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We study the frustration pattern of a square lattice with in situ fabricated Nb-Pt-Nb four-terminal
Josephson junctions. The four-terminal geometry gives rise to a checkerboard pattern of alternating fluxes
f, f0 piercing the plaquettes, which stabilizes the Berezinskii-Kosterlitz-Thouless transition even at
irrational flux quanta per plaquette, due to an unequal repartition of integer flux sum f þ f0 into alternating
plaquettes. This type of frustrated frustration manifests as a beating pattern of the dc resistance, with state
configurations at the resistance dips gradually changing between the conventional zero- and half-flux
states. Hence, the four-terminal Josephson junction array offers a promising platform to study previously
unexplored flux and vortex configurations and provides an estimate on the spatial expansion of the four-
terminal Josephson junction central weak link area.
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Introduction—Arrays of Josephson junctions have been
studied since the 1980s [1] and a broad base of knowledge
about the physics of these arrays has been accumulated
over the years [2–19]. Recent findings in the field include
the engineering of energy-phase relations with arrays [20],
a deeper understanding of the vortex-lattice states in arrays
[21], the demonstration of giant fractional Shapiro steps in
anisotropic arrays [22], and the creation of arrays made of
superconducting islands on a normal-conducting weak link
material [22–26].
Typically, Josephson junction arrays are formed by two-

terminal junctions. Recently, however, multiterminal
Josephson junctions received increasing attention [27–31].
In general, a multiterminal Josephson junction is defined by
multiple superconducting leads being connected by a central
weak link region [28,31]. Various weak link materials can be
used for these multiterminal Josephson junctions. There is a
broad spectrum of studies of devices with weak links such as
semiconductors [32–36], graphene [29,37–39], and

topological insulators [40–43]. Topological-insulator-based
multiterminal Josephson junctions are considered as a key
element in various Majorana fermion braiding architectures
[44–46]. More generally, a multiterminal Josephson junction
is predicted to host topological states without requiring any
topological material [28].
We here report on the fabrication and study of a square

array comprising multiterminal Josephson junctions, as illus-
trated in Fig. 1(a). In contrast to conventional Josephson
junction arrays, where a two-terminal Josephson junction
(2TJJ) is placed in each arm, forming a plaquette of the array,
here, a four-terminal Josephson junction (4TJJ) is located in
each corner of the unit cell. As it turns out, this system has not
a single flux parameter (as usual arrays do) but an alternating
pattern of two fluxes. This allows us to find a stable super-
conducting phase for the array, even for irrational fluxes
piercing the individual plaquettes. Our Letter thus connects
vortex dynamics and the Berezinskii-Kosterlitz-Thouless
(BKT) transition to the emerging field of incommensurable,
quasiperiodic physics in solid-state systems [47–52]. While
the usual notion of quasiperiodic materials refers to lattices in
real space, the incommensurability here is detectable in the
space spanned by the applied flux.
Experiments—Our 4TJJ array is based on a

superconductor–normal conductor structure, using a metal
as a weak link between the superconducting electrodes
[1,6,22,25,27,53]. More specifically, we use Nb for the
four closely spaced superconducting electrodes connected
by a metallic Pt weak link. The Nb electrodes induce
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superconductivity in the Pt directly beneath them. In the
resistive array state, the induced superconductivity is
maintained, while only the Josephson junctions become
resistive [54]. The manufacturing process of the 4TJJ array
is based on a stencil lithography process using molecular
beam epitaxy with a high device yield by ensuring ultra-
clean interfaces between the Nb and Pt layers [63] (see
Fig. 1 and Supplemental Material [54]).
Figure 1(d) shows a scanning electron microscope image

of the 30 × 30 4TJJ array investigated in this Letter. In
addition to the device presented in the main text, we
measured an identical array device and a reference two-
terminal Josephson junction, all fabricated on the same
substrate during the same fabrication run [54].
Magnetotransport measurements have been performed

on a 30 × 30 4TJJ array at a temperature of 80 mK.Without
external magnetic field, the array shows a critical current of
Ic ¼ 57 μA and, close to the superconducting regime, the
device has a differential resistance of around 5.5 Ω [54].
The differential resistance versus bias current and out-of-

