| Home > Publications database > Quantum Transport in GaAs/InAs Core/Shell Nanowire Based Structures > print |
| 001 | 1047080 | ||
| 005 | 20251020202101.0 | ||
| 037 | _ | _ | |a FZJ-2025-04106 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Schäpers, Thomas |0 P:(DE-Juel1)128634 |b 0 |u fzj |
| 111 | 2 | _ | |c Köln |d 2025-10-08 - 2025-10-08 |w Germany |
| 245 | _ | _ | |a Quantum Transport in GaAs/InAs Core/Shell Nanowire Based Structures |f 2025-10-08 - |
| 260 | _ | _ | |c 2025 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Talk (non-conference) |b talk |m talk |0 PUB:(DE-HGF)31 |s 1760956370_5185 |2 PUB:(DE-HGF) |x Invited |
| 336 | 7 | _ | |a Other |2 DINI |
| 500 | _ | _ | |a DFG Project: EXC 2004/1–390534769 |
| 502 | _ | _ | |c Universität zu Köln |
| 520 | _ | _ | |a Qubit systems based on high quality hybrid superconducting quantum devices are often realized by using semiconductor nanowires. In core/shell GaAs/InAs nanowires, containing a tubular conductor in the InAs shell wrapped around an insulating GaAs core, the strong confinement near the surface ensures good coupling to a superconductor. We present magnetotransport measurements on zincblende phase-pure GaAs/InAs core/shell nanowires, where the reduced disorder compared to polycrystalline nanowires is expected to result in improved transport properties. When an axial magnetic field is penetrating the tubular conductor, h/e-periodic Aharonov-Bohm type oscillations are observed in the magnetoconductance [1]. In addition, phase-rigid h/2e-periodic oscillations corresponding to Altshuler-Aronov-Spivak oscillations are observed. By temperature-dependent measurements, we identify a quasi-ballistic transport regime with few scattering centers in the conducting shell, which nevertheless leads to an Altshuler-Aronov-Spivak correction. In addition, Josephson junctions comprising a core/shell GaAs/InAs nanowire as a weak link were investigated [2,3]. Here, we observed an oscillation of the switching current in an axial magnetic field with a period of h/2e. Work done in collaboration with: F. Basaric, A. Pawlis, V. Brajovic, K. Moors, W. Schaarman, A. Manolescu, R. Deacon, K. Ishibashi, P. Zellekens, R. Juluri, A. M. Sanchez, J. H. Bae, H. Lüth, D. Grützmacher, M. D. Randle, P. Perla, M. I. Lepsa, G. Behner, E. Zimmermann, B. Bennemann, C. Krause[1] Farah Basaric, Vladan Brajovic, Gerrit Behner, Kristof Moors, William Schaarman, Andrei Manolescu, Raghavendra Juluri, Ana M. Sanchez, Jin Hee Bae, Hans Lüth, Detlev Grützmacher, Alexander Pawlis, Thomas Schäpers, Aharonov-Bohm and Altshuler-Aronov-Spivak oscillations in the quasiballistic regime in phase-pure GaAs/InAs core/shell nanowires, Phys. Rev. B. 112, 075301 (2025). [2] Patrick Zellekens, Russell Deacon, Pujitha Perla, Detlev Grützmacher, Mihail Ion Lepsa, Thomas Schäpers, Koji Ishibashi, Microwave spectroscopy of Andreev states in InAs nanowire-based hybrid junctions using a flip-chip layout, Communications Physics 5, 267 (2022).[3] Patrick Zellekens, Russell S. Deacon, Farah Basaric, Raghavendra Juluri, Michael D Randle, Benjamin Bennemann, Christoph Krause, Erik Zimmermann, Ana M. Sanchez, Detlev Grützmacher, Alexander Pawlis, Koji Ishibashi, Thomas Schäpers, Flux-periodic supercurrent oscillations in an Aharonov-Bohm-type nanowire Josephson junction, Communications Physics 8, 363 (2025). |
| 536 | _ | _ | |a 5222 - Exploratory Qubits (POF4-522) |0 G:(DE-HGF)POF4-5222 |c POF4-522 |f POF IV |x 0 |
| 650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 0 |
| 650 | 1 | 7 | |a Information and Communication |0 V:(DE-MLZ)GC-120-2016 |2 V:(DE-HGF) |x 0 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1047080 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)128634 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5222 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
| 980 | _ | _ | |a talk |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|