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 I 

Zusammenfassung 

Die Entwicklung von Biomarkern auf der Grundlage der Magnetresonanztomographie (MRT) ist 

ein ständiges Bestreben auf dem Gebiet der klinischen Neurowissenschaften. Obwohl diese 

Biomarker ein großes Potenzial haben, wurden bisher nur wenige für den routinemäßigen klinischen 

Einsatz übernommen. Die größten Herausforderungen bei der Umsetzung in die klinische 

Anwendung sind die Genauigkeit, Zuverlässigkeit und Interpretierbarkeit eines Biomarkers. In 

dieser Dissertation wird daher ein neues maschinelles Lernverfahren (ML) vorgestellt, das die 

Genauigkeit der Diagnose und Prognose einer der häufigsten neurologischen Erkrankungen, der 

Alzheimer-Krankheit, durch die Konstruktion komplexer Darstellungen von Basis-Featuren 

verbessert. Durch die Verwendung einer kontextfreien Grammatik werden die konstruierten 

Repräsentationen gezwungen, menschlich interpretierbar zu bleiben, was die Validierung einer 

Beziehung zwischen dem Biomarker und dem vermuteten zugrunde liegenden pathologischen 

Korrelat ermöglicht. Darüber hinaus wird untersucht, ob Naturalistic Viewing (NV) Paradigmen 

geeignet sind, die für die Entwicklung von Biomarkern wichtigen Eigenschaften von MRT-

Messungen zu verbessern, wie z. B. Reliabilität, geringere Variabilität innerhalb von Probanden und 

verbesserte Erkennung individueller Unterschiede im Vergleich zu Ruhemessungen (RS). Daher 

wird die Wirkung von NV-Stimuli mit unterschiedlichem sozialem Inhalt und unterschiedlicher 

Länge in 14 funktionellen Gehirnnetzwerken untersucht. Es wird gezeigt, dass NV-Stimuli, 

basierend auf der funktionellen Netzwerkkonnektivität (NFC), die Erkennung von individuellen 

Unterschieden in 10 von 14 Netzwerken verbessern, wobei die Stimuli mit dem höchsten Grad an 

sozialem Inhalt die größte Verbesserung erzielen. Eine anschließende Analyse bestätigt, dass 

Filmstimuli mit einem höheren Maß an sozialem Inhalt ähnliche NFC-Muster hervorrufen, die sich 

von RS und einem Stimulus ohne soziale Interaktionen unterscheiden. Darüber hinaus wird gezeigt, 

dass NV-Stimuli die Intra-Subjekt-Variabilität in meta-analytischen Netzwerken reduzieren 

können, die für die Wahrnehmung und Verarbeitung von Handlungen, Verhalten und Emotionen 

wichtig sind. Zusätzlich wird gezeigt, dass NV-Stimuli die Zuverlässigkeit von Graph-Metriken, 

die aus NFC extrahiert werden, gegenüber RS erhöhen können. Die Ergebnisse machen jedoch auch 

deutlich, dass NV-Stimuli die Metriken nicht uneingeschränkt über das gesamte Gehirn hinweg 

verbessern. Insbesondere für Netzwerke, die mit intrinsisch orientierten Funktionen verbunden sind, 

erweist sich RS als das zu bevorzugende Paradigma. Daher ist die Auswahl des geeigneten Stimulus 

und des funktionellen Netzwerks für die Beantwortung der jeweiligen Forschungsfrage von 

entscheidender Bedeutung. Schließlich stellt diese Dissertation einen neuen öffentlich zugänglichen 

NV-Datensatz zur Verfügung, um die Wirkung von NV-Stimuli weiter zu analysieren. 



 

 II 

Summary 

The development of magnetic resonance imaging (MRI) based biomarkers is a constant endeavor 

in the field of clinical neuroscience. Although these biomarkers hold great potential, only few have 

been adopted for routine clinical use. Primary challenges for the translation into clinical use are 

accuracy, reliability and interpretability of a given biomarker. Consequently, this dissertation 

presents a new machine learning (ML) framework that improves accuracy of diagnosis and 

prognosis of one of the most common neurological diseases, Alzheimer’ Disease (AD), by 

constructing complex representations of base features. Further, by using a context-free grammar 

(CFG), the constructed representations are forced to remain humanly interpretable, thus enabling 

the validation of a relationship between the biomarker and the supposed underlying pathologic 

correlate. Additionally, it is investigated if naturalistic viewing (NV) paradigms are suited to 

improve characteristics of MRI measurements that are important for biomarker development, such 

as reliability, reduced intra-subject variability and enhanced detection of individual differences, in 

comparison with resting-state (RS). Therefore, the effect of NV stimuli with varying levels of social 

content and different lengths is investigated in 14 functional brain networks. It is shown that, based 

on network functional connectivity (NFC), NV stimuli improve the detection of individual 

differences in 10 out of 14 networks, with the stimuli with the highest level of social content 

achieving the most improvement. A subsequent analysis confirms that movie stimuli with higher 

levels of social content evoke similar NFC patterns that are distinct from RS and a stimulus lacking 

social interactions. Further, it is demonstrated that NV stimuli can reduce intra-subject variability 

in meta-analytic networks that are essential for perception and processing of action, behavior and 

emotions. In addition, it is shown that NV stimuli can increase the reliability of graph metrics 

extracted from NFC, over RS. However, the results also emphasize that NV stimuli do not 

unconditionally improve metrics of interest across the whole brain. In particular for networks that 

are related to intrinsically oriented functions, RS proves to be the more favorable paradigm. 

Therefore, selecting the appropriate stimulus and functional network is essential for addressing the 

specific research question at hand. Finally, this dissertation provides a new publicly available NV 

dataset to further analyze the effect of NV stimuli. 
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List of abbreviations 

Abbreviation Definition 

MRI magnetic resonance imaging 

 

AD Alzheimer’s Disease 

 

ML machine learning 

 

fMRI functional magnetic resonance imaging 

sMRI structural magnetic resonance imaging 

rs-fMRI resting-state functional magnetic 

resonance imaging 

NV naturalistic viewing 

AI artificial intelligence 

SVM support vector machine 

RBF radial basis function 

GE grammatical evolution 

FC functional connectivity 
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RS resting state 

NFC network functional connectivity 

AM autobiographical memory 

ER emotion regulation 

SM semantic memory 

ToM theory of mind 

eSAD extended socio-affective default  

FNM full narrative movie 

ADHD attention-deficit/hyperactivity disorder 
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1 Introduction 

Since initial discoveries that MRI-measured structural brain differences between healthy 

individuals and patients can be used to monitor or even predict disease progression, many 

researchers have tried to develop biomarkers for use in clinical settings. Apart from 

conventional statistical approaches, the use of ML based methods has gained a lot of popularity. 

Especially with more availability of larger datasets, researchers have turned to ML as such 

methods better handle complex, high-dimensional data than conventional approaches. 

However, one of the primary challenges in the translational use of ML methods is the lack of 

explainability, particularly with non-linear techniques. Explainable (i.e., human-interpretable) 

methods on the other hand not only offer valuable insights into disease mechanisms but also 

foster clinician-patient trust, which is crucial for the broader social acceptance of ML 

approaches. Besides the need for interpretable ML models, the reliability of MRI measurements 

itself are an important factor for ensuring accurate and reproducible results. In functional MRI 

(fMRI) research, resting-state fMRI (rs-fMRI) has been the gold standard for the study of brain 

connectivity because it measures intrinsic functional organization independent of task 

constraints. However, rs-fMRI is not without limitations, including intra-subject variability, 

susceptibility to motion artifacts, and the influence of unconstrained mental processes. All these 

compromise the reliability of rs-fMRI. NV paradigms, where participants engage with dynamic, 

real-world stimuli, offer a promising alternative to traditional rs-fMRI for studying brain 

connectivity. However, the reliability of NV paradigms and their ability to capture individual 

differences not only across the brain, but also in functional networks, are yet to be assessed. 

 

1.1 Alzheimer’s Disease and Interpretability  

 One of the diseases which has extensively been studied with MRI measures is AD. AD 

is the most common form of dementia, affecting about 50 million people worldwide. It 

significantly impairs memory, language, and intellectual capabilities, making day-to-day tasks 

increasingly difficult for patients. With increasing life expectancy, AD has become an emerging 

public health problem (Nandi et al., 2022). It has therefore become a main research objective 

to develop accurate methods for early diagnosis of AD. One promising method of distinguishing 

AD from healthy controls is the application of machine learning to structural MRI (sMRI) data 

(Lahmiri and Shmuel, 2019; Zhu et al., 2021). Since brain atrophy is a feature of AD and can 



 

 

2 

be observed in sMRI scans, most machine learning approaches have been successful in 

leveraging this information for classification. Since sMRI is already a staple in clinical practice, 

developing an accurate diagnostic tool based on such scans is of great clinical value. However, 

aside from accuracy, another critical factor is interpretability because it enables researchers to 

understand which areas of the brain are most affected by AD and how these regions interact. 

That kind of insight can open up knowledge on mechanisms of the disease and ultimately help 

improve treatment outcomes. Furthermore, building trust between clinicians using ML/artificial 

intelligence (AI) methods and patients is essential for the acceptance of these technologies. This 

can be achieved by clearly explaining the reasoning behind decisions and the uncertainties 

associated with different options. Therefore, the latest EU guidelines for trustworthy AI, make 

transparency one of the main requirements for the application of machine learning algorithms 

(“EU guidelines on ethics in artificial intelligence: Context and implementation,” 2019). 

Accuracy and interpretability, however, usually come with a trade-off. While interpretable 

models like linear support vector machine (SVM) and logistic regression  can not capture very 

complex feature interactions, more complex models like SVM with radial basis function (RBF) 

kernel or neural networks would be capable of recognizing such patterns, but they are less 

interpretable in terms of how they arrived at those decisions. 

 

One approach that can be utilized to enhance both accuracy and interpretability is employing 

grammatical evolution (GE) for feature construction and selection. GE is an evolutionary 

algorithm which combines the concepts of genetic programming and formal grammar systems 

with the aim of evolving solutions to complex problems. Like all evolutionary algorithms, GE 

works by maintaining a population of solutions (i.e. newly constructed features), selecting the 

fittest individuals for reproduction, and applying genetic operators like crossover and mutation 

to create new candidates. Each individual is evaluated based on a fitness function, and over 

multiple generations, the population evolves toward better solutions. However, unlike other 

evolutionary algorithms where program structures are evolved explicitly, GE uses a user-

defined formal grammar. By restricting this grammar to perform only basic arithmetic 

operations during feature generation, interpretability of the resulting features can be enforced.  

1.2 Resting-State vs Naturalistic Viewing 

 Most research on functional connectivity (FC) has focused on connectivity patterns 

observed during task-free resting state (RS), where participants lie in a scanner without 

engaging in any specific task (Amft et al., 2015; Damoiseaux et al., 2006; Langner and 
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Eickhoff, 2013). RS is believed to reflect the brain's intrinsic organization and has also been 

shown to align well with findings derived from task-based studies (Smith et al., 2009). Further, 

the ease of implementing RS data allows for the rapid acquisition of large healthy and clinical 

samples due to minimal participant demands. While the RS paradigm has provided valuable 

insights into brain organization, it also has limitations: RS data can be heavily influenced by 

head movement and drowsiness due to its unconstrained nature (Tagliazucchi and Laufs, 2014; 

Van Dijk et al., 2012), as participants struggle to stay awake and still without a task or stimulus. 

Moreover, RS is susceptible to the influence of spontaneous thoughts (Christoff et al., 2004; 

Gonzalez-Castillo et al., 2021). 

 

NV paradigms, where participants watch a story or film, have recently gained popularity as they 

offer a more ecologically valid approach to studying brain function. Compared to RS, NV offers 

several advantages. By providing a stimulus, NV reduces the variability caused by spontaneous 

thoughts. Furthermore, NV has been shown to reduce fatigue and head movement by increasing 

participant engagement, as compared to RS (Finn and Bandettini, 2020; Vanderwal et al., 2019). 

Finally, watching movies can make scanning more tolerable for participants who find it 

challenging to stay still (e.g., individuals with ADHD) or complete demanding tasks (e.g., those 

with cognitive impairments) (Eickhoff et al., 2020). 

1.3 The two present Samples 

Since the rise of NV, a plethora of samples have been made available. Researchers have 

implemented different stimuli, varying from short clips that last less than two minutes to full 

length movies (DuPre et al., 2020). More so, movie clips differ in their content. On the one 

hand, studies have used rather neutral clips e.g. depicting landscapes or even more abstract clips 

like the movie Inscapes as a baseline comparison to RS (Van Essen et al., 2012; Vanderwal et 

al., 2015). On the other hand, many authors have suggested that movie clips with social content 

are more likely to engage participants (Finn et al., 2018; Finn and Bandettini, 2020; Nguyen et 

al., 2019; Rikandi et al., 2017). Related, several studies have suggested that the cultural 

background of a person can influence the effect of NV. Cultural norms, values, and experiences 

shape one's interpretation of social interactions and narrative elements depicted in movie 

stimuli. Consequently, elucidating the interplay between cultural background and naturalistic 

viewing is crucial for understanding the variability in neural responses across populations 

(Eickhoff et al., 2020). 
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To address these points, two identical samples were acquired for this dissertation. Both 

samples employed the same three different movie stimuli with different levels of social content. 

The first movie was the movie Inscapes which depicts only abstract animations and lacks any 

form of social interaction. The second movie, The Circus (United Artists Digital Studios, 1928, 

directed by Charlie Chaplin) is a silent black-and-white film that shows the protagonist being 

chased through a circus by the police and unintentionally causing comic situations during his 

escape. Due to the lack of spoken words and the chaplin-typical pantomime-esque depiction, 

this movie is employed as a stimulus with moderate level of social interactions. The third movie, 

Indiana Jones and the Temple of Doom (Paramount Pictures, 1984, directed by Steven 

Spielberg) the protagonist is shown during an intense negotiation and afterwards has to fend off 

several hitmen who try to kill him. Due to the complex interactions between the characters 

during this scene, the movie is seen as the stimulus with the highest level of social content. To 

enable the comparison of cultural effects, one sample was acquired in Singapore and one sample 

in Jülich. 

1.4 Meta-analytic Networks 

The human brain is commonly seen as being organized into modules of spatially distinct areas 

that form functional networks (Sporns and Betzel, 2016). These networks correspond to 

particular cognitive domains, such as memory (Spreng et al., 2009), social cognition (Bzdok et 

al., 2012) and executive function (Rottschy et al., 2012). Since NV paradigms use complex, 

multimodal stimuli that elicit activation patterns across the whole brain, adopting a network 

perspective can explain the effect of movie stimuli on particular cognitive processes.  

In the context of NV, one would expect that networks that relate to different functions, should 

also differ in their response to the same stimulus. For example, a functional network that 

processes emotions should be differently affected by a movie scene with strong emotional 

content, in comparison to the motor network. Therefore, investigating FC in networks that cover 

different cognitive domains under NV, extends the knowledge over traditional whole-brain 

studies. There are various methods to define functional networks (Power et al., 2011; Schaefer 

et al., 2018; Smith et al., 2009) one of which is the use of meta-analysis (Eickhoff et al., 2012). 

Meta-analytically defined networks integrate converging data from a multitude of studies and 

thus represent the most likely core nodes that are involved in a given function. Therefore, 

studying FC in meta-analytical networks could offer new and more detailed insights into the 

effects of naturalistic viewing, as compared to conventional whole-brain studies. 
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1.5 Individual Differences 

While traditional neuroscience has mostly focused on group-level analysis, exploring 

variability between subjects is essential for a comprehensive understanding of individual brain 

function. Characterizing individual variations in FC offers additional insights into the relation 

of brain function, behavior and cognition. Furthermore, individual differences hold significant 

implications for personalized medicine. Understanding variations between individual brains 

will help to assess personal susceptibility to neurological disorders and response to 

interventions. However, the detection of individual differences in FC has been a challenging 

task. Due to motion artifacts and physiological fluctuations inherent to fMRI data, true 

individual differences are partly obscured and difficult to disentangle from noise (Dubois and 

Adolphs, 2016). In addition, the typically used RS paradigm is influenced by attention 

fluctuations and spontaneous thoughts of the participant (Christoff et al., 2004). Moreover, the 

passive nature of the RS paradigm might not fully capture the individual’s cognitive abilities, 

thus limiting the sensitivity with which subtle variations across participants can be detected. 

Previous research has shown that certain tasks improve the sensitivity to individual differences 

in FC in comparison to RS (Finn et al., 2017). However, the authors themselves point out that 

alternative paradigms are worth exploring for the analysis of individual differences, as they 

might enhance the detection of individual differences over RS and task approaches. One of 

these paradigms is NV. In contrast to RS and task, NV employs rich stimuli that better reflect 

the complexity of real-life experiences. By exposing participants to a wide array of sensory, 

emotional and contextual input, NV stimuli probe the human brain under a condition that allows 

past experiences, cultural beliefs and cognitive strategies to shape the neuronal response. 

Thereby, NV imposes richer brain state dynamics and therefore more individual connectivity 

profiles, which might better reflect individual characteristics than RS (Vanderwal et al., 2017). 

1.6 Reliability 

fMRI has become an indispensable tool in neuroscience research and has granted substantial 

insight into the function of the human brain. As applications of fMRI expand to the prediction 

of clinical outcomes, the reliability of the measurement has become a major concern. In order 

to guide clinicians in the diagnosis and prognosis of brain disorders, a measure has to 

consistently give accurate results. However, the reported reliability of fMRI measures varies 

vastly across studies (Bennett and Miller, 2010), partly due to small test-retest samples, but also 

due to different analysis choices. Therefore, finding methods that increase reliability has 
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become a priority. Traditionally, the field has relied either on task-free RS or on highly 

controlled task designs. Although both paradigms have their benefits, the former lacks 

specificity which makes it challenging to relate the observed neural activity to function, while 

the latter has limited generalizability because it uses highly artificial tasks to focus on one 

specific cognitive process. One of the methods with potential to increase reliability of fMRI is 

NV, because it engages the brain in a more structured, yet ecologically valid context. NV 

paradigms present participants with stimuli that mimic conditions under which the brain 

naturally operates, such as movies depicting dynamic social interactions. Thereby, participants 

might react in a manner that is more reflective of their typical cognitive processes, possibly 

leading to more consistent and reliable results. 