plane magnetic field depicted in Fig. 2(a) shows periodic

oscillations of the critical current with magnetic field.
When applying a fixed dc current of 30 μA through the
device, its resistance oscillates with the same periodicity in
magnetic field [cf. Fig. 2(b)], which was determined to be
6.25 mT by a fast Fourier transform [54]. In addition, a
device- and array-independent magnetic hysteresis of the
resistance pattern was measured, also present in the
reference 2TJJ and both arrays, which is not discussed
further in the main text (see Sec. V in the Supplemental
Material [54]).
To describe the properties of Josephson junction arrays,

the so-called frustration parameter f ¼ BA=Φ0, with A
being the respective plaquette area, B the magnetic field

(a)

(b)

(c)

FIG. 2. Measurement data of the 30 × 30 4TJJ array at 80 mK.
(a) Differential resistance as a function of bias current and
magnetic field. A periodic oscillation of the critical current is
clearly visible. (b) Resistance as a function of magnetic field with
an applied dc bias of 30 μA. The resistance oscillations corre-
spond to a periodicity of 6.25 mT. At around �5fuc, the
resistance oscillations are damped. (c) Resistance oscillations
under magnetic field ranging to�140 mTwith an applied dc bias
of 30 μA. In total, about 30 flux quantum oscillations are present.

(a) (b)

(c)

(d)

FIG. 1. (a) Schematics of the Josephson junction array where
each 4TJJ is described by four interconnected two-terminal
Josephson junctions (see dashed circle) [29,30,37,39]. Their
weak link material is platinum (see inset). The array is formed
by connecting the superconducting arms of the 4TJJs. Upon
application of a magnetic field, each large plaquette area (A) of
the array is penetrated by a magnetic flux Φ and the 4TJJ weak
link area (A0) by a flux Φ0. (b) Theoretical representation of the
array shown in (a) as a 2TJJ array with square plaquettes having
alternating frustrations f ¼ Φ=Φ0 (gray) and f0 ¼ Φ0=Φ0 (blue).
(c) False-color scanning electron micrograph of a 5 × 5 four-
terminal Josephson junction array with partially removed stencil
mask. The Pt (blue) is deposited under rotation and, thus, covers a
larger area. The Nb (red) forms the superconducting contacts. The
dashed square represents unit cell area Auc. (d) Scanning electron
micrograph of the 30 × 30 4TJJ array presented in this Letter.
Because of the shadow evaporation process, the 4TJJ array is
slightly deformed at the left and right ends of the array.
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strength perpendicular to the array plane, and Φ0 ¼ h=2e
the magnetic flux quantum, is used to characterize the
magnetic resistance pattern, i.e., frustration pattern, see,
e.g., Refs. [6,23]. It describes the average number of flux
quanta piercing through an array plaquette. For rescaling
the magnetic field into frustration, the unit cell area, as
indicated in Fig. 1(c), has been determined to be Auc ¼
ð570 nmÞ2 by scanning electron microscopy [54]. This unit
cell is the sum of a large plaquette area A (with Φ ¼ BA)
and a small plaquette area A0 (with Φ0 ¼ BA0) of Fig. 1(a),
i.e., Auc ¼ Aþ A0 (with Φuc ¼ BAuc). The flux quantum
oscillations of the resistance fit to Auc in Fig. 2(b).
The resistance signal is similar to what, e.g., Rzchowski

et al. [6] measured; however, the expected frustration
pattern for rational values of f is missing. As can be seen
in Figs. 2(b) and 2(c), at certain magnetic field around
�5 fuc, the oscillations first disappear and then reappear
when further increasing the magnetic field. The resistance
oscillations can be seen to magnetic fields above�100 mT
with, in total, about 30 flux quantum oscillations.
Theoretical discussion—To explain the measured be-

