identify common
themes and differences in the adoption of green technologies. Specifically, the adoption of battery electric
vehicles is strongly associated with income and election results, while the adoption of photovoltaic systems
correlates with the prevalence of large dwellings and levels of global solar radiation.

1. Introduction These hotspots include municipal associations in the commuter belts
of larger cities such as Munich, cities with automobile manufacturers
such as Wolfsburg, but also smaller municipal associations. Notably,
some neighboring municipal associations reveal strong differences in
the level of adoption of PVs or BEVs which cannot be explained by dif-
ferent legal or geographic conditions. What causes these strong regional

differences and what can we learn about the drivers and barriers to the

The mitigation of climate change requires a rapid transformation
of our energy system [1]. Renewable energy sources, especially solar
photovoltaics (PV), are abundant and cost competitive [2,3]. Similarly,
battery electric vehicles (BEVs) have experienced remarkable advance-
ments over the past decade, characterized by reduced costs, extended
range, and increased longevity [4]. However, the transition to sustain-

able energy and mobility is not just a matter of technology availability adoption of green technologies?

and costs [5]. The adoption of renewable power sources or battery
electric vehicles usually depends on decisions by public or private
investors. Understanding the determinants of these decisions is crucial
for grasping the potential for transformation of the energy system.
The diffusion of green technologies shows large regional differences,
even within a single country. In Germany, the diffusion of household-
size PV systems has progressed fastest in the south and slowest in
the northeast as well as some areas in the west (see Fig. 1). The
diffusion of BEVs shows notable differences between western and east-
ern federal states and some hotspots of rapid adoption (see Fig. 1).

Various studies have examined determinants of PV [8,9] and BEVs
adoption [10-12], each providing valuable insights while approaching
the subject from different perspectives. Statistical research mostly relies
on regression models that analyze a limited set of potential influencing
factors. Survey-based studies typically investigate investment intentions
and are thus prone to the intention-behavior gap which is a central
theme in green consumption [13]. Agent-based models are routinely
used in innovation research [14], but are often fitted to simplified
socio-economic or spatial data [15,16]. Finally, theoretical work on the
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Fig. 1. Regional differences in the adoption of green technologies in Germany.
Left: Aggregated peak power of house-hold scale PV systems normalized by
the number of households installed until December 31, 2021. Right: Share
of battery electric vehicles among all privately owned vehicles as of April
1, 2024. Data has been obtained from Marktstammdatenregister, an open-
access registry by the Bundesnetzagentur (Federal Network Agency) [6], and
Kraftfahrt-Bundesamt (Federal Motor Transport Authority) [7] and aggregated
on the level of municipal associations.

geography of sustainable transitions has also contributed to the field
but often neglects differences between technology groups [17]. Overall,
these approaches highlight important facets of technology adoption,
but a comprehensive data-driven analysis of the regional diffusion of
green technologies is lacking.

We address this gap by proposing a different approach to diffusion
research based on data-driven analyses relying on eXplainable AL
In contrast to some of the prior research, our analysis focuses on
actual decisions and spatial characteristics of the diffusion process.
Furthermore, we point out similarities and differences in the adoption
of two different technology groups. Most importantly, we avoid a
priori assumptions about the putative factors driving the diffusion, but
propose to identify these factors directly from large-scale datasets using
methods from eXplainable AI (XAI). XAI provides new methods for
data analysis and enables new routes to scientific insight [18], with
several advantages: First, machine learning (ML) models can describe
any nonlinear relationship and feature interaction and thus go well
beyond established linear regression models. Second, ML models can
handle many possibly correlated input features, so we do not need
to impose prior assumptions or manually select features. Finally, XAI
provides a method for mathematically consistent model explanation
which reveals the contribution of each feature to the model prediction.
In contrast to classical sensitivity analysis, this approach avoids the
restrictions imposed by the ceteris paribus assumption.

Specifically, we develop two machine learning models that pre-
dict the accumulated peak power of household-scale PV systems and
the share of BEVs per municipal association from a common set
of demographic, geographic, and socio-economic features. We focus
on Germany, where PV and BEV adoption started early and high-
quality statistical data is available. Using SHapley Additive exPlana-
tions (SHAP) [19], we can identify key influencing factors by sys-
tematically comparing the adoption across all municipal associations.
Applying the same modeling approach to PV and BEVs reveals which
features constitute general drivers of green adoption and which are
technology specific. All data is publicly available to guarantee trans-
parency. The source code used in this work is available at Ref. [20] to
facilitate a translation to other datasets.
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2. Literature review
2.1. The geography of sustainable transitions

Early research in the diffusion of innovations has focused on the
temporal aspects of the diffusion process, revealing different phases
of the diffusion process over time [21]. More recently, spatial distri-
bution has gained a lot of interest in regional research and economic
geography. This strand of research is commonly referred to as the
geography of environmental innovation or the geography of sustainable
transitions. The early review article [22] identifies five main research
themes in the geography of sustainable transitions: regional policies,
localized institutions, local natural resources, local industrial special-
ization and local market formation. Several early studies, including
perspectives on the diffusion of solar PV, were summarized in the
special issue [23]. A recent review on the spatial conditions that affect
environmental innovations is provided in Ref. [24], which distinguishes
between actors, institutions and technological elements.