1.7 Ethics protocols 

The acquisition and use of the JUMAX dataset has been approved by the Heinrich-Heine-

University Düsseldorf (Study-Nr. 2019-791). The IMAX dataset was acquired under protocols 

approved by the National University of Singapore (NUS-IRB REFERENCE CODE: B-14-

045). Data collection and sharing for the ADNI project was funded by the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). 

1.8 Aims of the thesis 

This thesis aims to advance the development of biomarkers. Therefore, a new ML framework 

is provided that can accurately diagnose and prognose AD while retaining interpretability of 

the model. Interpretability is one of the major hurdles for the translation of ML based MRI 

research to real-world applications. Subsequently, the thesis will focus on another key challenge 

of biomarker development which is improving the reliability and the ability to detect individual 

differences. The thesis will explore the use of NV paradigms as an alternative to resting-state 

fMRI (rs-fMRI) for studying brain connectivity. It will assess how NV paradigms capture 

individual differences in functional networks and how different stimuli influence within- and 

between-subject similarity. In addition, the reliability of NV will be analyzed and compared to 

that of RS. 

 

This dissertation pertains to four studies. Study 1 establishes a ML framework that maximizes 

predictive accuracy while retaining feature interpretability. The framework is applied to the 

diagnosis and prognosis of AD. The features of the final ML model are then examined in terms 

of their interpretability. Study 2 investigates the effect of NV on FC in fourteen meta-analytic 
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networks. Particularly, the study focuses on the identifiability of individuals based on FC during 

NV and RS. In addition, individual variability in network FC (NFC) is assessed by comparing 

within- and between-subject similarity during NV and RS. These results are then compared 

between different NV stimuli and functional networks. Study 3 investigates the within- and 

between-subject similarity in NFC of the same 14 networks using a full narrative movie (FNM) 

and employing a linear mixed model to assess which factors explain inter- and intra-subject 

similarity. Study 4 focuses on the reliability of NV and compares it to that of RS. The influence 

of NV on reliability is characterized on the basis of graph metrics extracted from the same 14 

functional networks.  
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Abstract—With increasing accuracy and availability of more 

data, the potential of using machine learning (ML) methods in 

medical and clinical applications has gained considerable interest. 

However, the main hurdle in translational use of ML methods is 

the lack of explainability, especially when non-linear methods are 

used. Explainable (i.e. human-interpretable) methods can provide 

insights into disease mechanisms but can equally importantly 

promote clinician-patient trust, in turn helping wider social 

acceptance of ML methods. Here, we empirically test a method to 

engineer complex, yet interpretable, representations of base 

features via evolution of context-free grammar (CFG). We show 

that together with a simple ML algorithm evolved features provide 

higher accuracy on several benchmark datasets and then apply it 

to a real word problem of diagnosing Alzheimer’s disease (AD) 

based on magnetic resonance imaging (MRI) data. We further 

demonstrate high performance on a hold-out dataset for the 

prognosis of AD.  

Keywords — grammar evolution, feature representation, 

interpretability, Alzheimer’s disease, machine learning 

I. INTRODUCTION 

Application of machine learning and artificial intelligence 
(AI) methods in medical and clinical problems has gained 
increasing attention in recent years [1][2]. These methods can 
find patterns in high-dimensional data and thus have the 
potential to provide gains in diagnostic and prognostic accuracy. 
However, there are also skepticisms and societal concerns, 
especially regarding the explainability of the models and their 
predictions [1][3][4]. According to the latest EU guidelines for 
trustworthy AI, transparency is one of the main requirements for 
the application of machine learning algorithms [5]. Importantly, 
fostering trust between clinicians assisted by ML/AI methods 
and patients by communicating reasons behind decisions and 
uncertainties associated with options is crucial for the 
acceptance of ML methods  [6], [7]. In addition, 
explainable/human-interpretable models are inherently 
beneficial in a clinical setting as they can help understand the 
biology underlying disease mechanisms and disease 
progression. It is, therefore, important to develop methods and 
frameworks that can simultaneously provide high accuracy and 
interpretability.  

Feature engineering is one of the key concepts to improve 
model performance: Processing the available features in such a 
way that they are easily learnable by a classifier is arguably one 

of the most important parts of machine learning [8]. Single 
features may seem irrelevant until considered in combination 
with others. Often, exhaustively exploring the complete range of 
possible feature combinations is computationally too expensive, 
due to the high dimensionality of the data. Evolutionary 
algorithms can improve the search in such combinatorial 
problems by systematically searching the space guided by the 
usefulness of the candidate solutions. Previous work utilizing 
evolutionary algorithms have shown promise in various research 
areas. Some of these approaches have relied on grammatical 
evolution (GE) [9] for feature selection and generation. For 
example, Silva et al. employed GE to select and generate 
features for the prediction of the daily peak electricity load in 
planning of power systems [10]. Implementing a combination of 
GE and neural networks, Gavrilis et al. generated new features 
and could thereby improve performance on nine out of ten 
classification datasets [11]. Demonstrating its suitability for 
medical purposes, Smart et al. similarly utilized GE to select the 
best subset of features as well as to generate new features for 
detecting epileptic oscillations in patients with epileptic seizures 
[12]. Motsinger et al. proposed a combination of GE and neural 
networks to perform automatic feature selection in genetic 
epidemiology [13]. In a study by Georgulas et al., GE was 
utilized to improve the classification of pathological fetal heart 
rate where artificial features were derived from the 19 original 
features and used to train a neural network [14]. These studies 
show that the models generally benefited from the constructed 
features (CF). If the generated features and the model are 
restricted to retain a human-interpretable form, such a feature 
generation framework can be leveraged to promote both 
accuracy as well as interpretability. Towards this goal, we 
propose a framework based on GE, which achieves a good trade-
off between these two goals. 

 Building upon its promise in engineering new and useful 
features, here we use GE to evolve new feature representations 
as combinations of the original or base features which are then 
used as a basis for classification. Our motivation for using GE 
was to test a feature construction method that can produce 
human-interpretable features that meet the requirements for 
trustworthy AI. Although there exist other feature 
extraction/construction methods (e.g. PCA) the resulting 
features are often not interpretable.GE can limit the search space 
and efficiently construct new features by incorporating domain-
specific knowledge and user expectations through a pre-defined 
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set of rules, the so-called ‘grammar’. By restricting the grammar 
to basic arithmetic operations, we enforce the expectation on the 
engineered features to be human-interpretable.  We then use the 
naïve Bayes (NB) classifier as a model. We first demonstrate 
utility of evolved feature representation on eight benchmark 
datasets. We then apply our framework to the clinical problem 
of diagnosis of the Alzheimer’s disease —i.e. AD versus healthy 
control (HC) classification—using base features derived from 
structural MRI (sMRI) data. We expected our approach to 
generate human-interpretable features which include 
information about the interactions between brain regions. 
Additionally, we apply the AD vs. HC model to a hold-out set 
to probe its prognostic capacity—i.e. to predict whether a person 
with mild cognitive impairment (MCI) will develop AD or not.  

Taken together, the main contributions of our work are: (1) we 
propose a GE framework to construct arithmetic combinations 
of base features which improves accuracy; and (2) by applying 
it to the real-world clinical problems of diagnosis and prognosis 
of AD, we demonstrate that the proposed framework can 
uncover complex yet interpretable interactions between brain 
regions. 
This paper is structured as follows: Section II lays out the 
background of AD and briefly showcases current ML-based 
diagnostic approaches. Section III gives a brief introduction to 
GE and the general workflow. Section IV gives a detailed 
description of the feature construction method. In section V, the 
results are presented and discussed. Section VI presents the 
conclusions of our work. 

II. ALZHEIMER’S DISEASE AND ITS DIAGNOSIS AND PROGNOSIS 

Among the estimated 50 million people suffering from 
dementia worldwide, AD is the most common form [15]. 
Disturbances in memory, language and higher executive 
functions lead to severe obstruction of a patient's life. With high 
prevalence in the elderly, AD has become a major public health 
problem, due to the increasing life expectancy of the 
population. It is, therefore, important to develop accurate and 
interpretable methods for early diagnosis of AD. One approach 
which has shown a good diagnostic promise—i.e. AD versus 
HC classification—is using sMRI derived features in 
combination with machine learning algorithms. Since the 
progression of AD is highly associated with loss of brain 
volume detectable in sMRI images, various algorithms 
capitalizing on atrophy in AD patients have shown good 
classification accuracy. Furthermore, as sMRI is routinely 
acquired in many clinics, a highly accurate and interpretable 
method using sMRI data has a high translational potential. 

Utilizing support vector machine (SVM), Klöppel et 
al. classified grey matter segments of 20 pathologically proven 
AD patients and matched healthy controls with 96% accuracy 
[16]. On a larger dataset of 652 subjects, Liu et al. employed an 
ensemble method, based on sparse representation-based 
classifiers with an accuracy of 91% [17].  Lebedev et al. 
proposed random forest based ensembles and were able to 
differentiate AD from HC with an accuracy of 90% [18]. All of 
these approaches rely either on whole-brain analysis or atlas 
derived features. In most cases, classification is based on grey 
matter volumes of individual brain regions and benefits from 

the fact that areas highly affected in AD, like the hippocampus, 
provide good discrimination. In addition to high accuracy, it is 
desirable to have interpretable models that can help uncover the 
brain regions involved in AD and interactions between them. 
This, in turn, can help understand the disease mechanisms and 
progression leading to better treatment and care. However, a 
trade-off exists between these two goals such that the implicitly 
interpretable methods (e.g. linear SVM or logistic regression) 
do not implicitly take complex interactions between features 
into account, while other models do so with reduced implicit 
interpretability (e.g. RBF kernel SVM and neural networks). 

III. GRAMMATICAL EVOLUTION FRAMEWORK 

We consider the binary supervised learning problem where 

given a labeled dataset ! " #$%& ' (&)*&+,
- ' % . /0 ' ( . #1'2* , 

we want to learn a mapping function 34 % 5 (  such that 3 
generalizes on unseen data. Here, we use GE to evolve feature 

combinations using CFG to learn 364 %6 5 ( , where %6 "

789$%)' :%6 . /;' < = >. Our aim is to identify 36 such that it 

performs better than 3 and is still interpretable. We propose to 
use grammatical evolution for this. 

Fig. 1 shows the general workflow of the proposed 
method. The initial population of chromosomes is translated 
into expressions using the production rules of the CFG. Note 
that each chromosome can result in a different number of 
expressions. Subsequently, new features are constructed by 
combining the base features according to the defined 
expressions (see section IV or details). The constructed features 
are used to train and evaluate a classifier in a cross-validated 
(CV) fashion to estimate generalization performance [19].  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 Workflow of the proposed framework 
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folds are used to train the model. Consequently, each of the 

subsets becomes the validation data once, resulting in k 

different estimations. The mean of those results gives an 

estimate of how well the model will generalize on new data. 

Chromosomes then undergo selection, cross-over and mutation 

and are evolved to maximize their fitness. Even with the use of 

CV, studies have shown that optimization based solutions are 

prone to over-fit [20], [21]. To assess the true generalization 

performance of the constructed features, using CV is not 

enough as it is a part of the optimization process and can thus 

lead to overly optimistic estimates [22]. It is, therefore, 

necessary to assess the generalization performance outside the 

optimization procedure. To achieve this, the data is randomly 

split into two sets, 80% evolution set and 20% validation set. 

The evolution set is used to evaluate the features constructed by 

GE expressions during evolution. This is done using 3-times 3-

fold CV. The fittest solution is then evaluated on the hold-out 

20% validation set. 

We selected NB as it provides two desirable properties, 1) its 

low variance and high bias which makes it less prone to over-

fitting and therefore counteracts the susceptibility to overfitting 

within the GE optimization iterations, and 2) its probabilistic 

output which makes the predictions easier to communicate. 

Furthermore, NB is negatively affected by redundant and 

irrelevant features [23], so we expect the evolved feature 

representations to mostly contain relevant and non-redundant 

features. 

We use the Brier score as cost (negative fitness) measure. Brier 

score was chosen as it is a proper scoring rule and hence can be 

used to rank solutions. 

A. Grammatical Evolution 

 In this study, the gramEvol R-package 
(https://github.com/fnoorian/gramEvol) was used [24]. GE 
combines CFG and genetic algorithms to optimize programs 
towards a specific task. CFG is used to generate patterns of 
strings according to a set of recursive rules. The notation 
technique used here is the Backus-Naur form (BNF). The CFG 
is described by the tuple (T,N,R,S), where T is the set of terminal 

symbols, N is the set of non-terminals with N  T = !, R the 

set of production rules and S the start symbol, S  N. Non-

terminal symbols can be replaced by other non-terminal or 
terminal symbols whereas terminal symbols are literals. N and 
T together build the lexical elements which are used in the 

production rules R. R is defined as relations in the form of x  

 with x  N,   (N  T). The user-defined grammar is 

utilized to impose a set of grammatical production rules which 
determine the chromosomes. Each gene denotes a production 
rule of the CFG. Following the predefined set of rules, genotypic 
integer strings are translated into functional phenotypic 
programs, a process which is called genotype-to-phenotype 
mapping. The mapping function is the mod rule, defined as:  

R = B mod RN 

Where B is the codon integer value, mod is the modulus 
operator and RN is the number of rules for the current non-
terminal. Mapping begins at S and subsequently replaces each 
non-terminal element N, according to the production rule 

determined by the mapping function. Mapping continues until 
every non-terminal element is replaced by a terminal. If the 
chromosome runs out of codons before a valid expression could 
be produced, wrapping is applied. By reusing the codons, the 
mapping process continues. To prevent infinite recursions, 
wrapping is limited to a certain number and will result in a poor 
fitness score if the limit is reached. Details of the settings that 
we used and feature construction are provided in the next 
section.  

The evolution was performed with a genetic algorithm (GA) 
[25]. GA is an optimization algorithm inspired by evolution in 
which generations of chromosomes, representing the 
genotype—i.e., candidate solutions, are successively optimized 
and evaluated based on a fitness measure. The chromosomes are 
then subject to selection, cross-over and mutation, producing the 
next generation. This process is repeated until terminal criteria 
like a certain threshold of fitness or the predefined number of 
generations are reached.  

IV. EXPERIMENTAL SETUP 

The production rules of the CFG were defined as the grammar 
shown in Table I. Non-terminal symbols are expression, 
operator and variable and are enclosed by angle brackets. On the 
other side, terminals are the actual mathematical operators and 
original features. Thereby, the resulting expressions are 
arithmetic combinations of the original features. The feature 
construction process takes the values of each chromosome and 
applies the CFG rules from Table I to the base features (Tab. 
IIB).  

To reduce computational cost whilst preserving the diversity of 
the solutions, population size was set to 20 chromosomes. 
Additionally, the number of generated features was fixed to be 
equal to or less than the number of original features of the given 
dataset, with 14 codons per expression. The mutation chance for 
each codon was set to 1 (" genomeLength+1) and single-point 
cross-over was used. The initial population included the base 
model (all original features by themselves). Other chromosomes 
in the initial population were randomly created in the range of 
[0, d-1]. Evolution was terminated after 50 generations. 

The cost (negative fitness) of each chromosome was calculated 
as stratified Brier score [26] to take the imbalanced nature of 
some datasets into account. Using the constructed features, an 
NB model was fit to the two training folds within the evolution 
set and used to predict the held-out fold. The predicted 
assignment probabilities were used to calculate the Brier score 
for each class separately. The two Brier scores were then 
averaged to get the cost value, with lower values indicating 
better performance. The settings of the GE are shown in Tab. 
IIA. 

The optimized GE model using the 80% evolution set —i.e. the 
NB model on the constructed features—was evaluated on the 
20% validation set. The same evolution set was used to build a 
base model using the original features and evaluated on the 
validation set. To consider the randomness in the evolution set-
validation set split and the GE initialization, we ran the GE 
framework five times for each dataset. Four evaluation metrics 
are reported: area under the ROC curve (ROC), balanced 
accuracy (Acc), F1-score (F1) and stratified Brier score (Brier). 
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TABLE I.  GRAMMAR USED 

Rule   Rule number 

S ::= <expr> 0 

<expr> ::= <expr> <op> <expr> 0 

  <var> 1 

<op> ::= + | - | * | / 0|1|2|3 

<var> ::= X1 | X2 | ... | Xn 0|1|...|n-1 

 

TABLE II.  FEATURE CONSTRUCTION 

A) SETTINGS OF THE GE 

Parameters Value 

Number of individuals 20 

Number of generations 50 

Chromosome length [0, d-1] 

Mutation rate 1/(d+1) 

B) EXAMPLE FEATURE CONSTRUCTION 

String Chromosome Operation 

<expr> 8,9,14,3,6,11,7,6,13,4 8 mod 2 = 0 

<expr> <op> <expr> 9,14,3,6,11,7,6,13,4 9 mod 2 = 1 

<var> <op> <expr> 14,3,6,11,7,6,13,4 14 mod 14 = 0 

X1 <op> <expr> 3,6,11,7,6,13,4 3 mod 4 = 3 

X1 * <expr> 6,11,7,5,13,4 6 mod 2 = 0 

X1 * <expr> <op><expr> 11,7,5,13,4 11 mod 2 = 1 

X1 * <var> <op> <expr> 7,5,13,4 7 mod 14 = 7 

X1 * X8 <op> <expr> 5,13,4 5 mod 4 = 1 

X1 * X8 + <expr> 13,4 13 mod 2 = 1 

X1 * X8 + <var> 4 4 mod 14 = 4 

X1 * X8 + X5 constructed feature   

 
The original chromosome is [8,9,14,3,6,11,7,6,13,4]. The process starts with 
the first integer of the chromosome, in this case, eight. Since the start symbol 
is <expr>, which has two different rules, the first operation is 8 mod 2 = 0. 
Consequently, rule number 0 is selected and <expr> is translated into <expr> 
<op> <expr>. After that, the leftmost non-terminal is selected and the next 
integer is used to determine the following rule. The process is repeated until 
every non-terminal element is substituted by a terminal. The final expression is 
‘X1 * X8+ X5‘. 
 