havior of the 4TJJ array, we introduce a corresponding
theoretical model. Based on the resistively capacitively
shunted junction (RCSJ) network model for multiterminal
Josephson junctions [29,30,37,39], the array can be
described, as shown in Fig. 1(a), with four 2TJJs creating
one 4TJJ [54]. This introduces a second lattice of areas
pierced by magnetic flux, the central weak link region of
the 4TJJs. The multiterminal array model can, therefore, be
conveniently represented in terms of an ordinary Jx × Jy
square lattice junction model [where Jx and Jy are the
horizontal and vertical number of superconducting nodes,
see Fig. 1(b)], with the following important difference to
previous theoretical and experimental studies: instead of all
the plaquettes being pierced by the same flux, we get an
alternating (checkerboard) flux pattern (f ¼ Φ=Φ0 and
f0 ¼ Φ0=Φ0). We deploy a classical RCSJ model approach,
where the equations of motion for the superconducting
phases at all nodes follow as usual from the Kirchhoff laws
[54]. We focus on the overdamped regime [64], neglecting
the capacitive contributions to the equations of motion, and
assume zero temperature. As will become apparent below,
it is instructive to include a Fraunhofer pattern [14] for the
individual junctions in the lattice.
Including a source and drain contact on two sides of the

lattice (across which the bias current I is applied), the RCSJ
model allows for a direct computation of the dc resistance
Rdc as a function of the magnetic field. We do so by an
explicit numerical evaluation of the classical RCSJ equa-
tions of motion [65]. The results of the simulation are
summarized in Fig. 3. For computational simplicity,
the calculations were performed on a small array of
Jx ¼ Jy ¼ 6. In the regime of interest, the results converge
well already for such small lattices [54].

It is instructive to first consider the special case f; f0 ∈Z
(equivalent to f ¼ f0 ¼ 0). Here, the dc resistance can be
found analytically (as both quantum and thermal phase
slips are absent) [54],

Rdc

R
¼ ðJx þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J2y
−
I2c
I2

s

; ð1Þ

where R and Ic are the individual junction resistance and
critical current, respectively. The array thus transitions from
superconducting (Rdc ¼ 0) to resistive (Rdc > 0) when the
bias current exceeds JyIc. For a regular square lattice
[f ¼ f0, see also Fig. 3(b)], it is well known that the array
generally leaves the superconducting regime for noninteger
values of f, even though I < JyIc. For sufficiently low
temperatures and current biases, the dc resistance

(b)

(d)

(f)

(h)

(a)

(c)

(e)

(g)

FIG. 3. Results of the theoretical analysis. In all curves (a),(c)–(g),
the x axis is f, and the y axis isRdc=R. (a)Rdc as a function of f for
the checkerboard model with f=f0 ¼ 10.9 and I=Ic ¼ 5.0.
(b) Checkerboard (f ≠ f0) versus regular (f ¼ f0) lattice models.
(c) Enlarged version of (a) showing the beating pattern. (d) Rdc for
the regular lattice model f ¼ f0, with all other parameters the same
as in (a),(c). (e),(f)Rdc including Fraunhofer pattern (red curves, see
main text), where for the checkerboard model f0 ¼ 30 (e) and for
the regular lattice f0 ¼ 10.9 (f). (g) Rdc for f=f0 ¼ 10.9 (no
Fraunhofer pattern) for decreasing bias current. Data shifted for
clarification. (h) Equilibrium loop current configuration (I ¼ 0)
for different values of f, f0. The dots indicate counter- (red) or
clockwise (blue) going currents and their size represents the
magnitude of the loop current (relative linear scale).
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nonetheless experiences dips at special rational values—
known as the frustration pattern.
Consider now the general checkerboard array, f ≠ f0

[left panel in Fig. 3(b)], where we denote the (constant)
ratio β ¼ f=f0 > 1. Here, there emerges a beating pattern,
with the two characteristic periods β > 1 and β=ð1þ βÞ <
1 [see Figs. 3(a) and 3(c)]. The larger period (β) is, in
general, only approximate; e.g., for incommensurate β the
system can only approximately return to mutually integer f,
f0—exhibiting a quasiperiodicity in flux space [66]. The
irrational nature of β is, however, also highly relevant for
the smaller period (which is exact): it separates the points
where the sum of two neighboring plaquette fluxes is zero,
i.e., f þ f0 ∈Z [see top inset in Fig. 3(a)]. For the
experimentally extracted value of β ≈ 10.9 (cf. Fig. 2
and Supplemental Material [54]) the difference between
the two frequencies is large, leading to a clearly visible
beating pattern [Fig. 3(c)]. Once β is known, the central
weak link area of a 4TJJ can be determined via A0 ¼ Auc=
ð1þ βÞ, leading to A0 ≈ ð165 nmÞ2 [54]. Crucially, for
integer f þ f0, the repartition of the total flux into the two
neighboring plaquettes (f and f0) does not need to occur for
special (integer or rational) value, since the ratio of the two
fluxes β is, in general, incommensurate. Consequently, the
system exhibits a stabilization of the superconducting
(BKT) phase (dips in Rdc) even for irrational f, f0, a
feature we choose to name “frustrated frustration.”
We now include the Fraunhofer pattern, Ic∼