Our article contributes to three topical research directions in the
geography of environmental innovations outlined in Ref. [17]. First,
a large part of research on environmental innovations treats green
technologies as a homogeneous technology group [17]. In this arti-
cle, we compare two key technologies and demonstrate pronounced
differences. Second, there is a strong research tradition on regional
supply-side factors that promote environmental innovations [25]. Our
article focuses on the demand-side to quantify which factors facilitate
the adoption of environmental innovations (cf. Ref. [26]). Finally, there
is a need for empirical research on the role of institutional factors as
well as societal norms and beliefs [17]. We will partially incorporate
norms via local election outcomes. Furthermore, strong differences
between model predictions and actual values may point to municipal
associations with a particular institutional framework that deserve
further study.

2.2. The adoption of household-scale PV systems

A large and growing body of literature has examined exogenous
and endogenous factors that drive the adoption of photovoltaic systems
and other renewable energy technologies, see [8,9] for recent review
articles.

Empirical research typically focuses either on individual households
(see, e.g., [27,28]) or on an aggregated level (see, e.g., [29,30]). Peer
and neighborhood effects have been studied in [31-33]. While prior
works generally rely on the analysis of a few manually pre-selected
influencing factors, we compile a large data set and identify the rel-
evant factors from the model. To do so, we utilize state-of-the-art XAI
methods instead of established regression models.

For the case of Germany, several articles analyze the dependence of
PV adoption on the housing and settlement structure. Previous studies
find a strong correlation with the (inverse) housing density [34,35] and
the share of (semi-) detached or single-family houses [34,36,37]. Due to
their larger roof area and the undivided incentive and decision power
to install PV systems, these types of houses are better suited for PV
installations than multi-story buildings [31].

Costs and expected revenues play a major role in the decision-
making process for or against PV installations as evidenced by sur-
veys [27,38]. Aggregated studies show a strong positive correlation
with the estimated return on investment, which depends on both tem-
poral and spatial factors [39]. Other studies report a strong correlation
with local solar radiation [34,35], which determines the yield of a PV
system. The impact of the socio-economic status has been studied in
Refs. [34,35,39] using different proxy variables. A positive correlation
with mean income is reported in Refs. [35,39]. Remarkably, Baginski
and Weber observe a converse relation, i.e., a negative correlation with
mean income [34]. This finding is attributed to the effect of feature
correlations, emphasizing the importance of advanced data analysis
methods.
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2.3. The diffusion of battery electric vehicles

Research on the exogenous and endogenous factors driving the
adoption of BEVs has been reviewed in Ref. [10-12,40,41]. Below we
summarize results for six categories of importance: policies, personal
preferences, perceived properties of BEVs, costs, and socio-economic
and demographic factors. We note that most prior studies analyze the
effects of a few categories or even the sole effect of a single feature
within a category. Overall, the mutual analysis of different categories
within one methodological framework is rare.

Many governments have implemented policies that provide finan-
cial and non-financial incentives for adopting BEVs. Subsidy programs
supporting either BEV purchases or charging infrastructure effectively
increased BEV sales, e.g., in Norway [42], the US [43] and Ger-
many [44]. Similarly, carbon taxes leading to higher operating costs
for internal combustion vehicles (ICVs) and thus a relative financial
benefits of BEVs lead to increasing BEV registrations in Sweden [45].

Personal preferences have an influence on the adoption of BEVs.
Both survey and statistical studies found that a high level of techno-
logical competence, higher education, and a strong interest in climate
change are positively related to BEV adoption [46-49]. Social reinforce-
ment can strongly influence the adoption of BEVs as analyzed in terms
of neighborhood effects in Ref. [50]. Notably, peer effects can be quite
heterogeneous: Ali et al. found a strong effect for high earners but not
middle earners in India [51].

The perceived properties of BEVs in comparison to ICVs strongly
affect preferences and decisions. The limited range of early BEVs was
an important factor for many potential customers, summarized under
the term “range anxiety” [52]. Similarly, several studies find a negative
relation between customers’ average travel distance and their willing-
ness to purchase a BEV [48,53]. In addition, the longer charging time
of a BEV had a negative impact on attitudes towards BEVs [54]. Against
this background, several studies have found that the availability of
public charging infrastructure is positively related to the adoption of
BEVs [48,53-56]. However, the geographic aspects of this relation are
complicated, as public chargers are often used by commuters rather
than residents [49].

Purchase costs for BEVs are higher than for ICVs, while operating
costs are typically lower [57]. Several studies have found that these
higher purchase costs have a negative impact on (stated) preferences
for BEVs [51,54]. Similarly, the potential cost of battery replacement
discourages potential consumers [58]. Given these cost differences, it
is not surprising that socio-economic factors have a strong influence
on BEV adoption. Several studies report a positive correlation between
income and the likelihood of a BEV purchase [47,48,53,59].

Demographic factors, particularly age, gender and household size,
strongly affect the adoption of BEVs. Several studies agree on the influ-
ence of customers’ age [46,55,59,60]. In particular, male consumers up
to 45 years are more likely to purchase a BEV [46,54,60], while women
are typically underrepresented [46,60]. Households with two vehicles
are more likely to own a BEV [49], while opposing results have been
obtained for household size [46,60].

Urbanity may affect the diffusion of BEVs, but prior studies do not
provide a coherent picture [47,55,60]. The share of commuters crossing
municipalities was found to be positively related to BEV adoption [53].

2.4. XAl in energy research

A variety of ML applications have been proposed in energy sci-
ence, but the vast majority focus on purely technical or economic
aspects. For example, ML methods are routinely used in power system
planning and operation [61] or electricity price forecasting [62]. Fur-
thermore, most applications are based on black-box models that lack
any interpretability, which severely limits scientific insights [18].