A. Datasets 

We used eight real-world benchmark datasets from UCI 
(http://www.wisostat.uni-koeln.de/de/forschung/software-und-
daten/data-for-classification/) and two real-world clinical 
datasets. 
 
1) Breast Cancer Wisconsin:  The sample contains 569 patients 
with breast cancer. The objective is to differentiate malignant 

and benign cases using 30 features computed from a fine needle 
aspirate of a breast mass, describing characteristics of the cell 
nuclei of the image. The database contains 257 benign and 212 
malignant cases. 

2) Pima Indians diabetes: This dataset contains 768 females of 
Pima Indian heritage. The objective is to predict diabetic status 
using eight diagnostic measurements. Variables include the 
number of pregnancies, glucose concentration in plasma, blood 
pressure, skin thickness, insulin concentration, BMI, age and 
Diabetes Pedigree Function. 268 of the subjects are diagnosed 
as diabetics.  

3) Heart Disease: The sample contains 270 participants with 120 
patients with diagnosed heart disease. The objective is to classify 
the absence or presence of heart disease using 13 features with 
various diagnostic measurements.  

4) Irish: The dataset contains 500 instances of Irish school 
children. The objective here is to classify into male and female, 
based on five features dealing with the educational status of the 
children. 

5) Image Segmentation: The dataset contains 660 outdoor 
images. The images were hand segmented to create a 
classification for every pixel. In this case, images are classified 
into “containing window” and “containing cement”. 330 
examples are available for each class.  

6) Tennis: The dataset contains 87 instances of subjects under 
pain medication. Based on 15 features dealing with experienced 
drug efficacy, the objective is to classify into male and female. 

7) Diabetes: The dataset contains 112 instances of diabetics. The 
objective is to differentiate the diabetic type based on five 
metabolic variables.  

8) Crabs: The dataset contains 200 instances of Leptograpsus 
crabs. Based on 5 features describing physical attributes, the 
objective is to classify into male and female. 

9 and 10) Alzheimer’s Disease Neuroimaging Initiative (ADNI). 
We derived two datasets from the ADNI database [27]. (A) The 
AD diagnosis dataset contains 459 subjects with 3T scans with 
the objective to classify them as AD or HC. Structural (T1-
weighted) MRI images of 153 AD patients and 306 HC are 
extracted. Utilizing the CAT toolbox (http://dbm.neuro.uni-
jena.de/cat), voxel-based morphometry (VBM) is performed to 
estimate local grey matter volume. Subsequently, a brain atlas is 
applied which partitions the brain into 173 parcels. The brain 
atlas contains 100 Schaefer atlas parcels covering the cortex 
[28], complemented by 36 subcortical regions from 
Brainnetome [29] and 36 cerebellum parcels from Buckner et al 
[30]. The average grey matter volume within each of the 173 
parcels is calculated as base features for each subject. (B) The 
MCI to AD prognosis dataset contains similarly derived 173 
features for 267 subjects of which 138 later converted to AD. 
The objective here is to classify converters and non-converters. 

V. EXPERIMENTAL RESULTS 

In this section, we discuss the results obtained on the 
benchmark datasets as well as the two clinical datasets. Overall, 
we observed that both the GE constructed features as well as the 
base features combined with the naïve Bayes classifier were able 
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to classify most datasets with high accuracy. Notably, feature 
construction via GE resulted in superior performance in most 
cases.  

A. Benchmark UCI Datasets  

In Table III, the results from the application of both base and 
GE models on several test datasets are listed. We observed that 
for six out of eight datasets the NB model using GE constructed 
features outperformed the NB model using base features in at 
least four out of five runs on the stratified Brier score which was 
optimized by GE. Importantly, the constructed features also 
benefited other performance metrics with an increase in area 
under ROC, balanced accuracy, and F1-Score. Interestingly, for 
two datasets, Diabetes and Crabs, all the metrics improved 
considerably. For the two datasets with no clear improvement, 
Irish and Image, the performance of NB with constructed 
features was similar to the base model. These results suggest that 
our framework was able to evolve feature representations which 
improved overall classification efficacy. Incorporating 
information about the interactions between features seems to 
increase the discriminative validity of the evolved 
representation, in comparison to base features. Furthermore, the 
versatile set of classification tasks at hand suggests that our 
framework is generally applicable in diverse research domains. 

TABLE III.  AVERAGE PERFORMANCE ON UCI DATASETS  

Dataset Model ROC Acc F1 Brier Runs 

Breast 
 Base 0.992 0.955 0.969 0.034 

4/5 
GE 0.997 0.973 0.980 0.026 

Pima 
 Base 0.800 0.693 0.798 0.215 

4/5 
GE 0.805 0.709 0.804 0.193 

Heart 
 Base 0.884 0.787 0.798 0.162 

5/5 
GE 0.873 0.822 0.847 0.153 

Irish 
 Base 0.640 0.600 0.542 0.241 

2/5 
GE 0.596 0.570 0.504 0.247 

Image 
 Base 0.965 0.917 0.915 0.065 

2/5 
GE 0.977 0.915 0.914 0.066 

Tennis 
 Base 0.497 0.451 0.526 0.425 

4/5 
GE 0.467 0.489 0.546 0.369 

Diabet. 
 Base 0.960 0.925 0.881 0.073 

4/5 
GE 1 1 1 0.007 

Crabs 
 Base 0.646 0.590 0.591 0.295 

5/5 
GE 0.982 0.900 0.897 0.066 

 

B. Alzheimer’s diagnosis 

Results on the clinical problem of AD diagnosis confirmed 
our observations on the benchmark datasets. In Table IV the 
results from the application of our framework to the 
classification of AD vs HC are presented. Remarkably, the 
representation evolved by our framework exceeded the baseline 
performance on all four metrics in all five runs. It is evident that 

the constructed features greatly benefited classification. 
Therefore, it is plausible to suggest, that the consideration of 
feature interaction provides additional discriminative 
information.  

TABLE IV.  DIAGNOSIS RESULTS ON AD DATASET 

Dataset Model ROC Acc F1 Brier Runs 

AD 
Base 0.850 0.782 0.818 0.214 

5/5 
GE 0.913 0.815 0.859 0.178 

 

In addition to our first goal of improving classification accuracy, 
our second goal was to maintain the explainability/human-
interpretability of the evolved representations. To establish the 
interpretability of the GE constructed features, we investigated 
their biological relevance based on known results from the 
literature. Exemplary, two of the CF are discussed here. The first 
feature was constructed during the fourth run of our approach 
and represents a combination of three base features !"# $
%&' () (%##* + (%#,* . Although this CF integrates information 
about complex interactions into the model, the relation between 
the constituent base features is still understandable. The 
underlying brain regions were the left temporal pole (TmP, %&'), 
the ventromedial putamen (vmPu, %##*), and the right lateral 
prefrontal thalamus (lpThal, %#,*). The location of these regions 
is depicted in Fig. 2. CF1 suggests an interaction between TmP, 
lpThal and the vmPu and all are known to be affected in AD 
[31], [32], [33]. A second constructed feature, CF2, represented 
a combination of additional three regions, such that !"&( $
-#,. / -#01 + -#&2 (Fig.3). In this case, the underlying regions 
were the left lateral prefrontal thalamus (lpThal, X135), the right 
lateral amygdala (lAmyg, X104) and the right rostral temporal 
thalamus (rTThal, X128). Apart from lpThal and rTThal for 
which we have already shown involvement in AD, the lAmyg is 
another region that is highly affected during the disease [34], 
[35]. The association of regional atrophy or co-atrophy in 
different brain regions may hint at the underlying biological 
mechanisms playing a role in development and course of AD. 
On average, the five runs on the ADNI data produced 130 
features. A set of selected expressions from the runs are shown 
in Table V. Put in a clinical context, our approach is well suited 
to identify disease-relevant patterns.  It is evident, that our 
proposed method is not only interpretable, but the basis on 
which classification is performed can be easily explained by 
analyzing the CFs. 

 

Fig. 2 Superior view of the brain. Depicted are TmP (red), vmPu (green) and 
lpThal (blue). 
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Fig. 3 Superior view of the brain. Depicted are lpThal (blue), lAmyg (red) and 
rTThal (green). 

TABLE V.  SELECTED EXPRESSIONS FROM 5 GE RUNS 

Expression 

CF1 = X29 - X116 * X136 

CF2 = X135 + X104 * X128 

CF3 = X38 - X59 / X122 

CF4 = X76 - X132 * X83 

CF5 = X136 - X53 * X74 

CF6 = X101 * X119 / X66 

CF7 = X48 / X23 * X56 / X101 

CF8 =X110 + X23 - X158 

CF9 = X51 - X46 * X65 

CF10 = X63 / X45 * X56  

 

C. Alzheimer’s prognosis 

Since AD is marked by a continuous loss of neurons, early 
detection will play a vital role in future therapeutic methods. To 
this end, we tested if the diagnostic models using the features 
constructed for AD vs HC classification in the previous section 
would also be suitable for prognosis—i.e. to detect if MCI 
patients will later on convert to AD. If confirmed, it will indicate 
the generalizability of the constructed features and speak for 
their biological meaningfulness.  

MCI is a neurological disorder that involves cognitive 
decline beyond what is expected for a person’s age. It is 
generally seen as a prodromal stage of dementia, especially of 
AD [36]. Since not all MCI patients transition to dementia, it is 
a constant endeavor to differentiate between subjects on the 
verge of transitioning to AD (so-called converters), from stable 
MCI patients (non-converters). As the constructed features of 
our approach were able to pick up disease-relevant patterns in 
AD, we hypothesized that the same patterns could be useful to 
differentiate MCI-converters (MCIc) from stable MCI (MCIs) 
patients. Therefore, we extracted the same 173 features from 138 
MCIc and 138 MCIs subjects' sMRI images from ADNI. The 
classification was performed first with the base model (trained 
on AD vs HC diagnostic data) and then using each of the five 
grammar models separately (again, trained on AD vs HC). 
Before applying the GE derived NB models, base features were 

transformed to match the constructed features of the respective 
model. In Table VI, the results of base and GE models are 
shown. The results of both models are comparable to those 
found in recent literature, although on the lower end of 
performance [37][38][39]. Nevertheless, our GE models could 
improve classification performance in comparison to the base 
model on all four metrics. Since GE is not limited to naïve Bayes 
classifiers, but well compatible with more sophisticated learning 
algorithms, future applications might yield even better results.  

TABLE VI.  PROGNOSIS RESULTS ON MCI DATASET 

Dataset Model ROC Acc F1 Brier Runs 

ADNI 
Base 0.717 0.680 0.699 0.316 

5/5 
Grammar 0.744 0.688 0.707 0.305 

 

VI. CONCLUSION 

We presented a simple GE based framework to evolve 
complex yet interpretable feature representations and showed its 
effectiveness on several benchmark datasets. We then tested the 
framework on two clinically relevant problems, diagnosis and 
prognosis of AD. In both cases, GE constructed features 
provided improved classification over base features. Moreover, 
the constructed features were interpretable. Our framework 
could prove useful in translational applications like the ones 
showcased here by providing both accuracy and interpretability. 

Our framework is not without limitations. Firstly, we only 
considered the NB classifier primarily for its desirable property 
of low variance. However, other algorithms could provide 
higher accuracy if their variance can be properly controlled and 
should be tested. Secondly, we did not take special precautions 
to avoid overfitting in the optimization process itself [21], 
though our framework validates optimized models on hold-out 
data to avoid optimistic estimates. Heuristics such as early 
stopping could be investigated possibly further improving 
performance. Additionally, there can be multiple evolved 
solutions that perform equally well, which was the case for our 
results. In such cases, it is important to choose the most 
interpretable representation, which can be challenging. 

Taken together, our simple framework can be useful for 
generating complex yet interpretable feature representations that 
can help improve both accuracy and interpretability. 
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a b s t r a c t 

Naturalistic viewing (NV) is currently considered a promising paradigm for studying individual differences in functional brain organization. While whole brain 
functional connectivity (FC) under NV has been relatively well characterized, so far little work has been done on a network level. 

Here, we extend current knowledge by characterizing the influence of NV on FC in fourteen meta-analytically derived brain networks considering three different 
movie stimuli in comparison to resting-state (RS). We show that NV increases identifiability of individuals over RS based on functional connectivity in certain, but 
not all networks. Furthermore, movie stimuli including a narrative appear more distinct from RS. In addition, we assess individual variability in network FC by 
comparing within- and between-subject similarity during NV and RS. We show that NV can evoke individually distinct NFC patterns by increasing inter-subject 
variability while retaining within-subject similarity. Crucially, our results highlight that this effect is not observable across all networks, but rather dependent on the 
network-stimulus combination. Our results confirm that NV can improve the detection of individual differences over RS and underline the importance of selecting 
the appropriate combination of movie and cognitive network for the research question at hand. 

1. Introduction 

Understanding functional brain organization is a major goal of hu- 
man neuroscience. Typically, researchers have focused on commonali- 
ties between individuals and used group-averages to reveal the shared 
neural underpinnings of certain brain functions. In recent years, the in- 
terest in individual functional brain architecture has grown. At the same 
time, neuroimaging has shifted from mapping brain functions towards 
investigating interactions within distributed brain networks by consid- 
ering functional brain connectivity. Specifically, functional connectiv- 
ity studies yielded insight into the foundation of individual brain or- 
ganization ( Biswal et al., 1995 ; Greicius et al., 2003 ; Fox et al., 2006 ; 
Damoiseaux et al., 2006 ). However, it is yet unclear which paradigms 
are best suited to study individual differences. 

Most research on FC has been done on connectivity patterns occur- 
ring during resting state (RS), where participants lie in the scanner with- 
out any particular task or any external stimulation ( Damoiseaux et al., 
2006 ; Amft et al., 2015 ; Langner and Eickhoff, 2013 ; Binder et al., 2009 ; 
Buhle et al., 2014 ; Shehzad et al., 2009 ; Schaefer et al., 2018 ). In con- 
trast to task-based studies, RS is thought to reveal the intrinsic brain 
organization ( Smith et al., 2009 ). In addition, the ease of implementa- 

∗ Corresponding author at: Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich 52428, Germany. 
E-mail address: j.kroell@fz-juelich.de (J.-P. Kröll) . 

tion of RS data allows for the relatively quick acquisition of large healthy 
and clinical samples due to low demands on participants. Although the 
RS paradigm has provided a variety of insights into the organization 
of the human brain, it also comes with limitations: In the absence of a 
task, RS is likely influenced by spontaneous thoughts of the participant 
( Christoff et al., 2004 ; Gonzalez-Castillo et al., 2021 ). Furthermore, ex- 
perimental decisions such as instructing participants to keep their eyes 
open or closed can affect the measurement ( Patriat et al., 2013 ). Finally, 
various studies have shown that individual FC during RS is heavily in- 
fluenced by state effects ( Geerligs et al., 2015 ). 

To address these limitations, naturalistic viewing (NV) has been 
suggested as a promising tool for the study of individual differences 
( Finn et al., 2017 ; Finn et al., 2020 ). During NV, participants are in- 
structed to watch a movie clip without any additional task. Therefore, 
NV reduces the variability induced by spontaneous thought content of 
the subject, because all participants are presented with the same stimu- 
lus ( Hasson et al., 2004 ). By more closely mimicking conditions under 
which the brain naturally operates, NV promises to capture more ecolog- 
ically valid neuronal responses. Despite NV increasing the similarity of 
FC across participants, individual differences still persist. Using “finger- 
printing ” ( Finn et al., 2015 ) or identifiability as a proxy for individual 
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differences, Vanderwal et al., (2007) demonstrated that NV shows bet- 
ter identification accuracy than RS ( Vanderwal et al., 2017 ). Further- 
more, Finn et al. (2020) showed that the implementation of NV data 
outperforms RS in predicting trait-like phenotypes, thus suggesting that 
individual variability might be enhanced during NV ( Finn and Bandet- 
tini, 2020 ). Different attempts have been made to explain why NV might 
enhance FC variability. For instance, Geerligs et al. (2015) argued that 
the differences in interpretation of a given movie content might promote 
individual FC variability ( Geerligs et al., 2015 ). Van de Meer and col- 
leagues ( der et al., 2020 ) suggested that NV might impose richer brain 
state dynamics and therefore more distinct connectivity profiles, which 
in turn might better reflect phenotypes of interest than brain states dur- 
ing RS. Naturalistic Viewing paradigms provide further advantages over 
conventional RS: By increasing participant engagement, NV reduces fa- 
tigue and head movement during the measurement ( Finn and Bandet- 
tini, 2020 ; Vanderwal et al., 2019 ). In addition, movie-watching can in- 
crease scanner tolerability for cohorts which might either struggle with 
staying still (e.g. ADHD patients) or completing demanding tasks (sub- 
jects with cognitive impairments) ( Eickhoff et al., 2020 ). 

Current literature evinces the potential for naturalistic viewing as 
a useful paradigm for studying individual brain architecture. So far, 
most studies primarily focused on whole-brain connectivity reflect- 
ing a holistic view on brain functions. However, brain architecture is 
commonly seen as segregated into modular clusters of spatially dis- 
tinct areas constituting functional networks ( Sporns and Betzel, 2016 ). 
These networks represent specific cognitive domains, such as memory 
( Spreng et al., 2009 ), social cognition ( Bzdok et al., 2012 ) and execu- 
tive function ( Rottschy et al., 2012 ). Therefore, investigating networks 
functional connectivity (NFC) increases the interpretability of findings 
over whole-brain connectivity. Furthermore, connectivity in different 
networks likely yields distinct patterns of variance in reaction to NV 
stimuli. For example, a functional network related to the processing of 
emotions should react differently to a movie scene with strong emotional 
content, as compared to the motor network. 