sincðπf=f0Þ, where the parameter f0 captures the junction
area. The resulting reduction of the critical current at finite
f leads to a base offset in the Rdc curve, see Fig. 3(e)
[the red curve represents Eq. (1) with f-dependent Ic], in
remarkable resemblance to the experimental data, Fig. 2(c).
The good agreement of the patterns between theory and
experiment indicates that current flow is relatively uniform
through the junctions. Moreover, a magnetic-field-induced
gap reduction can even further increase agreement between
theory and experiment for large f. Taking the characteristic
behavior of the gap for thin films [67], we get Ic ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αf2

p
(α depends on the critical field), providing an

asymptotic behavior of Rdc linear in f.
In order to compare to an alternative possible model, take

the regular square lattice, f ¼ f0, where a qualitatively very
similar beating pattern arises due to the Fraunhofer pattern
[Fig. 3(d) versus Fig. 3(f)], by setting f0 (instead of f=f0) to
≈10.9. However, this alternative model can be safely
excluded to explain the experimentally observed phenom-
enology. First, the Fraunhofer beating pattern in Fig. 3(f)
skips a beat at f ¼ 0, due to the sinc function having no
zero at the origin, such that there are two beating pattern
frequencies, 2=f0 (main beat around f ¼ 0) and 1=f0 (side
beats) [see Fig. 3(f)]. Figure 2 only exhibits one beating
frequency, in alignment with the checkerboard model,
Fig. 3(c). Moreover, the area ratio extracted from micro-
graphs of the device align much better with the first model

(f=f0 ≈ 10.9 and much larger ∼f0). Related to that, for
f=f0 ≪ 1 (while I ≫ JIc), the base offset is approximately
linear, Rdc ∼ f, consistent with the measured asymptotics in
Fig. 2. Indeed, nodes separating two beats [green dots in
Figs. 3(e) and 3(f)] can only exhibit an increase in Rdc in the
checkerboard model, while in the regular lattice, the onset
of the beating pattern must coincide with Rdc reaching the
constant plateau value ≈R.
We observe that the pattern in Fig. 3(a) transitions from

resistance dips to peaks at integer f þ f0, depending on
whether f and f0 are individually closer to integer or half-
integer. Those peaks can become dips when lowering the
bias current, see Fig. 3(g), marking the onset of the
checkerboard version of regular frustration—which goes
hand in hand with the formation of additional resistance
dips at f þ f0 half -integer [see, 0 < f < 1 in Fig. 3(g)]
[68]. Overall, the frustrated frustration pattern (f þ f0 ∈Z)
is more stable than regular frustration. For an intuitive
understanding, consider the equilibrium (I ¼ 0) configu-
rations of loop currents [69] flowing through single
plaquettes, see Fig. 3(h). Thus, we find that, e.g., the
resistance dip at f ≈ 2=3, f0 ≈ 1=3 resembles much more
closely the configuration of f ¼ f0 ¼ 1=2 than the one at
f ¼ f0 ¼ 1=3—however, with an overall reduced loop
current magnitude, indicating increased stability. Stability
considerations of the various frustration features can also be
understood in terms of the regular vortex model [54].
Similarly, we notice that the f ¼ 1=2 f0 ¼ 0 pattern studied
in [70] can be realized thanks to frustrated frustration [54].
Conclusion—We demonstrated an array made with