Explainable ML is a very recent and rapidly growing research field
with various applications in energy research (see [63] for a recent
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review). However, most applications focus on purely technical or eco-
nomic applications, while socio-technical aspects have received little
attention so far. Most notably, a recent study by Alova et al. used
explainable AI to predict and explain the success or failure of power
generation projects on the African continent [64]. A recent analysis
of energy poverty in the Global South using SHAP was provided in
Ref. [65].

3. Methods
3.1. Methods overview

To analyze spatial differences in the adoption of green technologies,
we trained two machine learning models to predict (i) the accumulated
peak power of all PV systems up to 10 kW, normalized by the num-
ber of households, and (ii) the share of BEVs among all private vehicles
respectively for all municipal associations in Germany (see Fig. 2).
The model includes about 200 demographic, geographic, political, and
socio-economic features. The data sources are described in Section 3.2
below. We use gradient boosted trees as they combine state-of-the-
art performance with the possibility of ex-post explainability [19]
(see Section 3.3 for details). To facilitate explainability, we further
apply recursive feature elimination, i.e., we recursively remove the
least important features while maintaining a high model performance
(see Section 3.5 for details). We assess the robustness of the analysis
by repeating model training and feature elimination in 10 runs with
different random test-train splits.

The trained model corresponds to a nonlinear function f: X — R
that maps the input features x(1,x®, ... to the respective target for
each municipal association. We explain this model to identify impor-
tant features and quantify dependencies between the features. We use
SHapley Additive exPlanations (SHAP), which provide a mathemati-
cally consistent method for additive feature attribution [66-68]. SHAP
values are defined locally for each data point x, but also provide a
global understanding of a model [19]. This approach goes far beyond
previous studies employing machine learning to detect PV from satellite
imagery [69] or using less sophisticated measures of feature impor-
tance to identify correlations between socioeconomic variables and PV
diffusion detected by a random forest model [70].

Using SHAP values, we can disentangle each prediction of our
models into the contribution of the individual features,

P
f(x;l),...,xflp))=¢0+Z¢i(xn;f)’ o)
i=1

where ¢;(x,; f) is the SHAP value of the ith feature, ¢, is the mean
over all data points, and xﬁ,i) is the value of the ith feature for the nth
data point. The global importance of a feature is then quantified by
averaging the magnitude of the respective SHAP values over all N data
points,

N
1
F1i=ﬁn§1|¢i(xn;f)|' @

Using this approach, we can quantify whether and how strongly any
feature is related to the predicted accumulated peak power of
household-scale solar PV and the predicted share of BEVs.

3.2. Spatial granularity and data sources

Regional statistical data in Germany is mostly available at the level
of municipal associations. Individual municipalities are less suited for
statistical analysis because the average size of a municipality differs
strongly between German federal states. Here, we follow the definition
of municipal associations of the INKAR database published by the
Federal Institute for Research on Building, Urban Affairs and Spatial
Development [71]. We discard 210 municipal associations from the set,
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Fig. 2. An eXplainable AI (XAI) model for analyzing the diffusion of green technologies. We train a gradient boosted tree (GBT) model to predict the normalized
accumulated peak power of PV systems per municipal association from a large set of socio-economic, demographic, and geographic features. A similar model is
trained for the share of BEVs. SHapley Additive exPlanations (SHAP) provide a local explanation for each data point x,: The model prediction f(x,) is decomposed
into the contributions of the individual features ¢,(x,; f) in an additive and mathematically consistent way. Combining all local explanations enables a global
understanding of the model [19]: The importance of a feature i is measured by the average magnitude of the SHAP values |¢;(x,; f)|. The impact of a feature is

quantified in a dependence plot showing ¢;(x,: f) versus the feature value x!.

in most cases due to zero population (see supplementary material). We
end up with a data set of 4408 municipal associations for the analysis.

Data on solar PV systems was obtained from the Marktstammdaten-
register, an open-access registry by the Bundesnetzagentur (Federal
Network Agency) [6]. Registration in this database is mandatory for
all grid-connected PV systems in Germany. For the overall analysis,
we include all entries that (i) were installed in 2021 or earlier, (ii)
registered before November 1, 2022, and (iii) had a net nominal power
of at most 10kW ., . Finally, we aggregated the peak power on the
level of municipal associations.

Data on the diffusion of BEVs was obtained from the Kraftfahrt-
Bundesamt (Federal Motor Transport Authority) [7]. We consider ve-
hicles owned by private persons as of 1st of April 2024 and aggregate
the number of vehicles on the level of municipal associations.

We consulted several data sources to create a set of 198 explana-
tory variables. The INKAR database alone provides 182 of these [71].
These variables cover, among other things, the domains of age, gen-
der, income, housing and settlement structure, the level of urbanity,
and construction activity. We further included data from the German
2011 Census on the size of households and the owner-occupation of
dwellings [72] and results of the elections for the Bundestag in 2017
published by the Federal Statistical Office and the regional bureaus of
statistics [73]. We approximate the average global radiation in munici-
pal associations based on the average global radiation on an optimally
inclined surface as available in the SARAH Solar Radiation Data pub-
lished by the Joint Research Centre of the European Commission [74].
The supplementary information provides further information on the
data preprocessing and a complete list of all explanatory variables.
Notably, some variables are available only at the county level, so we
allocated the same values to all municipal associations in the respective
region. In the GBT model for the diffusion of BEVs we also use the
aggregated power of household-scale PV systems and the number of
public charging stations as explanatory variables.