The most commonly used method to define functional networks is 
to estimate them from FC under resting-state ( Damoiseaux et al., 2006 ; 
Schaefer et al., 2018 ; Thomas Yeo et al., 2011 ). RS-networks have shown 
good reproducibility and seem to generally converge well with stud- 
ies on task-evoked networks ( Smith et al., 2009 ; Mennes et al., 2010 ; 
Dosenbach et al., 2007 ). However, there are several other methods for 
defining functional networks ( Schaefer et al., 2018 ; Smith et al., 2009 ; 
Power et al., 2011 ), one of which are meta-analytically defined networks 
( Eickhoff et al., 2012 ). The latter have the advantage of representing the 
most likely core nodes involved in a given cognitive function, because 
they incorporate convergent information from a multitude of studies 
( Eickhoff et al., 2020 ). Thus, studying NFC in meta-analytical networks 
might grant robust insights into the effects of naturalistic viewing on 
individual variability, which has not been studied yet. 

The present study aims to investigate the influence of NV on indi- 
vidual variability in NFC by use of three different movie stimuli and 
RS. There is a plethora of NV stimuli available. Depending on the re- 
search question at hand, studies have suggested to use stimuli that 
are disease-specific (e.g. a movie evoking suspicion to study paranoia) 
( Eickhoff et al., 2020 ; Finn et al., 2018 ), emotionally or socially engag- 
ing ( Finn and Bandettini, 2020 ; Saarimäki, 2021 ; Mishra et al., 2022 ; 
Schaefer et al., 2010 ) or as neutral as possible ( Vanderwal et al., 2015 ). 
Previous studies on individual variability under NV employed stimuli 
that the researchers deemed to be the most engaging, thus resorting 
to movies with high social and emotional content ( Finn and Bandet- 
tini, 2020 ; Saarimäki, 2021 ; Mishra et al., 2022 ; Schaefer et al., 2010 ). 
We employ stimuli with different levels of social content, ranging from 

the neutral movie Inscapes , over the silent movie The Circus, to the most 
social movie Indiana Jones and the Temple of Doom. Understanding how 

different levels of social and emotional content influence individual vari- 
ability on a network level might aid researchers in choosing adequate 
stimuli for future studies. 

We compare several measures of individual variability (e.g. identi- 
fiability and inter- and intra-subject variability) between the three dif- 
ferent movie stimuli and RS across three scanning sessions on the ba- 
sis of various meta-analytical networks covering affective ( Amft et al., 
2015 ; Buhle et al., 2014 ; Liu et al., 2011 ; Sabatinelli et al., 2011 ), so- 
cial ( Amft et al., 2015 ; Bzdok et al., 2012 ; Caspers et al., 2010 ), execu- 
tive ( Langner and Eickhoff, 2013 ; Rottschy et al., 2012 ; Camilleri et al., 
2018 ; Cieslik et al., 2015 ), memory ( Binder et al., 2009 ; Spreng et al., 
2009 ) and motor ( Witt et al., 2008 ) functions. Furthermore, we validate 
our results in RS-derived networks by Thomas Yeo et al. (2011) , and on 
a whole-brain atlas by Shen et al. (2013) . As a first step, we examined 
the similarity of connectivity profiles evoked by different movies and 
RS. Secondly, we assessed the identifiability of subjects based on NFC- 
patterns evoked by NV or RS. Subsequently, we investigated to what ex- 
tent identifiability is affected by network size. Finally, we compared the 
effect of different movies and RS on inter- and intra-subject variability. 

2. Material and methods 

2.1. Participants 

36 healthy right-handed and ambidextrous adults were scanned at 
the centre for Translational MR Research, National University of Singa- 
pore. Two subjects were excluded for having incomplete sessions, leav- 
ing a final cohort at 34 (19 females, mean age 27 + / - 2.7 years). Ex- 
clusion criteria were neurological or psychiatric diagnoses, significant 
visual or hearing impairment, alcohol or caffeine consumption 6 h prior 
to the scan and self-reporting of bad sleep the night before the scan 
days. All participants underwent three identical testing sessions within 
a one-week interval. Subjects gave written, informed consent and were 
compensated for their participation. The study was approved by the in- 
stitutional review board of the National University of Singapore. 

2.2. Data acquisition 

The data was acquired on a Siemens Magnetom PrismaFit 3-Tesla 
with a 20-Channel head coil. Structural images were collected using 
an MP-RAGE sequence (TR = 2300 ms, TE = 2,28 ms, TI = 900 ms, flip- 
angle = 8°) and 1 mm voxel size. All RS and NV runs used the same 
echo planar imaging sequence (TR = 719 ms, TE = 30 ms, flip-angle = 52°, 
slices = 44, FOV = 225 ×225 mm 2 ) resulting in 2.96 ×2.96 ×3 mm voxel 
size. Data were retrieved from collaborators at the National University 
of Singapore, and structured in the form of a DataLad dataset, a re- 
search data management solution providing data versioning, data trans- 
port, and provenance capture Halchenko et al. (2021) . Each of the three 
testing sessions per participant, which were conducted within a seven 
day period, comprised three NV runs and two RS scans. The order of 
scans was identical on all three days, starting with a structural scan, 
followed by 5 functional scans in the order of RS 1, Inscapes, Circus, 
Indiana Jones and RS 2, with each functional scan lasting for 10 min. 
All movies had been cut to the same length. For RS scans, participants 
were asked to lay as still as possible and think of nothing in particular, 
while keeping their eyes open. Instructions for the NV scans were to 
watch the movies while staying as still as possible. For all scans, par- 
ticipants were asked to not fall asleep during the measurement. The 
movie clips were presented via a mirror that was mounted on the head 
coil and the sound was played through headphones. Inscapes is a non- 
verbal, non-social series of animated abstract shapes created by Van- 
derwal et al. which was looped to match the 10 min duration (original 
length 7 min) ( Vanderwal et al., 2015 ). The Circus (United Artists Digital 
Studios, 1928, directed by Charlie Chaplin) is a silent black-and-white 
film which depicts the protagonist being chased by the police and un- 
intentionally causing comic situations during his escape. Indiana Jones 
and the Temple of Doom (Paramount Pictures, 1984, directed by Steven 
Spielberg) shows the opening scene of the movie during which the pro- 
tagonist has to fight off several hitmen who are trying to kill him. Foam 
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wedges were fitted around each subject’s head for comfort and to de- 
crease movement. For all subsequent analyses, only the first RS scan 
(RS1) was used. 

2.3. Data preprocessing 

Preprocessing of MRI data was performed using fMRIPrep, version 
20.1.1 ( Esteban et al., 2019 ). In brief, the T1-weighted volumes were 
corrected for intensity non-uniformity and skull-stripped. The extracted 
brain images were then transformed into Montreal Neurological Insti- 
tute (MNI) space and motion corrected using Advanced Normalization 
Tools (ANTS) ( Avants et al., 2009 ). The functional data was motion- 
corrected with MCflirt ( Jenkinson et al., 2002 ) and subsequently co- 
registered to the native T1-weighted image using boundary based reg- 
istration with six degrees of freedom from Freesurfer ( Greve and Fis- 
chl, 2009 ). Subsequently, ICA-AROMA ( Pruim et al., 2015 ) was used on 
the MNI-aligned BOLD images to remove motion artifacts and applied 
an isotropic Gaussian kernel of 6 mm FWHM (full-width half-maximum) 
for spatial smoothing. Global signals were extracted within the CSF, the 
WM, and the whole-brain masks and regressed from the preprocessed 
fMRI data for each subject. 

2.4. Network functional connectivity 

For each subject, NFC matrices were constructed for each of the 14 
meta-analytical networks, comprising nine to 23 nodes (a detailed de- 
scription of the networks can be found in the supplements). Isotropic 
5 mm spheres were created around the local maxima of each meta- 
analytical network node and the mean time series were subsequently 
extracted. Only gray matter voxels were included. In addition, NFC ma- 
trices were constructed for the seven RS derived networks created by 
Thomas Yeo et al. (2011) , comprising the Default, Control, Dorsal At- 
tention, Salience, Visual, Somatomotor and Limbic networks, and the 
whole-brain atlas created by Shen et al. (2013) . Pearson’s correlation 
coefficient (PCC) between all node pairs was calculated to generate a n- 
times-n connectivity matrix per subject and condition, where ! denotes 
the number of nodes of the respective network. 

2.5. Representational dissimilarity matrix (RDM) analysis 

To investigate how patterns of inter-individual differences in NFC 
vary across conditions (RS and three different NV conditions), we ap- 
plied a RDM analysis. The present analysis closely followed the methods 
described by Kriegeskorte (2008) . The procedure can be summarized in 
three steps. First, the correlation between the FC patterns of every possi- 
ble pair of subjects is calculated for each condition and network. Second, 
to generate a measure of dissimilarity, the correlation distance (1-r) is 
computed. Third, the dissimilarity values for all subject pairs are assem- 
bled into an RDM (as a subjects ∗ subjects size matrix) that serves as the 
signature of the given condition. 

To visually compare RDMs, we employed Uniform Manifold Approx- 
imation and Projection (UMAP) ( McInnes et al., 2018 ), a technique for 
dimensionality reduction and visualization. Instead of preserving large- 
scale structures, UMAP seeks to preserve local neighborhood distances. 
To this end, a pre-set number of nearest neighbors (NN) are specified 
and the distances to these neighbors is represented as a weighted graph, 
with the NN being assigned with higher weights. UMAP then finds a low- 
dimensional representation of the data that best preserves these neigh- 
borhoods. The NN parameter controls whether UMAP focuses on the 
local or global structure of the data. Large values force UMAP to con- 
sider a larger number of neighbors and therefore focus on the broader 
structure of the data. In contrast, low values of NN force UMAP to focus 
on the local structure of the data. We here applied UMAP to the previ- 
ously described RDMs. To account for the small number of data points 
(fifteen RDMs per network) the NN parameter was set to two. Consider- 
ing more than 4 NN led to a more global clustering of RDMs that partly 

obscured differences between conditions. By grouping closely related 
RDMs together, UMAP allowed us to visualize which conditions evoked 
similar responses. Of note, distance metrics in UMAP are non-linear and 
not necessarily the same for each dimensionality reduction. Therefore, 
the results are suited to compare the similarity of condition evoked re- 
sponses within, but not across networks. An analysis of the RDMs on a 
whole-brain level is reported in the supplementary material (Fig. S1). 

2.6. Assessment of identifiability 

Assessment of identifiability was closely based on the methods de- 
scribed by previous papers ( Finn et al., 2015 ; Vanderwal et al., 2017 ). 
The FC matrices belonging to the same session and condition were 
grouped, resulting in 12 databases (three sessions times the four con- 
ditions). For every combination of two databases, Pearson’s correlation 
between the FC matrix of one subject from the first database and every 
other FC matrix from the second database was calculated. The two FC 
matrices with the highest correlation were considered to be from the 
same subject. Identification accuracy was defined as the frequency of 
correctly identified subjects divided by the total number of subjects. Af- 
terwards, the accuracies were averaged across session pairs to quantify 
the identifiability per condition and network. An analysis of identifia- 
bility on a whole-brain level is reported in the supplementary material 
(Table S1). 

2.7. Influence of network size 

To ensure that the differences in identification accuracy between net- 
works were not just reflections of network size, we systematically com- 
pared identifiability in artificially created networks, constituting up to 
50 nodes. Artificial networks were created by randomly choosing coor- 
dinates from the MNI152 gray matter mask. Around each coordinate, 
an isotropic sphere was created, which was matched to the node size 
of the meta-analytical networks (5 mm). The mean Euclidean distance 
between nodes from the meta-analytically defined networks was calcu- 
lated (14.62 mm) and set as the minimal distance between nodes for the 
artificial networks. Thereby, the randomly chosen nodes were prevented 
from overlapping whilst preserving some degree of spatial comparability 
between artificial and meta-analytically defined networks. This process 
was repeated 100 times for each network size, creating a new random 

configuration of nodes during each repetition. Subsequently, identifica- 
tion accuracies for all networks and the different conditions were cal- 
culated to evaluate (1) how network size influences identification accu- 
racy, (2) how identifiability between the different conditions behaves in 
artificial networks and (3) how the meta-analytically defined networks 
compare to the artificial networks. 

2.8. Within- and between subject correlation 

Within-subject correlations were calculated as Pearson’s correlation 
between the FC matrices of the same subject across session pairs (e.g. 
Ses-1 to Ses-2, Ses-1 to Ses-3) and then averaged. This process was per- 
formed for each of the four conditions (RS and the three movie stimuli) 
separately. For each network or whole-brain atlas, a one-way ANOVA 
was computed with condition (RS, Inscapes, Circus, Indiana Jones ) as 
within-subject factor to evaluate the effect of condition on within- 
subject correlations within the specific networks. Subsequently, Bonfer- 
roni correction was applied to account for Type 1 error and Tukey’s HSD 

test was performed to reveal which of the conditions significantly dif- 
fered. The between-subject correlations were defined as the mean PCC 
between the FC matrix of one subject and every other subject’s FC ma- 
trix from the same session and condition. For each network, a one-way 
ANOVA was computed with condition (RS, movie1, movie2, movie3) as 
between-subject factor to evaluate the effect of condition on between- 
subject correlations within the specific networks. Subsequently, Bonfer- 
roni correction was applied to account for Type 1 error and Tukey’s 
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HSD test was performed to reveal which of the conditions significantly 
differed. It is important to note that the between-subject comparisons 
in this study are based on correlations between static NFC of subjects, 
in contrast to an Inter-subject Correlation (ISC) approach that corre- 
lates the fMRI time series of subjects and is often used to analyze NV 
( Halchenko et al., 2021 ). As such, our results should not be interpreted 
as a measure of synchrony across subjects, but rather as their similar- 
ity in FC. The analysis of within- and between-subject correlations on a 
whole-brain level can be found in the supplementary material (Fig. S2). 

3. Results 

3.1. Similarity of different movies and RS connectivity profiles in 
meta-analytic networks 

We investigated the similarity of different conditions by embedding 
the respective RDMs into a low dimensional space (UMAP).The UMAP 
representation showed that RS was embedded separately from all NV 
conditions in AM, CogAC, VigAtt and WM, and separately from most 
NV conditions in MNS and Motor networks. In eMDN, EmoSF, ER, eSAD, 
Rew and ToM networks, RS shows overlaps with the movie Inscapes . On 
the other hand, the movies Circus and Indiana Jones tended to cluster 
together in (AM, CogAC, eMDN, Empathy, ER, eSAD, MNS, Motor, Rew). 
We did not observe any evidence for a systematic session-effect, as RDMs 
of the same session (session 3) were only embedded together in the 
motor network ( Fig. 1 ). 

3.2. Similarity of different movies and RS connectivity profiles in RS 
derived networks 

The UMAP representation of the different conditions in RS derived 
networks showed that RS was embedded separately from all NV condi- 
tions in the Control network and separately from most NV conditions in 
Limbic, SomatoMotor and Visual networks. In all networks except for 
the Control network, RS shows overlap with the movie Inscapes. Indiana 
Jones and Circus overlap in all networks ( Fig. 2 ). 

3.3. Identification accuracies in meta-analytic networks 

Identifiability of subjects was assessed based on NFC-patterns evoked 
by NV or RS. Overall, individual FC matrices could be matched across 
sessions with moderate to high accuracy with identification accuracies 
ranging from 52% to 100%. The motor network represented an ex- 
ception with low identification accuracies across conditions (27.5%–
30.4%). In eleven out of 14 networks, identifiability was highest in 
either the Circus or Indiana Jones NV conditions. Among the natural- 
istic stimuli, Indiana Jones led to the highest identification accuracies in 
eight of the networks (SM, CogAc, EmoSF, eMDN, ER, VigAtt, MNS, and 
eSAD). The top three highest accuracies were achieved using NV, with 
FC matrices using the Indiana Jones movie reaching the highest accuracy 
(98%) in the SM network. Generally, networks with more nodes tended 
to achieve higher accuracies. 

3.4. Identification accuracies in RS derived networks 

In addition, identifiability of subjects was assessed based on NFC 
in RS derived networks. Generally, individual FC matrices could be 
matched with moderate to high accuracy with accuracies ranging from 

43% to 91%. The limbic network represented an exception with low 

identification accuracies across conditions (9.3%–14.22%). In the con- 
trol, dorsal attention and visual networks, Indiana Jones led to the high- 
est identification accuracy. In the default, salience and somatomotor 
networks, RS led to the highest identifiability. The highest accuracy 
was achieved by RS in the default network (91%). Overall, accuracies 
in the RS derived networks were lower than in the majority of meta- 
analytically derived networks. 

3.5. Identification accuracies for different network sizes 

To evaluate the effect of network size on identification accuracy, 
we computed identifiability in random networks with sizes between 3 
and 50 nodes. We then compared these to the accuracies achieved in 
meta-analytic networks, as the meta-analytic networks showed higher 
accuracy then the RS derived networks. Identifiability in artificial net- 
works showed how network size influences identification accuracy for 
all modalities ( Fig. 2 ). A continuous increase of identification accuracy 
can be seen for all conditions up until a network size of 20 nodes, where 
the increase rate stabilizes. All networks, apart from the Motor network, 
achieved higher accuracies than the artificially created networks of the 
same size, regardless of condition. Furthermore, identification accura- 
cies for the Indiana Jones movie exceeded those of the other three con- 
ditions, regardless of network size ( Fig. 3 ). 

3.6. Within- and between-subject correlations in meta-analytic networks 

We calculated within-subject correlations, as a measure of how simi- 
lar subjects are to themselves across sessions, and between-subject corre- 
lations, as a measure of similarity between subjects. The average within- 
subject correlations for RS and NV ranged between 0.5 and 0.8, with 
the exception of the Motor network (0.1–0.6), indicating a high level 
of similarity of connectivity patterns across sessions. For multiple net- 
works, most prominently the MNS network, within-subject correlations 
strengthened from RS < Inscapes < Circus < Indiana Jones . 

RS state differed from one or more movie conditions in various 
networks: RS showed significantly higher within-subjects correlations 
compared to Indiana Jones (AM) and Circus (AM). In contrast, some 
movies showed significantly higher within-subject correlations than RS 
in emoSF ( Indiana Jones ), and MNS ( Indiana Jones and Circus ). 

In several networks certain movies differed from one another, with 
significantly higher correlations in Indiana Jones compared to Circus in 
emoSF; and higher correlations in Indiana Jones compared to Inscapes in 
Empathy and MNS networks. Circus never showed significantly higher 
correlations compared to any other movie in any network. 