4TJJs. For this we introduced an in situ fabrication
technique for arrays. A frustration pattern was measured
that differs from the expectation for ordinary 2TJJ arrays.
The difference could be explained by theoretically intro-
ducing a checkerboard lattice with two alternating flux
patterns f and f0. The periodicity of the beating pattern can
be connected to the area ratios A=A0. In particular, while
dips in the dc resistance can be linked to the sum f þ f0
being integer, the in general irrational area ratio leads to an
irrational repartition of this total flux into the alternating
plaquettes. This allows for the stabilization of the super-
conducting BKT phase at irrational fractions of flux
penetrating individual plaquettes. This feature allows us
to estimate the spatial expansion of the 4TJJ central weak
link region, the result of which is compatible with the
junction geometry. Overall, the here considered setup
opens up a previously unexplored class of array system
with alternating flux textures.
Outlook—Alternating f, f0 lattice structures and their

inherent flux incommensurability are expected to give rise
to multifaceted follow-up research—also beyond super-
conducting circuits, due to the various well-known map-
pings from vortices to, e.g., spin lattices and solid-on-solid
systems [71]. Specifically, half-flux configurations have
been studied in the context of frustrated spin states (“triatic”
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order) in the Kagome lattice [72–74] (which have so far
escaped direct experimental confirmation in superconduct-
ing arrays) or in the form of π-shifted junctions (e.g.,
superconductor-ferromagnet-superconductor junctions [70]
or d-wave junctions [75]), used to engineer nontrivial
current-phase relationships with protected multiple minima
[76,77]. We expect the concept of frustrated frustration to
stabilize various such phenomena without the need for
unconventional junction materials nor area fine-tuning.
Finally, with the inclusion of vortex quantum fluctuations
due to finite charging energies [8], it could be possible to
observe different phase diagrams (due to the charge and
dual flux offsets having fundamentally different statistics—
disordered versus ordered but incommensurate) or even to
observe Anderson localizationlike features in charge or
vortex space.
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a tunable moiré quasicrystal, Nature (London) 620, 762
(2023).

[52] T. Herrig, C. Koliofoti, J. H. Pixley, E. J. König, and R.-P.
Riwar, Emulating moiré materials with quasiperiodic circuit

PHYSICAL REVIEW LETTERS 135, 156002 (2025)

156002-6

https://doi.org/10.1103/PhysRevB.108.134517
https://arXiv.org/abs/2412.17576
https://arXiv.org/abs/2406.13819
https://doi.org/10.1103/PhysRevB.90.075401
https://doi.org/10.1103/PhysRevB.90.075401
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1021/acs.nanolett.8b04330
https://doi.org/10.1103/PhysRevB.101.054510
https://doi.org/10.1103/PhysRevB.101.054510
https://doi.org/10.1103/PhysRevX.10.031051
https://doi.org/10.1103/PhysRevX.10.031051
https://doi.org/10.1038/s41467-022-33682-2
https://doi.org/10.1038/s41467-023-42356-6
https://doi.org/10.1038/s41467-023-42356-6
https://doi.org/10.1038/s41467-023-38856-0
https://doi.org/10.1021/acsnano.4c01642
https://doi.org/10.1021/acsnano.4c01642
https://doi.org/10.1021/acs.nanolett.4c02414
https://doi.org/10.1021/acs.nanolett.1c03474
https://doi.org/10.1021/acs.nanolett.3c01276
https://doi.org/10.1021/acs.nanolett.2c01999
https://doi.org/10.1021/acs.nanolett.2c01999
https://doi.org/10.3390/nano13020293
https://doi.org/10.3390/nano13020293
https://doi.org/10.1021/acsnano.4c15893
https://arXiv.org/abs/2502.08527
https://arXiv.org/abs/2412.16569
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1103/PhysRevB.88.155435
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1038/s41535-020-00271-9
https://doi.org/10.1038/s41535-020-00271-9
https://doi.org/10.1038/s41578-021-00284-1
https://doi.org/10.1038/s41578-021-00284-1
https://doi.org/10.1038/s41565-022-01165-6
https://doi.org/10.1038/s41565-022-01165-6
https://doi.org/10.1038/s41586-023-06294-z
https://doi.org/10.1038/s41586-023-06294-z


quantum electrodynamics, Phys. Rev. B 111, L201104
(2025).