3.3. Gradient boosted trees

Gradient boosted trees (GBTs) offer a state-of-the-art performance
for many machine learning applications [75] and are especially suited
for explainable AI approaches [19]. The output of a GBT model is
the weighted sum of the predictions of individual decision trees [76].
During training, new trees are added to reduce the prediction error
quantified by the L2 loss function. GBTs perform inherent feature
selection, which makes them robust to the presence of correlated or
irrelevant features. This is essential for the given data set. To fit our
GBT model, we used LightGBM, which is a scalable gradient tree
boosting implementation that includes several advanced techniques to
speed up the training process [77].

The fitted ML model predicts the targets with sufficient accuracy
as quantified by the R? score, which describes the proportion of vari-
ation in the target data that is explained by the model. To facilitate
explainability, we further apply recursive feature elimination, i.e., we
recursively remove the least important features while maintaining high
model performance (see Section 3.5 for details) The model for accu-
mulated PV power shows an R? score of slightly below 90% until the
number of features falls below 15 (see Fig. 3). We therefore fix the
input features to these 15 most important features for the subsequent
analysis. The resulting score R?> = 88.7% on the test set is very high
given the heterogeneity of the data and the socio-economic context.
Similarly, the model for the share of BEVs shows a performance of
around 80% until the number of feature drops below 15. We thus fix the
input features to these 15 most important ones in the following, reach-
ing a score of R? = 79.3%. The GBT models significantly outperform a
LASSO regression trained for comparative benchmarking purposes for
the adoption of PV (see supplementary information).
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Fig. 3. Performance of the developed GBT models. We apply recursive feature elimination to improve the interpretability of the developed GBT model. The figure
shows the model performance quantified by the R? score as a function of the number of features for the training folds (blue) and test folds (green) observed
during 5-fold cross-validation. Based on these results, we fixed the number of features to 15 as a good compromise between performance and interpretability for
further analysis. Different splits of the data into training, validation, and test sets are used to test the robustness of the model. We select the split with the best

performing 15-feature model for further analysis (see Section 3 for details).

3.4. SHapley Additive eXplanations (SHAP)

SHapley Additive eXplanations (SHAP) provide a consistent method
for the ex-post analysis of a given machine learning model [66]. For
each data point x,, the model outcome f(x,) is attributed to the
individual features in an additive way, cf. Eq. (1). SHAP is based on
the concept of Shapley values from cooperative game theory [78]. It has
been rigorously established that SHAP values are unique in satisfying
three highly desirable axioms [66,68]:

1. Local Accuracy: The feature attributions assigned to all features
and the mean over all data points sum up to the output of the
function we intend to explain, cf. Eq. (1).

2. Missingness: If a feature i does not contribute to the outcome of
the model, the feature attribution vanishes, ¢;(x,; f) = 0.

3. Consistency: If a model changes so that a feature contribution
increases or stays the same, then the attribution should not
decrease. More precisely, let .S be an arbitrary subset of features
and let f(x,;S) be the model output where the values of all
features not in S are replaced by their baseline values. If for two
models f and g and all subsets of features .§ we have

T3 S) = F(x,3 S\D) 2 §(x,3.8) = &(x,3 S\i),
then the attribution of feature i must satisfy

@ (x5 ) = (x5 8).

Being the only feature attribution method satisfying these axioms,
SHAP values have gained enormous popularity in the field of XAI
In particular, SHAP enables a global understanding of the developed
model [19] while other feature attribution methods such as LIME focus
on individual predictions [79]. We emphasize that both SHAP and
LIME explain statistical relations learned by the model and cannot by
themselves identify causal effects.

The definition of SHAP values holds for arbitrary ML models, but the
direct application is computationally prohibitive. Tree algorithms allow
for several simplifications that enable an efficient computation [19,67].
Hence, we use gradient boosted trees as machine learning models in
the current article. We then apply the SHAP package by Lundberg
to compute SHAP values, feature importances, and SHAP interaction
values [80].

3.5. Model training and recursive feature elimination

For model training and hyperparameter optimization, we randomly
divide the dataset into training, validation, and test sets. We perform
10 runs of training and feature elimination with different random splits
to assess the robustness of the results. The modeling pipeline was
implemented in Python using the package scikit-learn [81].

We apply recursive feature elimination to the GBT models to im-
prove the explainability of the models. To this end, we iterate over the
following steps:

(i) For a given set of features S, we train models for 50 random
sets of hyperparameters. We use early stopping on the validation set to
determine the number of trees in the ensemble and random search via
5-fold cross-validation on the training set for all other hyperparameters.

(ii) Determine the best-performing model for the feature set S,
i.e., the model demonstrating the highest mean R? score on the respec-
tive test sets during cross-validation.

(iii) Compute the SHAP feature importances of the best-performing
model on the validation set.

(iv) Eliminate the / features with the smallest SHAP feature impor-
tances from the feature set S. We start with / = 10 and then use / = 1
for lower feature numbers.

A detailed analysis of SHAP dependence and interaction was pro-
vided for one selected split where the performance, as quantified by
the R? score, was highest for a fixed number of 15 features. A more
extensive description of the machine learning pipeline is given in the
supplementary information.