RS and the movie Inscapes exhibited similar correlations across net- 
works. Overall, the movie Indiana Jones tended to stand out in that it 
was the only condition that showed significantly higher within-subject 
correlations than RS in several networks (EmoSF and MNS). On the con- 
trary, the movie Circus often led to decreased within-subject correlations 
in comparison to the other conditions. 

Between-subject correlations were generally lower than those pre- 
viously observed on a whole-brain level, ranging from below 0.1 to 
0.75. In several networks, the opposite pattern of what was observed 
for within-subject correlations can be seen, such that increasingly com- 
plex stimuli weaken between-subject correlations (AM, ER, eSAD and 
SM). In other networks, the three movies made connectivity across sub- 
jects more similar, increasing between-subject correlations in compari- 
son with RS (CogAc, EmoSF, Rew and VigAtt). 

Comparing within- and between-subject correlations, it is evident 
that increased within-subject correlations did not automatically lead to 
decreased between-subject correlations (and vice versa), such that a sub- 
ject’s scan can be highly individual (or reliable) and still share substan- 
tial overlap with others. 

RS differed from one or more movie conditions in various networks: 
RS showed significantly higher between-subjects correlations compared 
to Indiana Jones (AM, eSAD, SM, ToM), Inscapes (ToM) and Circus (AM, 
Motor, SM, ToM). In contrast, other networks showed significantly 
higher between-subject correlations than RS for Indiana Jones (CogAC, 
eMDN, EmoSF, Rew, VigAtt,WM), Inscapes (CogAC, emoSF, Rew, VigAtt, 
WM,) and Circus (CogAC, EmoSF, MNS, Rew, VigAtt). 

In several networks certain movies differed from one another, with 
significantly higher between-subject correlations of Inscapes compared 
to Circus in the AM, CogAC, EmoSF, eSAD, Motor, SM, and ToM; and 
higher correlations in Inscapes compared to Indiana Jones in AM, EmoSF, 
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Fig. 1. UMAP representation of the RDMs of the different conditions in each meta-analytic network. 
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Fig. 2. UMAP representation of the RDMs of the different conditions in each RS 
derived network. 

ER, eSAD and SM; and higher correlations in Indiana Jones compared 
to Circus in eDMN, Motor and ToM; and higher correlations in Circus 
compared to Indiana Jones in AM and SM networks ( Figs. 4 and 5 ). 

3.7. Within- and between-subject correlations in RS derived networks 

We calculated within- and between-subject correlations for the RS 
derived networks. The average within-subject correlation for RS and NV 
ranged between 0.6 and 0.9, with the exception of the limbic network 
(0.1–0.8), indicating a high level of similarity of connectivity across 
sessions. The within-subject correlations in the RS derived networks 
were generally higher than the within-subject correlations in the meta- 
analytic networks. RS showed significantly higher within-subject cor- 
relations than Circus in the default network.The movie Indiana Jones 

showed significantly higher within-subject correlations than Circus in 
the Default network. 

The average between-subject correlations ranged between 0.1 and 
0.9 and were generally higher than the between-subject correlations in 
the meta-analytic networks. In five out of seven networks, at least one 
of the movie conditions led to higher between-subject correlations than 
for RS. 

RS differed from one or movie conditions in various networks. RS 
showed significantly higher between-subject correlations compared to 
Circus (Cont) and Indiana Jones (Default). In contrast, other networks 
showed higher between-subject correlations than RS for Inscapes (Dor- 
sAtt), Circus (SalVentAtt, SomMot, Vis) and Indiana Jones (SalVentAtt, 
SomMot, Vis). 

In several networks, certain movies differed from each other with 
significantly higher between-subject correlations for Inscapes than Cir- 
cus in the Default and DorsAtt network; and higher correlations for In- 
scapes compared to Indiana Jones in the Default network; and higher 
correlations for Circus than Inscapes in the SalVentAtt, SomMot and Vis 
networks; and higher correlations for Circus than for Indiana Jones in the 
Vis network; and higher correlations for Indiana Jones than for Inscapes 
in the SalVentAtt and SomMot networks Figs. 6 and 7 ). 

4. Discussion 

In the current study we examined and compared the NFC evoked 
by different NV stimuli and RS with respect to similarity of connectiv- 
ity profiles, individual identifiability, as well as within- and between- 
subject correlations. Our results showed that NV stimuli evoke connec- 
tivity profiles that are distinct from RS across meta-analytically defined 
and RS derived networks. NV stimuli, especially Indiana Jones , enhance 
the identifiability of individual subjects in the vast majority (10 of 14) 
of meta-analytic networks. Crucially, our results show that NFC analy- 
sis might reveal differences that are obscured on a whole brain basis. 
Lastly, our results emphasize that the similarity of individuals to them- 
selves and to others is highly dependent on the combination of condition 
and network. 

4.1. Comparison of connectivity profiles during NV and RS 

In this study, we compared NFC evoked by three different NV stimuli 
and RS. A low-dimensional embedding of NFC similarity across subjects 
in meta-analytic networks showed that FC patterns during Inscapes are 
mostly similar to those during RS, while Circus and Indiana Jones exhib- 
ited distinct connectivity profiles across networks ( Fig. 1 ). The relative 
similarity of connectivity patterns during Inscapes and RS has been re- 
ported before: For instance, based on Pearson’s correlations between FC 
matrices, Inscapes was shown to be more similar to RS than to another 
movie condition ( Vanderwal et al., 2017 ). These authors argued that 
due to the abstract nature of the movie, participants might not engage 
in temporally synchronized cognitive processes, which is similar to RS 
( Vanderwal et al., 2015 ). Furthermore, our embedding shows little sim- 
ilarity of NFC during Inscapes and either Circus or Indiana Jones in the 
majority of networks. This is in line with the previous argument, as both 
Circus and Indiana Jones contain a narrative that is likely to increase 
similarity across subjects, as has been shown for verbal narratives (e.g. 
emotional speeches ( Nummenmaa et al., 2014 ; Schmälzle et al., 2015 )). 
Accordingly, connectivity profiles during Circus and Indiana Jones over- 
lap in the vast majority of networks. For the whole brain, similarity 
across conditions seemed more widespread and all conditions clustered 
together at least once (Fig. S1). 

4.2. Identifiability 

To assess the stability of individual patterns on the network level, 
we calculated the identifiability of NFC matrices across the three movies 
and RS ( Table 1 ). Considering that NV has been shown to increase the 
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Fig. 3. Identification accuracies in artificial networks. The figure depicts the network size as the number of nodes (x-axis) against averaged identification accuracy 
(y-axis) for each of the four conditions (RS = blue; Inscapes = orange; Circus = green; Indiana Jones = red). Black dots denote the mean identification accuracy 
of meta-analytically defined networks, averaged across conditions and placed at their respective node count. (AM = Autobiographical Memory, CogAC = Cognitive 
Attention Control,eMDN = extended Multiple Demand Network, EmoSF = Emotional Scene and Face Processing, ER = Emotion Regulation, eSAD = Extended Social- 
affective Default, MNS = Mirror Neuron System, Rew = Reward, SM = Semantic Memory, ToM = Theory of Mind, VigAtt = Vigilant Attention, WM = Working 
memory,. 

Table 1 
Identification accuracies per network and modality, averaged across sessions. Networks are in or- 
der of highest average accuracy. The highest identification accuracy in each network is denoted 
in bold. (AM = Autobiographical Memory, CogAC = Cognitive Attention Control,eMDN = extended 
Multiple Demand Network, EmoSF = Emotional Scene and Face Processing, ER = Emotion Regu- 
lation, eSAD = Extended Social-affective Default, MNS = Mirror Neuron System, Rew = Reward, 
SM = Semantic Memory, ToM = Theory of Mind, VigAtt = Vigilant Attention, WM = Working mem- 
ory, Shen = Shen atlas). 

Network RS Inscapes Circus Indiana Jones Node Number 

Semantic Memory 95.1% 95.1% 97.1% 98.0% 23 
Cognitive Attention Control 93.6% 90.2% 94.1% 96.6% 19 
Theory of Mind 93.1% 90.7% 95.1% 94.6% 15 
Autobiographical Memory 94.1% 92.2% 93.1% 92.6% 22 
Working Memory 96.1% 93.6% 88.7% 92.2% 23 
Reward 96.1% 90.7% 86.3% 90.2% 23 
Emotional Scene & Face Perception 88.7% 85.8% 86.8% 94.6% 24 
Multiple Demand Network 85.8% 85.8% 79.9% 86.8% 17 
Empathy 86.3% 81.4% 79.9% 81.9% 18 
Emotion Regulation 81.9% 80.9% 72.1% 83.3% 14 
Vigilant Attention 80.4% 74.0% 73.5% 80.9% 16 
Mirror Neuron System 77.0% 76.5% 71.1% 77.0% 11 
Socio Affective Default 59.8% 52.9% 54.4% 64.7% 12 
Motor 27.9% 30.4% 30.4% 27.5% 9 

reliability of individual FC patterns ( Geerligs et al., 2015 ; Hasson et al., 
2010 ), we hypothesized that identifiability should be higher for movies 
as compared to RS. However, present results suggest that this is not the 
case for movies in general, but rather identification accuracy appears to 
highly depend on the specific movie as well as on the chosen network. 
Specifically, Indiana jones achieved the highest accuracy in 8 of 14 net- 
works (SM, CogAC, EMOSF, eMDN, ER, VigAtt, MNS, eSAD), whereas 

Inscapes and Circus produced highest accuracies in two networks ( In- 
scapes : Motor; Circus : ToM, Motor). RS, on the other hand, achieved the 
highest accuracies in 5 networks (AM, WM, ReW, Empathy, MNS). No- 
tably, the connectivity profiles within the Motor network yielded low 

identification accuracies in comparison with the other networks across 
all stimuli. Lower-level cognitive structures such as the motor network 
show low variance between participants ( Croxson et al., 2018 ). Further- 
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Fig. 4. Within-subject correlations for the meta-analytically defined networks. Correlations across all session pairings are depicted. (RS = Resting State, I = Inscapes, 
C = Circus, IJ = Indiana Jones). 

more, as the motor network was created solely based on fingertapping 
tasks, it seems reasonable to assume that activation was low in this net- 
work. Therefore, connectivity patterns are expected to be rather similar 
across participants. 

Indiana Jones was the stimulus that achieved the highest identifica- 
tion accuracy in the majority of networks. Previous studies have argued 
that the major driving factor for improvement of individual identifi- 
ability is the social content of a stimulus ( Nummenmaa et al., 2014 ; 
Schmälzle et al., 2015 ; Dmochowski et al., 2014 )., which in the present 
study was most pronounced for Indiana Jones . In comparison, neither 
Circus nor Inscapes reach the level of social content depicted in Indiana 
Jones. Circus’ complete lack of speech might have taken away from the 
social component whereas Inscapes does not depict any human interac- 
tion at all. 

4.3. Identification accuracies for different network sizes 

Since we observed an increase of identification accuracy with net- 
work size such that bigger networks tended to show higher accuracies, 
we investigated the influence of network size on identifiability in arti- 
ficially created networks ( Fig. 3 ). The results show the same tendency 
that was observed in the meta-analytically defined networks, such that 
identification accuracy was highest for Indiana Jones , followed by RS, 
Inscapes and Circus . Confirming our observation, identification accuracy 

in artificial networks increased with network size, regardless of condi- 
tion. Notably, all meta-analytical networks, except the motor network, 
outperformed artificial networks of the same size, supporting their bi- 
ological validity. Following our previous line of argument, the motor 
network might not be suitable for subject identification based on FC, 
which might explain the underperformance compared to artificial net- 
works. 

4.4. Within- and between-subject correlations in meta-analytic networks 

To better understand the differences in identifiability across stimuli 
and networks, we investigated within- and between-subject correlations 
( Figs. 4 and 5 ). Our results showed that in the majority of networks, 
within- and between-subject correlations were significantly altered dur- 
ing NV in comparison to RS. It is generally assumed that NV should in- 
crease between-subject similarity, given that all subjects are presented 
with the same stimuli, in comparison to no stimuli at all during RS 
( Hasson et al., 2004 ; Hasson et al., 2010 ; Kauppi, 2010 ). On the other 
hand, it is unclear whether NV can evoke unique and reliable patterns 
across sessions, as measured by within-subject correlations. Vanderwal 
and colleagues investigated FC variability in NV and RS and showed 
that naturalistic paradigms increased within- and between-subject cor- 
relations on a whole brain level ( Vanderwal et al., 2017 ). However, our 
results showed no significant differences for either within- or between- 
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Fig. 5. Between-subject correlations for the meta-analytically defined networks. Correlations for all sessions are depicted. (RS = Resting State, I = Inscapes, C = Circus, 
IJ = Indiana Jones). 

Fig. 6. Within-subject correlations for the RS derived networks. Correlations across all session pairings are depicted. 
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Fig. 7. Between-subject correlations for the RS derived networks. Correlations for all sessions are depicted. 

subject correlations on a whole-brain level (supplementary Fig. S1 and 
S2). On the other hand, our analysis revealed varying effects on a net- 
work basis. Increased within-subject correlations were mainly observed 
in meta-analytic networks that are essential for perception and pro- 
cessing of action, behavior and emotions, namely EmoSF, Empathy and 
MNS. In other networks, NV resulted in more similar patterns between 
subjects (CogAC, eMDN, Rew, VigAtt and WM). Notably, multiple net- 
works showed decreased within- and between-subject correlations dur- 
ing NV (AM, ER, eSAD, SM, ToM). We will discuss these three groups of 
networks subsequently. 

4.4.1. Networks with higher within-subject correlations in movies 
NV showed significantly higher within-subject correlations in net- 

works that are essential for perception and processing of action, behav- 
ior and emotions (EmoSF and MNS). In a recent publication by Finn and 
Bandettini (2020) it was shown that NV outperformed RS in FC-based 
prediction of behavioral scores. In their study, movies with strong so- 
cial content led to the more accurate predictions, regardless of whether 
the predicted score was social or cognitive. The authors hypothesize 
that social movies are not only more engaging, but also most likely 
to evoke divergent interpretations and reactions across participants. In 
agreement with this assumption, several studies have shown that social 
movies induce different neural responses across subjects ( Finn et al., 
2018 ; Rikandi et al., 2017 ; Salmi et al., 2020 ) and that shared inter- 
pretation of a narrative or movie is associated with similarity in neural 
responses ( Nguyen et al., 2019 ; Gruskin et al., 2020 ). Assuming that the 
social aspect of a movie stimulus induces stable individual connectivity 
patterns, it is reasonable to expect that this effect is more pronounced 
in networks that deal with the processing of social interactions. 

In the EmoSF network for example, which deals with the visual and 
emotional processing of faces or scenes ( Sabatinelli et al., 2011 ), all 
three movie stimuli led to higher within-subject correlations compared 
to RS. Notably, the movie Indiana Jones , during which the emotional 
processing of faces is a key aspect, shows highest within-subject corre- 
lations. Here, differences in the emotional assessment of the particular 
faces and scenes might have been the driving factor that evoked stable 
individual connectivity patterns during Indiana Jones . 

In the MNS network, which is involved in the understanding of ac- 
tions and their underlying intentions as well as the imitation of ob- 
served behavior, we observed an increase of individuality with increas- 
ingly complex stimuli ( Caspers et al., 2010 ). Especially the two stimuli 
Circus and Indiana Jones , during which action and behavior of differ- 
ent characters are depicted, should engage the MNS network which in 
turn might have led to the increased within-subject correlations. The 

between-subject correlations were significantly stronger for Circus than 
for RS , but not different between the remaining conditions. Presumably, 
the movie Circus serves as the optimal stimulus for action observation 
since it shows moving characters, but (unlike Indiana Jones ) does not 
include competing stimuli like speech. 

Another network that showed similar patterns, although not reach- 
ing significance is the Empathy network, which deals with the emo- 
tional cognition of moral behavior ( Bzdok et al., 2012 ). The within- 
subject correlations were increased during the movies Circus and Indi- 
ana Jones . During both movies, characters show varying emotions in re- 
sponse to different situations, which might have been experienced dif- 
ferently across subjects. Inscapes on the other hand performed similar 
to RS, likely because the depicted abstract shapes failed to engage the 
network. 

4.4.2. Networks with higher between-subject correlations in movies 
NV showed significantly higher between-subject correlations in net- 

works that are associated with executive functions and/or stimulus eval- 
uation (CogAC, eMDN, EmoSF, MNS, Rew, VigAtt and WM). Here, NV 
increased the similarity of FC across participants (i.e. higher-between 
subject correlation), but did not increase within-subject correlations. 
Several other studies have found NV to increase the similarity between 
subjects ( Finn et al., 2020 ; Hasson et al., 2004 ; Vanderwal et al., 2017 ; 
Wang et al., 2017 ), which is likely caused by exposure to the same stim- 
ulus. Although these studies mostly agree that individual differences 
can exist on top of the shared response on a whole-brain level, they ac- 
knowledge two possible scenarios: On the one hand, the stimulus evoked 
similarity across subjects might enable better observation of individual 
differences ( Vanderwal et al., 2017 ; Finn and Bandettini, 2020 ). On the 
other hand, strongly increased similarity across subjects’ neuronal re- 
sponse might blur individual features ( Finn et al., 2017 ). The same as- 
sumptions hold true from a network perspective, such that networks 
subjected to the same stimulus can either exhibit deviating patterns on 
top of the shared response, or highly similar patterns which conceal in- 
dividual differences, depending on the specific network function. 

Considering the main function of each respective network, none of 
the networks should be particularly engaged during RS or during any 
of the movies. The CogAC network is essential for the suppression of a 
predominant but inadequate response in favor of the contextually ap- 
propriate response ( Cieslik et al., 2015 ). The eMDN consists of core re- 
gions that are active during most processes which involve executive or 
higher cognitive functions and a set of more task-specific regions ex- 
tending these core regions ( Camilleri et al., 2018 ). The Rew network 
is essential for reward-related decision making ( Liu et al., 2011 ). The 
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Table 2 

Identification accuracies per network and modality, averaged across sessions. Net- 
works are in order of highest average accuracy. The highest identification accuracy 
in each network is denoted in bold. 