[53] O. V. Skryabina, S. V. Egorov, A. S. Goncharova, A. A.
Klimenko, S. N. Kozlov, V. V. Ryazanov, S. V. Bakurskiy,
M. Yu. Kupriyanov, A. A. Golubov, K. S. Napolskii, and
V. S. Stolyarov, Josephson coupling across a long single-
crystalline Cu nanowire, Appl. Phys. Lett. 110, 222605
(2017).

[54] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/gxdc-py56 for fabrication procedure,
measurement setup, additional measurement data, addi-
tional devices, additional data analysis, and additional
theoretical discussion, as well as the estimation of β
and the 4TJJ central weak link area, which includes
Refs. [55–62].

[55] H. Courtois, M. Meschke, J. T. Peltonen, and J. P. Pekola,
Origin of hysteresis in a proximity Josephson junction,
Phys. Rev. Lett. 101, 067002 (2008).

[56] A. I. Gubin, K. S. Il’in, S. A. Vitusevich, M. Siegel, and N.
Klein, Dependence of magnetic penetration depth on the
thickness of superconducting Nb thin films, Phys. Rev. B
72, 064503 (2005).

[57] K. Neurohr, Th. Schäpers, J. Malindretos, S. Lachenmann,
A. I. Braginski, H. Lüth, M. Behet, G. Borghs, and A. A.
Golubov, Local suppression of Josephson currents in
niobium/two-dimensional electron gas/niobium structures
by an injection current, Phys. Rev. B 59, 11197 (1999).

[58] T. Schäpers, Superconductor/Semiconductor Junctions,
edited by G. Höhler, J. Kühn, Th. Müller, A.
Ruckenstein, F. Steiner, J. Trümper, P. Wölfle, and E. A.
Niekisch, Springer Tracts in Modern Physics Vol. 174
(Springer, Berlin, Heidelberg, 2001).

[59] M. Kockert, R. Mitdank, A. Zykov, S. Kowarik, and S. F.
Fischer, Absolute seebeck coefficient of thin platinum films,
J. Appl. Phys. 126, 105106 (2019).

[60] D. P. Kennedy, Spreading resistance in cylindrical semi-
conductor devices, J. Appl. Phys. 31, 1490 (1960).

[61] R. G. Mazur and D. H. Dickey, A spreading resistance
technique for resistivity measurements on silicon, J. Electro-
chem. Soc. 113, 255 (1966).

[62] M.W. Denhoff, An accurate calculation of spreading
resistance, J. Phys. D 39, 1761 (2006).

[63] P. Schüffelgen et al., Selective area growth and stencil
lithography for in situ fabricated quantum devices, Nat.
Nanotechnol. 14, 825 (2019).

[64] Using the extracted values for individual junction capaci-
tances, resistances, and critical currents, we estimate the
Steward-McCumber parameter to be ≈5.4 × 10−6, well
within the overdamped regime.

[65] We use the NDSolve routine on Mathematica for explicit
evaluation of the equations of motion.

[66] Note that the experimental fitting parameter f=f0 ¼ 10.9 is
close to an integer (difference to next nearest integer is
11–10.9 ¼ 0.1), such that in Fig. 3(c), this quasi periodicity
is only visible after many periods (∼1=0.1 ¼ 10), which is
outside of the displayed range of the x axis.

[67] D. H. Douglass, Magnetic field dependence of the
superconducting energy gap, Phys. Rev. Lett. 6, 346
(1961).

[68] Such extra features have not been detected in experiment,
likely due to application of higher bias currents. Future
experiments could be dedicated to the search of additional
frustration features.

[69] Our definition of loop currents, as shown in Fig. 3(h), is
related to, but distinct from, the more commonly considered
vortex picture.

[70] S. M. Frolov, M. J. A. Stoutimore, T. A. Crane, D. J. Van
Harlingen, V. A. Oboznov, V. V. Ryazanov, A. Ruosi, C.
Granata, and M. Russo, Imaging spontaneous currents in
superconducting arrays of π-junctions, Nat. Phys. 4, 32
(2008).

[71] S. T. Chui and J. D. Weeks, Phase transition in the two-
dimensional coulomb gas, and the interfacial roughening
transition, Phys. Rev. B 14, 4978 (1976).

[72] A. B. Harris, C. Kallin, and A. J. Berlinsky, Possible Néel
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