4. Results and discussion
4.1. Influencing factors and dependencies of PV adoption

We first consider the model for the accumulated peak power of PV
systems per household (i.e., in units of kWp/hh). We find that seven
classes of features are robustly used in all runs and yield the highest
feature importances (see left panel of Fig. 4):

1. Three of the four most important features describe the housing
situation, i.e., the share of 4- and 5-person households and the
number of large flats.
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Fig. 4. Key factors influencing the diffusion of green technologies. The bars blot show the SHAP feature importances (2) after feature elimination in the GBT
models for the diffusion of household-scale PV systems (left) and BEVs (right). To test the models’ robustness, we evaluate 10 runs with different test-train splits
and calculate the mean. The color code indicates the number of runs in which the feature is kept after recursive feature elimination, and the error bars indicate
the standard deviation. Several important features in the PV model quantify the housing situation, which relates to the rooftop area eligible for household-scale

PV systems and the owner-occupation.

2. The second most important feature is the global radiation relat-
ing to the economic viability of a PV system.

3. In every run, the model chooses the unemployment rate, either
in total or among women.

4. The number of apprentices or the share of apprentices per young
inhabitant is chosen in every model run.

5. The model selects 2-3 features related to the degree of urban-
ity (habitat density, recreational area, and regional population
potential).

6. In every but one run, the model selects one feature relating to
income, either the mean gross income (in industry), income tax,
or median income (professional qualification).

7. The model chooses the number of completed buildings with
renewable heat energy systems in nine out of ten runs.

We conclude that the overall findings are highly consistent across
different runs, while the model frequently changes between strongly
correlated features of a very similar socioeconomic type.

Dependence plots provide a detailed picture of how the key influ-
encing factors relate to the model target — the normalized accumulated
peak power of household-scale PV (see Fig. 5). Here, the SHAP value
¢;(x,; f) of a feature i is plotted against the value of the respective
feature xf,") for all data points. We focus on the four most important
features for one selected run here and provide the remaining plots in
the supplementary information.

Three features relate to the housing and settlement structure: the
shares of 4-person households, 5-person households, and flats with
5+ rooms. In all cases, we observe a nonlinear positive correlation.
The dependence plots reveal a sigmoid-like relationship of the shares
of 4- and 5-person households and the level of PV adoption. We
further observe a superlinear relation for the share of flats with 5+
rooms. All three features indicate the share of (semi-) detached houses,
which provide the rooftop area eligible for household-scale PV systems.
Previous studies consistently reported a positive correlation [34,35,37].
However, these studies were limited to linear correlation and regression
models and thus did not uncover the nonlinearity.

Other socio-economic reasons may contribute to the observed de-
pendence. First, high owner-occupation of (semi-) detached houses
comes along with undivided decision power to install PV systems [34],
and thus undivided financial incentive [82]. Second, 4- and 5-person
households are often owned by (young) families with persistence of
residence and thus a willingness for long-term investments [36].

Solar radiation determines the revenue of a PV system and consti-
tutes the second key influencing factor of PV adoption. Accordingly, the
dependence plot shows a positive relation. We provide a more detailed
analysis in the discussion of feature interactions below. The importance
of expected revenues in the decision-making process for or against
PV installations has been previously evidenced by surveys [27,38].
Consistent results have been obtained in linear statistical analyses in
Refs. [34,35,39].
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We provide further results on all 15 features in the supplementary information.

Moreover, the SHAP analysis reveals a strongly nonlinear negative
relation to the unemployment rate and a positive relation to the mean
gross income (see supplementary information). Both features describe
the average socio-economic status in a municipal association. The
higher the income and the lower the unemployment rate, the more
individuals have the financial means to invest in a PV system. Previous
studies confirm a positive correlation with mean income [35,39] and
a negative correlation with the share of welfare recipients and the
unemployment rate [34,39]. Yet, given their research design, they did
not find nonlinear relationships. Remarkably, Baginski and Weber [34]
observe a converse negative relation with mean income. This finding
is attributed to the effect of feature correlations, emphasizing the
importance of advanced data analysis methods.

Surprisingly, the SHAP analysis reveals a strong, positive relation
between the PV adoption and the number of apprentices employed in
a municipal association. This finding has not been discussed in the
literature and may be attributed to different reasons. The number of
apprentices may provide an indicator of the general level of education,
the overall economic activity, or the number of craftsmen and special-
ized enterprises offering technical services. This finding highlights the
need for further investigation beyond the scope of the given data.

Finally, the accumulated peak power of PV is negatively correlated
with habitat density and recreational area. The relationship with recre-
ational area is strongly nonlinear. Both features provide a proxy for
the urbanity of municipal associations. Urban, densely populated areas
provide less rooftop area for PV systems per person. Prior research led
to contrasting results on this topic [34,35].

4.2. Influencing factors and dependencies of BEV adoption

We now turn to the second model, which predicts the share of BEVs.
The SHAP analysis reveals that the key influencing features are sur-
prisingly different to PV adoption despite being derived from the same
dataset (see right panel of Fig. 4). Four features are robustly chosen in
every model run and show the highest average feature importances: the
income tax per capita, the accumulated peak power of household scale
PV systems, and the share of votes for the Green Party and the far-right
party AfD in the last federal election. In addition, the regional potential
of the population, the share of commuters traveling more than 150 km

to work, the share of certificates of secondary education and the votes
for other, smaller parties are chosen in most model runs.

For a more detailed analysis, we turn to dependence plots, again
focusing on a single run and the most important features. Per capita
income tax is the most important one. It has an almost linear relation
to the share of BEVs, reflecting that the higher the average income,
the more individuals have the financial means to purchase a BEV.
The positive role of income has previously been shown both for stated
preferences [46,48] and actual decisions [47,53,59].

The accumulated peak power of household scale PV systems ranks
second in the selected run and on average. We find a positive relation
that saturates for larger feature values. This finding could be related
to the strong synergy effects between PV and BEVs, as electricity from
the PV system can be used to charge the BEV, reducing the operating
costs [46,49].