Network RS Inscapes Circus Indiana Jones Node Number 

Default 91.18% 85.78% 87.75% 90.69% 24 
Control 86.76% 87.75% 79.90% 89.71% 13 
Dorsal Attention 75.49% 73.04% 66.18% 75.98% 15 
Salience 74.51% 66.67% 56.37% 73.04% 12 
Visual 68.63% 58.82% 57.84% 73.04% 17 
Somatomotor 62.75% 60.29% 43.14% 57.84% 14 
Limbic 14.22% 14.22% 9.31% 12.25% 5 

VigAtt network is involved in vigilant attention, i.e. the continued fo- 
cus on intellectually un-challenging tasks ( Langner and Eickhoff, 2013 ). 
The WM network is fundamental for the storage and manipulation of 
short-term memory ( Rottschy et al., 2012 ). Since individual differences 
are likely only enhanced in networks that are engaged during a certain 
condition, we assume that NV did not evoke stable individual connec- 
tivity patterns, as the processing of movies may not rely on the core net- 
work function. Therefore, subjects are less unique and more similar to 
themselves, increasing between-subject correlations especially in com- 
parison with unconstrained RS where more heterogeneous responses are 
expected. 

4.4.3. Networks with higher between- or within-subject correlations in RS 
The vast majority of previous studies reported increased within- and 

between-subject correlations for NV in comparison with RS ( Finn et al., 
2020 ; Hasson et al., 2004 ; Vanderwal et al., 2017 ; Wang et al., 2017 ; 
Nastase et al., 2019 ). However, all of these studies employed analy- 
ses of whole brain connectivity, disregarding effects in single networks. 
While previous result patterns hold true in some networks, we also show 

that NV decreases within- and between-subject correlations in other net- 
works (AM, ER, eSAD, SM and ToM). 

The majority of these networks at least partially overlap with the 
default mode network, which is tied to intrinsically oriented functions, 
rather than the processing of external stimuli ( Hasson et al., 2004 ; 
Golland et al., 2007 ). Therefore, it seems plausible that NV does not in- 
crease within- or between-subject correlations in these networks which 
are likely not engaged during movie watching. The AM network was the 
only network in which within-subject correlations for RS exceeded In- 
diana Jones . This network comprises brain regions engaged in processes 
concerning scene-construction and self-projection, or the ability to men- 
tally project oneself from the present moment into another time, place, 
or perspective. Consequently we would expect the AM network to be 
more strongly activated during RS, when the mind is not occupied by 
the content of a movie. Our data indeed shows that participants during 
RS showed higher within-subject correlations than during the two narra- 
tive movie clips Circus and Indiana Jones , but not significantly different 
from the purely abstract animation Inscapes . Therefore, we conclude that 
in absence of a storyline, subjects divert to imagined situations instead 
of the external stimuli, thus engaging the AM network which leads to 
higher within-subject correlations for RS than for the narrative movies. 
We assume that the movie Inscapes is inbetween a narrative and the 
complete absence of a stimuli, thus it may fail to engage participants 
over a longer period of time, therefore letting the participant zone out 
eventually. In addition, RS and Inscapes also increased between-subject 
correlations in comparison to both narrative movies. Likely, increased 
between-subject correlations are driven by the joint activation of the 
AM network during RS and Inscapes . On the other hand, Circus and In- 
diana Jones likely engage the network to a lesser extent, thereby falling 
short of evoking coordinated activity which in turn reduces similarity 
between subjects. 

The eSAD network was defined to comprise those brain regions that 
are part of the default mode network, but at the same time also involved 

in social or affective processing ( Amft et al., 2015 ). Thus, the network 
is engaged in socio-affective processing including emotional processes, 
cognition, reward, introception, memory and theory of mind functions. 
Although not exclusively a “task-negative ” network, the eSAD network 
is highly overlapping with the default mode network and generally pre- 
sumed to be more active when participants can let their thoughts run 
free ( Amft et al., 2015 ). RS showed higher within-subject correlations 
than Circus as well as higher between-subject correlations than Indiana 
Jones . In addition, Inscapes , which is arguably closer to RS than the other 
movies, also showed higher between-subject correlations as compared 
to Circus and Indiana Jones . Due to the default mode aspects of the eSAD 
network, it is perceivable that this network is more strongly engaged 
during RS and Inscapes . Thus, participants are more likely to express 
different connectivity patterns as compared to NV where the network 
is mostly unengaged. The movies Circus and Indiana Jones on the other 
hand might result in a less pronounced engagement of the network, thus 
failing to evoke similar patterns across participants. 

The SM network is involved in retrieving semantic knowledge and 
is highly overlapping with the default mode network ( Binder et al., 
2009 ). The authors argue that task-unrelated thoughts are inherently 
semantic, because they require the manipulation of stored knowl- 
edge ( Binder et al., 1999 ). Furthermore, semantic processing was re- 
liably shown to be suppressed during demanding perceptual tasks 
( Binder et al., 2009 ), which is in accordance with our result pattern, 
showing increasingly complex stimuli to decrease within- and between- 
subject similarity (RS > Inscapes > Circus > Indiana Jones ). We thus sug- 
gest that increasing complexity of the movie stimuli suppresses semantic 
processing and therefore leads to less engagement of the SM network. 
Presumably, due to a less pronounced engagement of the SM network 
during that Circus and Indiana Jones , participants show low between- 
subject correlations as well as low within-subject correlations. 

The ToM network is fundamental for the understanding and con- 
templation of the behavior and intentions of others ( Bzdok et al., 2012 ). 
Within- and between-subject correlations in the ToM network were gen- 
erally higher during RS than during the NV conditions. We assume that 
movies evoke different interpretations of the intentions of the depicted 
characters and thus may have led to diverging connectivity profiles, in 
turn increasing differences between subjects. On the other hand, these 
differences seem to be unstable across sessions, thus decreasing within- 
subject correlations during NV. 

4.5. Comparison with RS-derived networks 

Identification accuracies in RS-derived networks confirm the as- 
sumption that identifiability is dependent on the network-stimulus com- 
bination ( Table 2 ). Highest identification accuracy for RS was achieved 
in the Default, Salience and SomatoMotor networks, whereas highest ac- 
curacy for Indiana Jones was found in the Control, Dorsal Attention and 
Visual networks. For RS highest overall accuracy (91%) was achieved in 
the Default network, which is prominently active during RS ( Long et al., 
2008 ). However, the accuracies achieved in RS-derived networks were 
generally lower than those achieved in meta-analytic networks. Out of 
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the 14 meta-analytic networks, eight yielded higher accuracies than the 
best performing RS derived network (Default). 

In accordance with our results on meta-analytic networks, within- 
and between-subject correlations were also significantly altered during 
NV, in comparison to RS, in the RS-derived networks ( Figs. 6 and 7 ). 
In the Control, Dorsal Attention, Salience, SomatoMotor and Visual net- 
works NV resulted in more similar patterns between subjects. Only in 
the Default network, NV showed decreased between-subject correlations 
in comparison with RS. 

Noticeably, differences in within-subject correlations between NV 
conditions and RS are less pronounced in the RS-derived networks than 
in the meta-analytic networks. This is further supported by the fact that 
RDMs of RS and NV stimuli tended to cluster together more often in RS 
derived networks ( Fig. 2 ). Furthermore, within- and especially between- 
subject correlations are largely increased for the RS networks, resulting 
in reduced identifiability in RS derived networks compared to the meta- 
analytic networks. On the one hand, meta-analytic networks seem to 
be more sensitive to differences between NV stimuli and RS, likely be- 
cause they best represent the core nodes of a given cognitive function. 
On the other hand, although within-subject correlations are increased in 
RS derived networks, the larger increase in between-subject similarity 
overshadows this effect and consequently leads to decreased identifiabil- 
ity. Taken together, the present results underline the viability of using 
specific meta-analytic networks for reliably identifying subjects’ brain 
connectivity patterns under NV conditions. 

4.6. Limitations 

While the current study sheds new light onto individual differences 
in, and stability of, brain states elicited by movie watching, it comes with 
some limitations. Firstly, individual outliers might have biased iden- 
tification accuracies, due to the small sample size. However, previous 
studies on RS and NV reported similar identification accuracies as those 
achieved in this study ( Finn et al., 2015 ; Vanderwal et al., 2017 ). Never- 
theless, future studies should be conducted on larger samples to confirm 

our results. Secondly, while we demonstrated enhanced individual dif- 
ference and identifiability for certain stimulus-network combinations, 
our study did not include any phenotypes. Therefore this study is not 
suited to determine whether enhanced individual differences under NV 
can be used to more accurately predict phenotypes as compared to RS. 
Hence, future studies should investigate the interplay between increased 
identifiability and the accuracy of phenotype predictions. Thirdly, reli- 
ability of FC might at least partly be driven by structured noise such as 
vascular effects ( Varikuti et al., 2017 ). Although we applied a number of 
denoising strategies, results might thus be confounded by non-neuronal 
signals. Additionally, only static FC was considered in the present study. 
Future studies investigating dynamic FC might shed more light on how 

individual variability in functional brain organization changes over the 
time course of a movie. A previous study on dynamic FC showed that 
NV improved test-retest reliability over RS, similar to the results in this 
study ( Zhang et al., 2022 ). Finally, it was not assessed whether partici- 
pants had seen any of the movie clips prior to participating in the study. 
Knowing the film beforehand could affect engagement of the participant 
and thereby modulate the effect of NV. In addition, previous studies 
have shown that expected stimuli can decrease the neuronal response 
( Alink et al., 2010 ; Koster-Hale and Saxe, 2013 ). Since the three sessions 
in our study were conducted within a week, participants are expected to 
be rather familiar with the movie content during the second and third 
session. Therefore, it is possible that the predictable content reduced 
the neuronal response and influenced our results. However, our results 
showed that connectivity patterns rather clustered according to stimu- 
lus than repetition, which suggests that the same movie stimulus can be 
used repeatedly to study FC of a subject across various time points. Sim- 
ilarly, a study by Wang et al. (2017) showed that movie fMRI increased 
reliability over RS across two sessions. The authors concluded that the 
effect that is achieved by increased engagement during movie watching, 

outweighs the impact of familiarity with a given movie. Taken together, 
these findings encourage the application of movie fMRI in clinical stud- 
ies where it is necessary to monitor patients over a longer period of 
time. 

5. Conclusions 

NV has been suggested to show high potential for emphasizing indi- 
vidual differences, but effects have often been reported on a whole-brain 
level only. Our study extends the current knowledge by characterizing 
the influence of NV on FC in meta-analytically derived functional net- 
works. We show that NV increases identifiability of individuals based 
on functional connectivity in certain networks. However, there is not 
one naturalistic stimulus that will enhance individual differences across 
the brain. Therefore it is crucial to select the appropriate stimulus and 
networks for the research question at hand. 
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Abstract

Naturalistic paradigms, such as watching movies during functional magnetic reso-

nance imaging, are thought to prompt the emotional and cognitive processes typically

elicited in real life situations. Therefore, naturalistic viewing (NV) holds great poten-

tial for studying individual differences. Previous studies have primarily focused on

using shorter movie clips, geared toward eliciting specific and often isolated emo-

tions, while the potential behind using full narratives depicted in commercial movies

as a proxy for real-life experiences has barely been explored. Here, we offer prelimi-

nary evidence that a full narrative movie (FNM), that is, a movie covering a complete

narrative arc, can capture complex socio-affective dynamics and their links to individ-

ual differences. Using the studyforrest dataset, we investigated inter- and intra-

subject similarity in network functional connectivity (NFC) of 14 meta-analytically

defined networks across a full narrative, audio-visual movie split into eight consecu-

tive movie segments. We characterized the movie segments by valence and arousal

portrayed within the sequences, before utilizing a linear mixed model to analyze

which factors explain inter- and intra-subject similarity. Our results show that the

model best explaining inter-subject similarity comprised network, movie segment,

valence and a movie segment by valence interaction. Intra-subject similarity was

influenced significantly by the same factors and an additional three-way interaction

between movie segment, valence and arousal. Overall, inter- and intra-subject simi-

larity in NFC were sensitive to the ongoing narrative and emotions in the movie. We

conclude that FNMs offer complex content and dynamics that might be particularly

valuable for studying individual differences. Further characterization of movie fea-

tures, such as the overarching narratives, that enhance individual differences is

needed for advancing the potential of NV research.

K E YWORD S

individual differences, meta-analytical networks, movie fMRI, naturalistic viewing, network
functional connectivity

Received: 27 June 2023 Revised: 11 July 2024 Accepted: 17 July 2024

DOI: 10.1002/hbm.26802

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2024;45:e26802. wileyonlinelibrary.com/journal/hbm 1 of 14

https://doi.org/10.1002/hbm.26802

https://orcid.org/0000-0002-9558-8251
https://orcid.org/0000-0002-2957-4468
mailto:s.weis@fz-juelich.de
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/hbm
https://doi.org/10.1002/hbm.26802
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhbm.26802&domain=pdf&date_stamp=2024-07-31


1 | INTRODUCTION

Understanding how individual differences in brain architecture shape

personality, cognitive abilities and socio-affective traits is a constant

endeavor in cognitive neuroscience. The growing interest in individual

differences research has led to the development of new paradigms

that may allow for novel insights into individual brain architecture.

Naturalistic viewing (NV) is a promising tool for designing more eco-

logically valid functional magnetic resonance imaging (fMRI) studies,

thus providing the opportunity to measure individual differences

under beneficial circumstances (Vanderwal et al., 2017). In this regard,

naturalistic paradigms represent a middle ground between task-based

and resting-state fMRI. On the one hand, movies provide less artificial

constraint than tasks (Finn et al., 2017) while still guiding the partici-

pants attention, which allows synchronizing brain states across

participants, unlike resting-state fMRI. Due to advantageous partici-

pant engagement and compliance, movie fMRI appears promising for

clinical applications (Eickhoff et al., 2020) or specific populations such

as children (Vanderwal et al., 2019). However, while there is clearly a

lot of potential movie fMRI, the effects of movie fMRI on individual

variability of functional connectivity is yet unclear. This is especially

the case in full-narrative movies (FNMs), representing a complete nar-

rative arc rather than single movie scenes.

To utilize movie fMRI for studying individual differences with

confidence, it is necessary to understand how movies influence vari-

ability of functional measures within and between participants. NV

can induce high inter- and intra-subject correlations in activity time

courses of various cortices (Hasson et al., 2004), which are dependent

on features and content of the movie stimulus (Hasson et al., 2008;

Lerner et al., 2011). These inter- and intra-subject correlations in brain

activity are affected by the narrative coherence of a movie stimulus,

as backward presentation of a movie decreases these correlations

(Hasson et al., 2010). Moreover, movie stimuli can be edited to influ-

ence similarity as shown by higher inter-subject correlations in profes-

sionally produced movies than unedited, real-life movies (Hasson

et al., 2010). A direct comparison between different movie stimuli and

RS indicated that a complex movie with social interactions yielded

higher inter-subject correlations compared to an abstract, nonverbal

movie, which in turn led to higher inter-subject correlations than RS

(Vanderwal et al., 2015).

According to Finn et al. (2017), a major argument why movie fMRI

might be an excellent paradigm for studying individual differences is

the assumed beneficial ratio of inter- to intra-subject correlation

induced by movies: On the one hand movies represent a common

cognitive reference frame for subjects' brain states, thus decreasing

irrelevant inter-subject variability, while on the other hand retaining a

subject's most identifying features. This is denoted by low intra-

subject variability, that is, subjects being similar to themselves, for

example, over the course of watching a movie or when watching the

same movie in two separate sessions (Finn et al., 2017). Concordantly,

a study by Vanderwal et al. (2017) showed that movies overall signifi-

cantly decreased both inter- and intra-subject variability on a whole-

brain level compared to RS, thus lending support to the idea that NV

might preserve or even enhance individual differences in functional

connectivity (Vanderwal et al., 2017). A recent study found that influ-

ences of NV on inter- and intra-subject similarity in NFC is dependent

on the brain network and stimulus (Kröll et al., 2023), however, not all

factors contributing to the effects of movies on inter- and intra-

subject similarity of NFC have been investigated. For example, the

impact of specific content, such as emotions portrayed in movies, is

still unknown.

In contemporary neuroscience, functional networks consisting of

distributed but interacting brain regions are often viewed as the foun-

dation of cognition functions (Eickhoff & Grefkes, 2011), thus allowing

for an interpretation of interactions between various brain regions

with respect to specific cognitive domains. Given that movies are

complex and multimodal stimuli that elicit widely distributed brain

activity, a network perspective might help to untangle the effect of

movies on specific cognitive functions. Specifically, studying the func-

tional connectivity between the brain regions constituting these net-

works (i.e., network functional connectivity [NFC]) might grant

insights into the effects of NV on brain function. While there are vari-

ous methods to define functional networks (e.g., Fox et al., 2005;

Pervaiz et al., 2020; Power et al., 2011; Schaefer et al., 2017; Smith

et al., 2009; Yeo et al., 2011), one approach that instrumentalizes the

body of existing knowledge about specific cognitive processes is

the use of meta-analysis. Coordinate-based meta-analyses of neuro-

imaging data (e.g., activation likelihood estimation; Eickhoff

et al., 2009) identify brain locations that are consistently activated

during cognitive tasks across various studies. Converging results from

many studies using different tasks to study the same cognitive func-

tion leads to a robust mapping of function-related brain coordinates

(Eickhoff et al., 2012). In turn, reliably co-activated regions can be

assumed to constitute a network that is engaged with the specific

cognitive function (Fox et al., 2015). Various meta-analytical networks

have been characterized, covering different psychological domains,

and have been proven useful for gaining insight into the role of brain

regions in a network perspective (Igelström & Graziano, 2017),

robustly assessing the neural basis of cognitive functions (Binder &

Desai, 2011; Etkin et al., 2015; Gross, 2015; Margulies et al., 2016)

and therefore laying the ground for further experimental work

(Morawetz et al., 2017). Studies using meta-analytical networks to

predict personality scores (Nostro et al., 2018) or classify participants

according to their mental health status and age (Pläschke et al., 2017)

yielded better or at least similar results to using whole-brain connec-

tivity (Nostro et al., 2018), while improving interpretability. Therefore,

meta-analytical networks provide an excellent basis for studying indi-

vidual variability in different cognitive systems.