Remarkably, election results play a strong role in the model for
BEV adoption. The reduced model includes the share of votes for the
Green party, the far-right AfD, and other parties. The positive relation
with the votes for the Green party is not surprising, as environmental
awareness is an important factor in the decision for a BEV [46,48,49].
The share of votes for the AfD exhibits a strongly nonlinear relationship
with a threshold effect at about 12.4% of votes. Above this threshold,
all SHAP values are constantly negative. This reflects the importance
of political attitudes: The far-right AfD publicly doubts anthropogenic
climate change and repeatedly published statements that show their
distrust of electric mobility [83]. However, a further mechanism is
possible. The AfD is particularly strong in Eastern Germany such that
the model may use the vote share as a geographical proxy variable. A
negative relation is also found for the votes for other parties, including
in particular the “Freie Wahler”. This party does not generally reject
BEVs but has repeatedly opposed plans to ban internal combustion
vehicles. The negative relation could either again reflect political at-
titudes or a geographical effect, as “Freie Wahler” is especially strong
in Bavaria.

The share of long-distance commuters is positively related to the
share of BEVs, with exceptions for very high values of the feature
(see supplementary information). Commuters are an important group
of potential customers [53], as BEVs typically have higher purchase
costs but lower running costs.
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The model chooses three demographic features due to their impor-
tances. A positive relation is observed for the rate of young dependants,
indicating the number of (larger) families in a municipal association.
It seems plausible that families are more likely to own two vehicles
and thus more likely to purchase a BEV [49]. Furthermore, we find a
positive correlation with the regional potential of population in most
models. This feature measures the population living within a distance
of 100 km. It is high in urban as well as suburban regions, where
many families and commuters live. The share of (male) inhabitants
with certificates for secondary education shows a strongly nonlinear
dependence. Prior research showed that higher education positively
affects BEV adoption [46-49].

4.3. Feature interactions

The SHAP framework can be readily extended beyond the impact
of a single feature. The SHAP interaction values @;; quantify the
interactions between two features i and j learned by the model [68].
More precisely, the SHAP value ¢; of a feature i can be decomposed
into the main effect @; and its interactions @;; with other variables
J#i,

G (%23 f) = Dy (x5 f) + Zq)ij(anf)~
J#i

3)

In analogy to the SHAP feature importances, we can identify the most
important interaction effects by averaging the magnitude |®;;| over all
data points. In the following, we restrict ourselves to the most impor-
tant feature and selected interactions. For a comprehensive overview,
see the supplementary information.

In the PV adoption model, we focus on the feature i = “share of
4-person households”. The SHAP value ¢; increases nonlinearly with
the feature value x(). However, the dependence plot displays a strong
vertical dispersion, i.e., a strong scattering of the SHAP values ¢, for
a given feature value x(. This dispersion reflects the fact that the
SHAP value is not only determined by the feature value itself, but
also depends on other features, as quantified by the SHAP feature
interactions @;;, j # i. Indeed, the SHAP main effect &; shows a
superlinear increase with almost no dispersion (see Fig. 6).

Strong interactions are found with j = “votes other parties” and j =
“global radiation”. In both cases, we find that the increase of the SHAP
value with x) is amplified in municipal associations with a high value
of the interacting features x'), and attenuated for low values of x().
That is, the positive effects of the three features do not simply add up,
but mutually reinforce each other.

In the BEV adoption model, we observe the strongest feature in-
teractions between income tax and vote share for AfD, followed by
the total photovoltaic power (see Fig. 6). In the first case, we observe
the strongest interaction effects in municipal associations with small
“income tax”, where the SHAP main effect shows a steep drop. This
drop is mostly suppressed if the vote share for the AfD is low, but
persists otherwise. That is, we find a set of municipal associations with
low income and strong support for the far-right where BEV adoption
drops sharply. In the second case, we find that a weak PV adoption
attenuates the increase in BEV adoption with income tax. That is, two
mitigating factors of BEV adoption mutually reinforce each other.

4.4. Dynamics of diffusion and influencing factors

The diffusion of green innovations is a highly dynamic process with
potential differences in the characteristics of early and late adopters
[21,38]. Hence, we expect that feature importances and dependencies
may change strongly over time. We focus our analysis of temporal
aspects on household-scale PV where sufficient data is available.

The diffusion of household-scale PV in Germany can be divided
into distinct phases (see Fig. 7) determined by changes in the policy
framework. For a long period of time, PV systems were not profitable.
During this phase, subsidies played an essential role [84]. We identify
four major changes in the regulatory framework:

1991: The “Stromeinspeisegesetz” [Electricity Feed-In Law] (replaced
by the “Erneuerbare Energien-Gesetz” [Renewable Energy
Sources Act], EEG in 2001) provides the legal basis for the
installation and refunding of household-scale PV systems.

A revised version of the EEG, including a large number of
detailed regulations, came into force on January 1, 2009. Subse-
quently, feed-in tariffs were continuously reduced based on the
amount of newly installed PV capacity.

2009:
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Fig. 7. Key influencing features during different phases of PV diffusion in Germany. Left: Newly built and total accumulated peak power of household-scale PV
systems in Germany. We identify four different phases of the diffusion process with strongly differing additions of installed peak power: (i) a slow early stage
until 2008, (ii) a first boom after the EEG revision in 2009, (iii) a stagnation phase after the EEG revision in 2012, (iv) the current boom after the most recent
EEG revision in 2022. Right: The three most important features and their importances (2) for the four phases of the diffusion process. While solar radiation was
most important in the early stages, features related to the housing situation became dominant in later stages. These features relates to the rooftop area eligible

for household-scale PV systems and the owner-occupation.