With respect to movie fMRI, Vanderwal et al. (2017) showed that

the effect of movies is differentially distributed across the brain, with

lower inter- than intra-subject variability in unimodal regions and

higher inter- than intra-subject variability in heteromodal regions.

However, a concrete comparison of these variabilities on the level of

NFC has rarely been done (but see Kröll et al., 2023).

Furthermore, it is yet unclear which features of a movie stimulus

influence inter- and intra-subject similarity. On the one hand,
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lower-level audiovisual features can be used to characterize movie

stimuli (Cutting, 2016), on the other hand, conventional movies are

hallmarked by their socio-affective content. Emotions are a main

focus of most conventional movies reflecting social relationships and

interactions in real life. Additionally, emotionally evocative narrative

events were shown to be particularly good at synchronizing subjects

(Chang et al., 2021).

Movies have been used to elicit basic positive and negative emo-

tions (Gross & Levenson, 1995; Schaefer et al., 2010; Westermann

et al., 1996), to investigate commonly co-occurring emotions (Gilman

et al., 2017), and mixed emotions (Aaron et al., 2018; Kreibig

et al., 2013; Kreibig et al., 2015; Kreibig & Gross, 2017; Samson

et al., 2016). In movies with social content, the emotions portrayed by

characters are important cues for eliciting emotions in viewers (Labs

et al., 2015, Lettieri et al., 2019), making portrayed emotions an

important stimulus feature in NV studies.

However, movies used for emotion induction are usually short

clips to induce basic emotions (Gross & Levenson, 1995; Jenkins &

Andrewes, 2012; Schaefer et al., 2010). Most of these clips are under

1 min in duration, with only some lasting a few minutes. With the

advent of NV for individual differences and socio-affective research,

studies started employing longer stimuli or multiple sessions

(Alexander et al., 2017; Di Oleggio et al., 2017; Jääskeläinen

et al., 2008; Kröll et al., 2023; Nguyen et al., 2017; Vanderwal

et al., 2015; Vanderwal et al., 2017), but so far only very few

employed complete or minimally shortened conventional movies

(Hanke et al., 2014; Kauttonen et al., 2018). The duration of movie

stimuli is a relevant aspect, as some cognitive and emotional proces-

sing only evolves over longer time frames (Hasson et al., 2010). Con-

text is essential when understanding social situations and identifying

or emphasizing with different characters. Arguably, more complex

socio-affective processes can only be studied if the stimulus repre-

sents the full complexity of social relationships and emotions, such as

in an FNM which spans the complete narrative arc of a conventional

movie.

Thus, the advantage of showing FNMs is that emotions are pre-

sented embedded in context and progressing over time, which allows

for simultaneously investigating multiple emotion components and

how they develop and interact dynamically (Lettieri et al., 2022;

Saarimäki, 2021; Sonkusare et al., 2019). Movies allow studying the

association between emotion profiles, affectives states and associated

brain states (Lettieri et al., 2019) as well as the effects of the movie

stimuli on emotion-related brain networks across time (Nummenmaa

et al., 2012). On top of that, the usage of FNMs allows the investiga-

tion of neural activation during sustained emotional arcs and the tran-

sitions between different emotional states. Therefore, an FNM might

be used as a proxy for emotional real-life experiences, which facili-

tates the exploration of how the viewer's emotional engagement with

the narrative modulates functional brain architecture. Exploring and

understanding the potential of FNM for the study of individual differ-

ences is an extensive endeavor which needs to be approached from

multiple angles: studying various movie stimuli, characterizing these

stimuli in annotations, and investigating their effects on brain mea-

sures. We here take a first step to fill this wide gap by investigating

inter- and intra-subject similarity in NFC over the course of an FNM.

We used the publicly available studyforrest dataset which is unique in

its length and overarching narrative, extended by an annotation of the

emotions portrayed in the movie stimulus. This dataset contains fMRI

acquisitions of subjects watching the full narrative arc of the popular

movie “Forrest Gump.”

In preliminary analyses, we first compared different segments of

the movie stimulus with regard to their portrayed valence and arousal,

evincing differences in emotional content. Using linear mixed models

(LMMs), we then analyzed how different factors, such as the narrative

of the movie and portrayed valence and arousal, affect inter- and

intra-subject similarity in NFC across 14 meta-analytically defined

networks.

We expected to see differences in inter- and intra-subject similar-

ity that are network-dependent, change over the course of the FNM

and are influenced by valence and arousal portrayed within the movie.

2 | METHODS

2.1 | Sample

This sample consisted of 15 native German-speaking participants

(6 females, range 21–39 years) (Hanke et al., 2016). One subject,

which we excluded, was an outlier in the intra-subject correlation

analysis, leading to a sample size of 14 (6 females, age range 21–

39 years. Please note that mean age cannot be reported, because only

age ranges were reported for each participant). The Ethics committee

of Otto-Von-Guericke University, Germany approved acquisition of

the data in the “studyforrest” project. For a more detailed description

of the sample, see Sengupta et al. (2016). The full dataset can be

found under: https://github.com/psychoinformatics-de/studyforrest-

data-phase2. A list of subjects can be found in Supplementary

Table S1.

2.2 | MRI data and preprocessing

fMRI data acquisition took place in a single session which included a

short break in the middle. To keep the stimulus at a length of 2 h,

some scenes were cut. The movie stimulus represents an FNM, as

only scenes that were less relevant to the plot were cut, thus preserv-

ing the overarching story. For the purpose of data acquisition, the

movie stimulus was separated into eight segments of approximately

15 min each, taking scene boundaries into consideration. This lead to

an unequal number of volumes acquired per segment, which were

451, 441, 438, 488, 462, 439, 542, and 338 for segments 1–8, respec-

tively (see Hanke et al., 2014 for details and code on movie segment

creation). The movie segments were shown in chronological order.

For each segment, T2*-weighted echo-planar images (gradient-echo,

2 s repetition time [TR], 30 ms echo time, 90! flip angle, 1943 Hz/Px

bandwidth, parallel acquisition with sensitivity encoding [SENSE]

reduction factor 2, 35 axial slices, 3.0 mm slice thickness, 80 " 80

voxels [3.0 " 3.0 mm] in-plane resolution, 240 " 240 mm field-of-
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view, anterior-to-posterior phase encoding direction in ascending

order, 10% inter-slice gap, whole-brain coverage) were acquired using

a whole-body 3 Tesla Philips Achieva dStream MRI scanner equipped

with a 32 channel head coil.

All downloaded data were minimally preprocessed as described in

Hanke et al. (2016). In short, preprocessing steps included defacing,

motion correction, reslicing and data interpolation using in-house

codes that utilize the FSL toolkit. All codes are openly available under:

https://github.com/psychoinformatics-de/studyforrest-data-aligned/

tree/master/code. For precise information about observed motion

and data quality analyses, see Hanke et al. (2016). For this study, the

native fMRI data were brought into MNI space using FSL's applywarp

function for subsequent NFC extraction.

2.3 | Valence and arousal measures

To characterize the movie segments with regard to the portrayed

valence and arousal, we used the openly available data from Labs

et al. (2015). This dataset contains annotations of portrayed emotions

in the “Forrest Gump” movie stimulus used in the “studyforrest”

dataset.

A group of observers (n = 9, German female university students)

were asked to evaluate scenes of the movie in terms of valence (“pos-

itive” or “negative”) and arousal (“high” or “low”) portrayed by the

movie characters. All scenes were presented in random order to allow

observers to focus on current indicators of portrayed emotions with-

out being influenced by, for example, the conveyed mood of the

movie plot. To evaluate the consistency of evaluations between

observers, Labs and colleagues calculated the inter-observer agree-

ment (IOA). The IOA value describes the portion of observers indicat-

ing the presence of a specific attribute in a scene (Labs et al., 2015).

As arousal and valence were measured on a bipolar scale (“positive”

of “negative” valende, “low” or “high” arousal present), the timeseries

of these attributes were calculated as the difference between the IOA

timeseries of both expressions. That is, the IOA timeseries of arousal

was calculated by subtracting the IOA timeseries of low arousal seg-

ments from the IOA timeseries of high arousal segments (Labs

et al., 2015). The IOA is expressed as a value between 1 and #1, with

“1” indicating perfect observer agreement regarding high arousal

(or positive valence, respectively) and “#1” indicating perfect

observer agreement regarding low arousal (or negative valence,

respectively). IOAs were reported as a time series of the movie in cor-

rect order downsampled to 2 s, corresponding to the sampling rate of

the fMRI data. We used code published by Lettieri et al., 2019

(https://osf.io/tzpdf/) to divide the IOA time series according to

8 movie segments for subsequent analyses.

2.4 | Inter- and intra-subject similarity in functional

networks

To investigate effects on a network level, we used 14 networks

defined as sets of peak coordinates in different meta-analyses. These

included the autobiographical memory (AM) network (Spreng &

Grady, 2010), cognitive attention control (CogAC) network (Cieslik

et al., 2015), extended multiple demand network (eMDN) (Camilleri

et al., 2018), emotional scene and face processing (EmoSF) network

(Sabatinelli et al., 2011), empathy network (Bzdok et al., 2012), theory

of mind (ToM) network (Bzdok et al., 2012), emotion regulation

(ER) network (Buhle et al., 2014), extended socio-affective default

network (eSAD) (Amft et al., 2015), mirror neuron system (MNS) net-

work (Caspers et al., 2010), motor network (Witt et al., 2008), reward

(Rew) network (Liu et al., 2011), semantic memory (SM) network

(Binder et al., 2009), vigilant attention (VigAtt) network (Langner &

Eickhoff, 2013), and the working memory (WM) network (Rottschy

et al., 2012). A more detailed description of these networks are

reported in the supplements (Supplementary Material S2). For each

meta-analytical network, nodes were created by placing 6 mm spheres

around the peak coordinates (see Supplementary Material S3 for an

overview of the peak coordinates and S4 for a figure of all nodes of all

networks). The functional connectome of a given network was cre-

ated using in-house MATLAB R2017a (The Mathworks Inc., 2017)

code which computes the pairwise Pearson correlation between all

nodes for each segment and each participant. This resulted in 1680

functional network connectomes (15 participants " 8 segments " 14

networks) saved as N-by-N matrices with N being the number of

nodes.

To keep in line with previous studies (Finn et al., 2017; Nastase

et al., 2019; Vanderwal et al., 2015; Vanderwal et al., 2017), we

operationalized the inter- and intra-subject similarity as the Pearson

correlation coefficients between functional connectomes within and

between subjects. Inter- and intra-subject similarity were computed

per network, segment and subject as depicted in Figure 1. All com-

putations are based on the unique connections between nodes

(i.e., the lower triangle of the NFC matrix) and exclude all auto-

correlations. For inter-subject similarity, we first computed the cor-

relations between the NFC of one subject and all other subjects.

After Fisher Z-transformation of the correlation coefficient, they

were averaged and re-transformed, resulting in one value represent-

ing inter-subject similarity for the respective subject in the given

segment and network. For calculating intra-subject similarity of a

given subject and segment, we computed the correlations between

NFCs of this segment and every other segment of the subject. The

correlation values were Fisher's z-transformed, averaged, and

reverted to r-values, resulting in one value representing intra-subject

similarity for the respective subject in the given segment and net-

work. Both inter- and intra-subject similarity were calculated based

on Pearson correlation coefficients.

2.5 | Statistical analyses

To investigate whether portrayed emotions are different across movie

segments, we conducted a one-way ANOVA for each measure. Here,

IOA values were used as independent variables with the movie seg-

ments as fixed factors. Post hoc t tests are reported with Bonferroni-

adjusted p values.
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To test whether inter- or intra-subject similarity differ across net-

works depending on movie segments and portrayed emotions, we

applied LMMs using the statsmodels python package (https://www.

statsmodels.org/stable/mixed_linear.html). Specifically, we created

different random intercept models by choosing network, movie seg-

ment, arousal and valence as possible fixed effects, subject identity as

a random effect, and inter- or intra-subject similarity as the dependent

variable. We chose subject identity as a random effect, because par-

ticipants are the sampling unit of interest and contribute repeatedly to

the NFC measures across all movie segments. We model individual

differences by assuming different random intercepts for each subject,

but no individual random slopes, because a simpler model structure

was warranted by our data. Network was chosen as a fixed effect to

test which networks are associated with changes in inter- or intra-

subject similarity induced by NV. It was included as a categorical fac-

tor with 14 levels. Movie segment was chosen as a fixed effect to test

for an effect of the length and complexity of an FNM. Portrayed

valence and arousal were chosen as fixed effects to represent the

emotional content of the FNM, testing if emotions portrayed in a

movie affect inter- or intra-subject similarity in NFC. Models were

generated using maximum likelihood to include all possible models,

that is, each unique combination of one to four fixed effects and their

respective interactions, resulting in 2128 models that were compared

each for inter- and intra-subject similarity. The model best fitting our

data were selected using Bayesian information criterion (BIC,

Schwarz, 1978) and used to calculate the parameter estimates for

each effect. To test whether a specific network had a significant influ-

ence on inter- or intra-subject similarity, we created a “mean net-

work” representing the mean inter- or intra-subject similarity values

across all networks that we used as a reference category to compare

all other networks against. p-Values were obtained using Wald tests

of the best models.

3 | RESULTS

Emotions and an overarching narrative are hallmark features of con-

ventional Hollywood movies, which are frequently employed in NV

F IGURE 1 Calculation of
inter- and intra-subject similarity.
For each subject, functional
connectomes were computed for
all 14 networks in each of the
8 movie segments. Inter-subject
similarity is assessed by
calculating the average
correlations between subjects
within the same movie segments.
Intra-subject similarity is assessed
by calculating the average
correlation between movie
segments within the same
subject.
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research because of their engaging and complex nature. However,

most NV studies use only shorter clips from these movies, essentially

excluding effects of the ongoing narrative. Therefore, is it not yet

clear how these features might impact inter- and intra-subject similar-

ity in NFC in an FNM. Here, we investigated portrayed valence and

arousal across an FNM and how these factors contribute to explaining

inter- and intra-subject similarity in NFC in 14 networks.

3.1 | Movie segments and portrayed emotions

We used a previously reported description (Labs et al., 2015) of por-

trayed valence and arousal for comparisons between the emotional

content of different movie segments. Our results showed that movie

segments differed in the direction (i.e., positive/negative valence;

high/low arousal) and the extent of agreement between observers

concerning these measures (Figure 2). Figure 2 shows average IOA

values of each movie segment and reveals large differences in the

evaluation of valence and arousal across movie segments. For seg-

ments 1, 6, 7, and 8 IOA values indicate consistency in portrayed posi-

tive valence, while the segments 4 and 5 portrayed negative valence.

Segment 2 and 3 showed little consistency in the evaluation of por-

trayed valence, as IOA values are close to zero. Concordantly, the

ANOVA on the valence IOA values resulted in a significant main

effect of segment (F(7,3534) = 45.879, p < .001), and Bonferroni-

corrected post hoc testing revealed significant differences between

the consecutive segments 1 and 2 (t = 3.378, p = .021); 3 and

4 (t = 7.236, p < .001); 4 and 5 (t = #3.131, p = .049); 5 and

6 (t = #8.519, p < .001); and 7 and 8 (t = 3.552, p = .011). Segment

4 had the strongest agreement on negative valence between

observers, while segment 7 showed the strongest agreement on posi-

tive valence between observers. Figure 2 further shows that segments

2 and 4 portrayed high arousal, while the other segments portrayed

low arousal. The ANOVA on arousal IOA values showed a significant

main effect of segment as well (F(7, 3534) = 15.479, p < .001).

Bonferroni-corrected post hoc testing revealed significant differences

between consecutive segments 1 and 2 (t = #13.448, p < .001);

2 and 3 (t = 10.397, p < .001); 3 and 4 (t = #14.628, p < .001); and

4 and 5 (t = 10.617, p < .001).

Given how much portrayed emotions and the narrative are inter-

twined, our results are best interpreted in the light of the content of

the movie segments. Segment 1 spans the introduction of Forrest

Gump and scenes from his childhood, containing both positive (caring

mother, close friendship with neighbor girl Jenny) and negative (walk-

ing impairments, bullying) elements. Segment 2 was marked by low

IOA in both valence and arousal, showing less agreement between

observers on the portrayed emotions in this segment. During this seg-

ment, the movie shows Forrest's highschool and college time, addres-

sing athletic successes and first dating experiences. Low IOA values

continue in the valence dimension in segment 3, whereas observers

agreed more strongly on low arousal being portrayed here. Here, the

movie shows Forrest joining the army, reuniting with Jenny in a night-

club where she works as a dancer, and being deployed in the Vietnam

war. Segment 4 prominently features a different pattern than any

other segment: observers agreed that movie characters displayed high

arousal and low valence during this segment. This can likely be attrib-

uted to the war scenes involving an ambush in Vietnam causing Forr-

est's best friend's death, and following scenes in a military hospital,

although the segment also contains Forrest receiving the Medal of

Honor and speaking at an anti-war rally in front of the Pentagon. Seg-

ment 5 is marked by lower IOA values indicating some negative

valence and low arousal, featuring the Black Panther movement, Forr-

est's ping pong career and reunions with friends Jenny and Lt. Dan.

The last three segments again display a pattern of higher agreement

between observers on positive valence and low arousal, when the

movie spans Forrest's successful shrimp fishing business, two epi-

sodes of living happily with Jenny, a three-year cross-country mara-

thon, Forrest meeting his son, Jenny's death and the ending of the

movie.

3.2 | Inter- and intra-subject similarity in NFC

Inter- and intra-subject correlations were calculated for every network

on the level of single segments, that is, the different segments of the

movie. Figure 3 summarizes the results across all networks and seg-

ments based on Pearson correlation coefficients (Figure 3a), and

shows results of the LMM analyses on inter- and intra-subject

(Figure 3b) similarity (Figure 3c). We found that inter- and intra-

subject similarity both fluctuate across time for all networks. We will

further analyze the statistical significance in the following sections.

3.2.1 | Inter-subject similarity

The best model that best fitted on inter-subject similarity as

selected using BIC consists of the random factor subject identity,

the fixed factors network, movie segment and valence, and the

interaction between the fixed factors movie segment and valence.