2012: The EEG is revised on July 1, 2012. Feed-in tariffs are substan-
tially reduced. Additional measures are implemented to dampen
the deployment of PV.

2022: A new revision of the EEG includes a slight increase of feed-in
tariffs. The European energy crisis leads to soaring electricity
prices [85].

We analyze how key influencing factors and dependencies change
during the diffusion process by training separate ML models to predict
the accumulated peak power of the PV systems newly installed in the
four phases of the diffusion process. The right panel of Fig. 7 shows
how the most important features change.

The most important finding is the declining importance of global
radiation. While it is the most important feature in the early phase
until 2009, it drops to rank 6 in 2022 and 2023. Household-scale PV
systems were much more expensive in the early phase. At that time, a
high energy yield was decisive to break even.

After 2022, the two most important features relate to the housing
and settlement structure. We conclude that the availability of rooftop
area has recently become the decisive influencing factor. The third most
important feature is the number of completed (semi-) detached houses.
A possible reason for this finding is that, in contrast to earlier periods,
new houses are routinely equipped with PV systems. As a result, the
number of completed houses gained importance and is now a central
driving factor.

4.5. International comparison

The adoption of green technologies can differ strongly between
countries due to different framework conditions [8]. Thus, the question
arises as to whether our findings can be generalized to other countries.
Developing full XAI models for additional countries is beyond the scope
of this article as data availability is limited and regional knowledge
should complement the analysis. Therefore, we focus on selected results
from our prior analysis and provide a comparative study of raw data.

We found that the adoption of BEVs and solar PV differs strongly
in terms of the importance of election results, which are interpreted
as a proxy for regional differences in norms and values. In Germany,
the vote share for the Green Party and the far-right AfD are among
the most important features in the BEV adoption model. However,
these features are generally eliminated in the PV adoption model. This
striking difference is also evident in the raw data (Fig. 8 g,h). There is
a strong correlation between the share of BEVs and the Green Party’s
vote share, with a Kendall rank correlation of r = 0.45. A much smaller
correlation coefficient is observed for the accumulated peak power

of household-scale PV. In the context of the XAI model results, we
hypothesize that this residual correlation is due to correlated features.
This finding is highly relevant to innovation research, as many prior
studies have treated green technologies as a homogeneous group [17].

We repeat this analysis for three different countries: Italy, the
Netherlands and the United States of America (USA). To this end, we
collected data for the results of a recent national elections, the number
of BEVs and total vehicles [86-88], the aggregated household-scale
peak PV power [89-91] and the total number of households [92,93]
in each region. Here, we used data from the 2022 Italian parliament
election [94], from the 2023 Dutch election to the house of representa-
tives [95], and the 2024 presidential election in the USA [96]. For Italy
and the Netherlands, we use data on the NUTS-2 level, while we use
data on the level of federal states for the USA. The spatial resolution
for these countries is coarser than that used for Germany due to data
availability.

Using this data, we plot the two target features of the XAI analysis,
i.e., the aggregated peak power of household-scale PV per household
and the share of BEVs, as a function of the share of votes of parties that
most likely promotes green technologies given each country’s political
spectrum (see Fig. 8). Furthermore, we calculate the Kendall rank
correlation coefficient to quantify the relation of the two targets to the
share of votes.

We find that our main conclusion — namely that support for green
parties are more important for BEV adoption than for PV adoption —
holds true for all countries under investigation (see Fig. 8). Specifically,
we observe that the Kendall rank correlation coefficient is higher for
BEV adoption than for PV adoption in all countries. It has to be
noted, however, that we consider the share of votes for the Democratic
candidate instead of the Green candidate for the USA data because of
the two-party nature of the American political system.

However, there are also striking differences to the results for Ger-
many. In the Netherlands, we find a positive correlation between the
adoption of BEVs and the share of votes for the Green-Left party, but a
negative correlation for the adoption of household scale PV. Note that
large p-values suggest that the null hypothesis cannot be rejected for
both household-scale PV in Italy and BEVs in the Netherlands. In the
USA, we find a pronounced positive correlation for both BEV and PV
adoption, but the correlation coefficient is still higher for BEVs. Future
research will be needed to conduct a more comprehensive analysis of
the transferability of the findings to other countries.

4.6. Contextualizing the results
Effective governance of the transition to sustainable energy requires

a better understanding of the adoption of green technologies. Sci-
entific analyses must evolve beyond aggregated optimization models
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Fig. 8. The relationship between the diffusion of green technologies and election results in different countries. We plot the aggregated peak power of house-hold
scale PV systems per household (top row) and share of BEVs (bottom row) in different regions versus the vote share of the Green party in national elections
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to capture political actions and individual motivations, and improve
empirical validation [97].

Against this background, we propose explainable Artificial Intelli-
gence (XAI) for empirical research on the diffusion and adoption of
green technologies. We have developed a machine learning model that
predicts spatial differences in the adoption of household-scale photo-
voltaic (PV) systems and battery-electric vehicles (BEVs) in Germany at
the level of municipal associations. This approach complements current
research on the adoption of green technologies in several ways: (i) XAIL
can readily deal with large heterogeneous data sets and thus mitigates
the need for a priori assumptions in empirical studies. SHapley Additive
exPlanations (SHAP) identify key influencing factors in the XAI model
in a mathematically consistent way. (2) Our focus on actual decisions
and spatial differences complements sociological research on intentions
and temporal dynamics. (3) The model reveals technology-specific
effects that are often neglected in the literature [17].

We find that PV adoption is primarily explained by physical and eco-
nomic conditions, while BEV adoption is influenced more strongly by
income levels, the prevalence of PV systems, and political attitudes. The
importance of existing PV systems points to a strong co-diffusion [59]
due to synergy effects.

Attitudes and values are known to be important in decisions on
green technologies but are notoriously difficult to capture in statisti-
cal studies. We tried to capture this aspect by incorporating political
preferences via election results on the level of municipal associations.
While the Green Party and AfD vote shares are highly relevant in
BEV adoption model, they play no significant role in the PV adoption
models. We conclude that a differentiated view of green technologies is
needed in socio-technical research, cf. the discussion in Ref. [17]. We
hypothesize that polarization of opinions and, thus, the importance of
individual attitudes may differ strongly for different technologies.

The results thus suggest targeted policy interventions to effectively
promote the diffusion of green technologies. Policymakers may con-
sider the socio-economic factors influencing adoption decisions, which
vary significantly even within seemingly similar categories of innova-
tions such as green technologies. For rooftop PV systems, policies may
target financial incentives that account for structural and geographic
differences, particularly in roof area availability and regional solar
radiation levels. In contrast, BEV adoption is strongly associated with
income and attitudinal factors according to the model. Consequently,
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policy interventions aimed at improving affordability across income
groups alongside educational and communication campaigns to en-
hance public awareness and understanding of these technologies could
be considered. Given the observed co-diffusion of PV and BEVs, joint
policy incentives may yield synergistic effects.

Despite these meaningful insights and their potential policy im-
plications, it is important to reiterate that XAl does not provide any
causal evidence. The inferred relations could also, for example, reflect
reverse causality (e.g., between Green Party election results and renew-
able technology adoption) or be influenced by confounding variables
(e.g., education confounding the effect of income on adoption). To
disentangle the relationships identified in this study and assess causal-
ity, future research may focus on context-specific econometric analyses
employing identification strategies which allow for a causal interpreta-
tion. In addition, while our model robustly identifies features with high
predictive relevance, it must be considered that some of these features
may function as proxies for unobserved or latent factors influencing
technology adoption. Political preferences, for example, inferred from
election results, do not necessarily reflect individual adoption decisions
but may capture broader regional socio-political contexts. Similarly,
a feature like the number of apprenticeships may indicate structural
characteristics of regional education or economic performance. The
occurrence of such proxy features is inherent in the correlational pat-
terns identified and requires a cautious interpretation of the underlying
mechanisms. Although the internal validity of the feature selection
remains unaffected, further empirical analyses are necessary to examine
the actual factors represented by the identified predictors and to better
understand their causal relationships. Therefore, combining system-
atic feature identification through XAI with context-specific empirical
validation, involving local expertise, is essential for a more accurate
interpretation of the identified predictors.

XAI can promote socio-technological energy research in manifold
ways. We envision three ways to generalize the methodology intro-
duced in this article. First, the developed XAI model can be readily
adapted to different technologies. Second, the adoption of green tech-
nologies can differ strongly between countries [8] due to different
policies and a different institutional framework. Comparing XAI models
for different countries can reveal differences in the important features
and dependencies and thus help to assess national policies and the
role of institutions. Investigations should ideally include partners with
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a local background to facilitate the access to regional statistical data
and to enable an informed interpretation of the results, in particular
in view of possible causal effects. We provide the source code of our
the model under an open license at [20] to foster such investigations.
Finally, it would be highly desirable to improve the spatial resolution of
empirical models for technology diffusion. Household scale PV systems
can be identified from satellite images (see, e.g., [69,70]). XAl models
at the household level can quantify the importance of neighborhood
effects [33] in comparison to socio-economic factors.

5. Conclusion

This study demonstrates how eXplainable Artificial Intelligence
(XAI) can uncover the drivers of green technology adoption using
high-resolution spatial data enhancing existing strands of research.
By applying machine learning models to the diffusion of household-
scale photovoltaic systems and battery electric vehicles in Germany,
we identify the key factors associated with actual adoption decisions at
the level of municipality associations.

A central finding is that the adoption of PV systems and BEVs is
correlated with markedly different factors, despite both being green
technologies. PV adoption is primarily shaped by structural geographi-
cal and economic conditions, especially the availability of rooftop area
and regional solar radiation determining the generated revenues of PV
systems. These factors suggest that physical infrastructure and local
resource potential remain critical constraints for distributed energy
technologies.

In contrast, BEV adoption is influenced more by socio-economic
conditions and political attitudes. High income levels emerge as the
strongest predictor in our model, followed by existing PV adoption
and regional voting patterns. Support for pro-environmental parties
correlates positively with BEV adoption, while support for far-right
parties correlates negatively, revealing a clear role of attitudes in
shaping technology preferences.

Our analysis also highlights how feature importances evolve over
time. As PV costs decline, economic viability becomes less dominant,
and structural features gain prominence. This shift underscores the
need for dynamic policy approaches that adjust to the changing land-
scape of technology costs and public perception.

More broadly, this work illustrates the potential of explainable AI
as a tool for empirical research on innovation and technology diffu-
sion. By identifying relevant influencing factors from large and com-
plex datasets, XAl can reveal differentiated adoption patterns across
technologies, regions, and time. This approach opens new pathways
for data-driven insights in sustainability transitions, complementing
existing theoretical and qualitative research traditions.
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