All parameter estimates and p values can be seen in Figure 3b. The

intercept for inter-subject similarity is 0.245, representing the aver-

age inter-subject correlation value. Of all 14 networks, the AM, ER,

EmoSF, Empathy, Rew, SM, VigAtt, WM, and eMDN networks dif-

fered significantly from the “mean network” reference category

representing the mean inter-subject similarity across all networks.

The AM, ER, and SM networks show negative coefficients, indicat-

ing that inter-subject similarity is lower in these networks than on

average. The EmoSF, Empath, Rew, VigAtt, WM, and eMDN net-

works were associated with higher inter-subject similarity than aver-

age. Movie segment, valence and their interaction effect reached

significance as well. While movie segment and the movie segment-

valence interaction were associated with higher inter-subject similar-

ity, valence was associated with lower inter-subject similarity. The

estimated coefficient for subject identity was 0.001, indicating a low

effect of subject identity on inter-subject similarity and small differ-

ences between subjects.
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3.2.2 | Intra-subject similarity

The best model that best fitted on intra-subject similarity as selected

using BIC consists of the random factor subject identity, the fixed fac-

tors network, movie segment, valence and arousal, and the interac-

tions between fixed factors movie segment and valence and between

movie segment, arousal and valence. All parameter estimates and

p values can be seen in Figure 3c. The intercept for intra-subject simi-

larity is 0.473, representing the average intra-subject correlation

value. The AM, CogAC, ER, EmoSF, Empathy, Motor, SM, ToM, Vig-

Att, WM, eMDN, and eSAD network differed significantly from the

reference category representing the mean intra-subject similarity

across all networks. The AM, ER, SM, ToM, and eSAD networks were

associated with lower intra-subject similarity, whereas the CogAC,

F IGURE 2 Results of the ANOVA on valence and arousal inter-observer agreement (IOA) in each movie segment. (a) Valence and arousal IOA
across movie segments (portrayed valence: purple and arousal: orange). Positive IOA values indicate that observers agreed on the portrayal of
positive valence and high arousal, while negative IOA values indicate that observers agreed on the portrayal of negative valence and low arousal.
The amount of deviation from zero in IOA values corresponds to the strength of agreement between observers. For each movie segment, the IOA
values are averaged across the entire segment. (b) Post hoc results of the ANOVA on valence (left) and arousal (right). Bonferroni-corrected
significance levels are represented by colors: Orange signifies p values < .001, yellow marks p values < .05 and white marks no significance. S1–
S8 = segments 1–8. Direction of the t tests is column minus row element.
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EmoSF, Empathy, Motor, VigAtt, WM, and eMDN networks were

associated with higher intra-subject similarity than average. While

movie segment and arousal did not reach significance, valence, the

movie segment-valence interaction and the movie segment-

arousal-valence interaction did. Valence was associated with lower

intra-subject similarity, while the movie segment-valence and movie

F IGURE 3 Results of the LMM
showing how the fixed effect network,
movie segment, arousal and valence and
the random effect subject identity
contribute to inter- and intra-subject
similarity in NFC. (a) Inter- and intra-
subject correlation of each movie
segment averaged in each network,
based on Pearson correlation
coefficients. The x axis depicts different
movie segments. The y axis represents
the averaged similarity of the functional
connectivity matrix derived from one
subject compared to all other subjects
within each network. (b) Results of the
LMM on inter-subject similarity.
(c) Results of the LMM on intra-subject
similarity.

8 of 14 MOCHALSKI ET AL.

 1
0
9
7
0
1
9
3
, 2

0
2
4
, 1

1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/h

b
m

.2
6
8
0
2
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [3

1
/0

3
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



segment-arousal-valence interaction were associated with higher

intra-subject similarity. The estimated coefficient for subject identity

was 0.01, indicating a low effect of subject identity on intra-subject

similarity and small differences between subjects.

4 | DISCUSSION

The results of this study present a first step in understanding the

potential of FNM for the study of individual differences, in particular

with respect to the emotional arcs evolving over the course of the

movie and transitions between different emotional states. By analyz-

ing a publicly available dataset that contains fMRI data spanning an

FNM, we investigated changes in inter- and intra-subject similarity

over multiple, consecutive movie segments. Inter- and intra-subject

similarity were best explained when accounting for network, movie

segment, valence and a movie segment by valence interaction. Addi-

tionally, arousal played a role in explaining intra-subject similarity by

interacting with movie segment and valence. The effect of the movie

stimulus on changes in inter- and intra-subject similarity was network

dependent. Comparing portrayed valence and arousal across movie

segments showed that both varied across the segments, indicating dif-

ferences in emotional content that we could relate to the content of

the different movie segments.

4.1 | Portrayed valence and arousal

Emotions are an important feature of movie stimuli. Shorter movies have

been used to study emotion processing (Carvalho et al., 2012; Schaefer

et al., 2010; Westermann et al., 1996) and longer movies might allow

studying emotions across a larger timescale. Emotions are a major factor

in narration (Aldama, 2015; Cutting, 2016), change over time, and

dynamically interact with social context (Redcay & Moraczewski, 2020).

Therefore, FNMs have clear advantages for studying emotions in a natu-

ralistic setting. Additionally, emotions portrayed in movies affect inter-

subject synchronization (Dziura et al., 2021) and inter-subject alignment

of brain states (Chang et al., 2021), which makes them a relevant factor

for studying individual differences using NV.

Here, we used a previously reported description (Labs

et al., 2015) of portrayed valence and arousal for comparisons

between the emotional content of different movie segments. Our

results showed that movie segments differed in the direction

(i.e., positive/negative valence; high/low arousal) and the extent of

agreement between observers concerning these measures (Figure 2).

In our results a pattern emerged in which segments that were marked

by high concordance in positive valence also showed good agreement

in low arousal evaluations (segments 1, 6, 7, 8), whereas the reversed

pattern was observable in segment 4. This indicates a potential nega-

tive relationship between valence and arousal as depicted in our

movie stimuli. Valence and arousal are the bipolar dimensions in cir-

cumplex models of affect (Yik et al., 1999), and the relationship

between valence and arousal seems to be highly individual and related

to personality and culture (Kuppens et al., 2017).

Overall, the pattern of results implies that the segments of the

chosen movie stimulus differed in emotional content, which makes it

valuable for inducing variability in functional networks associated with

socio-emotional processing. Specifically, the Forrest Gump movie fea-

tures a broad range of themes (love, friendship, politics, fate); settings

(varying historical events, places, times and roles of the protagonist);

and situations portraying a wide spectrum of emotions in different

contexts. Our results are thus in line with studies showing that movies

can elicit complex and mixed states of emotions (Carvalho

et al., 2012; Schaefer et al., 2010). In particular, the Forrest Gump

movie stimulus has been shown to induce distinct affective states

throughout the movie, which was used to map the topographic orga-

nization of these states (Lettieri et al., 2019). Hence, in accordance

with the proposal by Finn et al. (2017), the chosen movie can evoke

brain states in a meaningful manner, and thus represents a fitting

stimulus for studying variability in and between subjects over time.

We investigated portrayed valence and arousal as important emo-

tional features of the movie stimulus. Critically, Labs et al. (2015) cre-

ated an annotation of the movie stimulus content, not an annotation

of the viewer's emotional experiences. In order to characterize the

portrayed emotions as a relatively lower level feature, observers rated

all movie scenes in randomized order to prevent “carry-over” effects

from the context the scenes appear within and the current mood of

the movie (Labs et al., 2015). This annotation therefore offers descrip-

tive information about the movie stimulus rather than assessing the

full emotional complexity of the movie and its effects on the viewer.

The characterization of emotion cues in single scenes offers the bene-

fit of relating these cues to other features of the movie scenes

(e.g., lighting, audio features) in future studies.

4.2 | Inter-subject similarity

Across networks, inter-subject correlations increased over the course

of the movie, indicating a general tendency of subjects' NFC to

become more similar (Figure 3a).

By using LMM, we found several factors contributing to changes

in inter-subject similarity, including network, movie segment, valence

and interaction of movie content and valence. Specifically, the model

that best explains inter-subject similarity comprises the fixed effects

network, movie segment, valence and a movie segment by valence

interaction, with subject identity as a random effect.

Looking more closely at the networks, we see that some net-

works, such as the CogAC, MNS, Motor, ToM, and eSAD, do not con-

tribute significantly to changes in inter-subject similarity. This might

indicate that these networks are not sensitive to the effects of an

FNM and the emotions portrayed within. For those networks that are

significantly modulated by movie content, we observed large varia-

tions across networks in inter-subject similarity. The AM, ER, and SM

networks are associated with lower inter-subject similarity, which can

be seen in lower inter-subject correlation values (Figure 3a) and nega-

tive model coefficients (Figure 3b). This indicates that ER and long

term memory processes are most sensitive to an FNM. This might

reflect the stimulus containing a highly emotional narrative and many
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references to real world events and history. Contrarily, the EmoSF,

Empathy, Rew, VigAtt, WM, and eMDN networks are associated with

higher inter-subject similarity. Across all networks, the coefficients

exhibit a wide range in values, with the ER network showing the high-

est absolute coefficient, indicating the greatest effect on inter-subject

similarity. Movie segment had a small negative effect on inter-subject-

similarity, indicating that inter-subject similarity increases over the

course of an FNM, which is also reflected in a slight increase in inter-

subject correlation values (Figure 3a). Previous research has shown

high inter-subject variability in response to professionally produced

and conventional movies that were much shorter (<20 min) than an

FNM (Hasson et al., 2010; Vanderwal et al., 2015). It is likely that the

change toward more similarity in NFC over the course of the movie

results from the shared experience, which is created to evoke certain

reactions and feelings in the audience. Indeed, viewers' emotional and

cognitive states can be affected and synchronized through director's

decisions, such as the camera settings, light, performance of actors,

scripts and dialog, and more (Baranowski & Hecht, 2017; Tarvainen

et al., 2015). Studying viewers' emotions while watching the identical

stimulus used here, Lettieri et al. (2019) showed that ratings of basic

emotions were consistent across viewers, indicating an overall highly

similar emotional experience induced by the movie. Emphasizing the

relevance of affective states in movie fMRI, previous studies showed

higher alignment of brain states between subjects during highly affec-

tive events in a TV show (Chang et al., 2021) and more synchroniza-

tion of amygdala activity between subjects during positive events in a

“shared watching” condition (Dziura et al., 2021).

In our study, valence was associated with lower inter-subject sim-

ilarity. A study by Nummenmaa et al. (2012) studied the relationship

between perceived valence and arousal and inter-subject synchroniza-

tion of brain activity during movie watching. They found that more

negative valence was associated with increased inter-subject synchro-

nization in an emotion-processing network and the default-mode net-

work, while high arousal was associated with increased inter-subject

synchronization in somatosensory cortices, and visual and dorsal

attention networks (Nummenmaa et al., 2012). This is in line with the

pattern of positive valence being associated with lower similarity in

our results.

However, the movie segment by valence interaction has a posi-

tive coefficient, indicating that positive valence is associated with

higher inter-subject similarity across the course of an FNM. This might

represent the effects of a conventional Hollywood movie orchestrat-

ing similarity in viewers' experience by using positive portrayed

emotions.

The random factor subject identity had a very small negative

effect on inter-subject similarity, indicating that there were no great

differences between subjects.

4.3 | Intra-subject similarity

Our results show that intra-subject similarity increases over the

course of an FNM across networks (see Figure 3a).

When selecting the best model in our LMM analysis to explain

intra-subject similarity, network, movie segment, arousal, and valence

emerged as relevant fixed effects. Additionally, the model included a

movie segment by valence and a movie segment by arousal by valence

interaction. Again, subject identity was included as a random effect.

Of all networks, only the MNS and Rew networks did not affect

intra-subject similarity significantly. The AM, ER, SM, ToM, and eSAD

networks were associated with decreased intra-subject similarity,

while the CogAC, EmoSF, Empathy, Motor, VigAtt, WM, and eMDN

networks were associated with increased intra-subject similarity. Simi-

lar to the results on inter-subject similarity, ER and long-term memory

were most sensitive to the effects of an FNM, showing the lowest

intra-subject similarity across movie segments. Additionally, networks

processing self- and other-related social cognition showed low intra-

subject similarity, indicating that an FNM might tax introspection and

relating to others in a way that varies along the narrative.

Similar to the pattern of results seen in inter-subject similarity,

valence was associated with lower intra-subject similarity while the

movie segment by valence interaction was associated with higher

intra-subject similarity. Additionally, the three-way interaction

between movie segment, valence and arousal was associated with

higher intra-subject similarity. This might indicate that positive

valence is generally associated with lower intra-subject similarity,

although the progression of movie segments and higher portrayed

arousal increase intra-subject similarity. While arousal did not signifi-

cantly influence inter-subject similarity, it interacts with movie seg-

ment and valence when influencing intra-subject similarity. This might

indicate that arousal is a more relevant factor when investigating simi-

larity within subjects and might prompt future comparisons on the

effects of movies with different levels of arousal on single subjects.

Arousal seems to be influenced by various stylistic features of a movie

and can be further differentiated into subdimensions such as ener-

getic and tense mood (Tarvainen et al., 2015).

The random factor subject identity had a very small positive

effect on intra-subject similarity, indicating that there were no great

differences between subjects.

4.4 | Limitations

Our study is one of the first that has used an FNM in the study of

individual differences in brain organization and present results offers

important insights into inter- and intra-subject similarity in NFC across

a 2 h acquisition period. While these results are preliminary in the

sense that they can not necessarily be generalized to other movies

they clearly motivate the use of FNMs over the commonly used

shorter movie segments. Our results indicate that the content of a

movie is a relevant factor in NV, but it is not yet certain how different

content or features of a movie relate to inter- and intra-subject simi-

larity. Our study of one FNM and its annotation of portrayed valence

and arousal is an important first step in quantifying this relationship.

To generalize our results to other movies, brain measures and sam-

ples, future research needs to expand information on available NV
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datasets (e.g., by creating more annotations), so that content and

effects on NFC can be investigated across different datasets. It is nec-

essary to find a good match between movies and their annotated fea-

tures, methodology and research question (Eickhoff et al., 2020;

Grall & Finn, 2022; Saarimäki, 2021).

Our study comes at the cost of investigating only the effects of a

single movie. Comparisons with an equally long resting state acquisi-

tion or a movie stimulus without a narrative would have given stron-

ger evidence for the effect of FNMs. However, there were no such

scans available in this dataset. Analyses of additional FNMs might

expand the insights gained into the effects of different narratives. The

choice of a conventional Hollywood movie might have led to higher

inter-subject similarity (Baranowski & Hecht, 2017; Chang

et al., 2021; Hasson et al., 2010; Tarvainen et al., 2015; Vanderwal

et al., 2015), while more ambiguous or emotionally and socially equiv-

ocal movies could enhance inter-individual differences to a greater

degree.Familiarity with a movie stimulus has been discussed as a

potential factor for driving individual differences. An effect of

repeated movie watching in functional connectivity on the network

level has been shown before (Andric et al., 2016). However, such

effects can be assumed to be low in our sample. All participants were

familiar with the narrative of the movie, and only one participant

reported to never have seen the movie (Hanke et al., 2014).

Given the unusual length of data acquisition, effects of the MRI

measurement might have influenced the participants' focus on and

perception of the movie stimulus. For example, participants might

have needed some time to familiarize themselves with the MRI scan-

ner. However, as all participants had already participated in previous

MRI measurements of the studyforrest project (Hanke et al., 2016;

Sengupta et al., 2016), high familiarity to MRI scanning and all related

procedures was present in this sample. The length of acquisition might

also have affected the participants' attention. Previous studies indi-

cate that movie watching is very engaging and might decrease drowsi-

ness and sleep in the scanner (Eickhoff et al., 2020), but attention

might still have been impacted over such a long duration. NV para-

digms are designed to include minimal participant instructions so as

not to influence participants' perception of the stimuli or add task

demands not directly related to movie watching. In future studies,

post hoc questionnaires might be useful to estimate attention fluctua-

tions, distractions, drowsiness and other potential confounds that

might have occurred during data acquisition.

The analyses of this study focused on the approximately 15-min

segments the data were acquired in, splitting the movie into eight seg-

ments. Time windows for analysis of NV data have varied in the litera-

ture and optimal time windows and scan lengths are still debatable.

Uri Hasson's work on temporal receptive windows focuses on window

sizes on the level of seconds (e.g., time windows of $4 [“short”], $12

[“intermediate”], and $36 s [“long”]) (Hasson et al., 2010). Based on

NV data, single subject identification accuracy was positively

impacted by longer scan durations (Vanderwal et al., 2017; scan dura-

tion with highest accuracy ranged from $4.5 to $7 min depending on

movie stimulus) and movies of $2.5 min length can be sufficient for

behavioral prediction (Finn & Bandettini, 2021). Efforts for providing

normative data during movie watching have been recommended to

use minimally 10 min and optimally at least 25 min duration per movie

(Eickhoff et al., 2020). Irrespective of NV, reliability of functional con-

nectivity measures increases with time, with indications that less than

10 min of RS scan duration may not capture functional connectivity

features reliably (Laumann et al., 2015, 9–27 min durations; Noble

et al., 2017, 5–25 min durations). These examples show that optimal

scan duration may depend strongly on the research question at hand,

with advantages coming from longer durations. In our study, employ-

ing an FNM with the focus on a continuously unfolding and dynamic

narrative might speak for longer scan durations to capture the effects

of these “longer term” story dynamics.

While the long fMRI acquisition spanning an FNM is a great

advantage to our study, it comes with the disadvantage of a small

sample size. Replication in other datasets is an important next step,

although this specific dataset currently remains unique in its stimulus

and annotations.

The number of nodes constituting each meta-analytical network

was different between networks used in this study. Recently, the

influence of network size on single subject identifiability based on NV

data has been investigated (Kröll et al., 2023), indicating that the

number of nodes in a network are a relevant factor in network-level

analyses. The networks that were used in this study are based on

meta-analysis and represent various cognitive and psychological

domains, so that network size is inherent to each network and cannot

be adapted at will.

This study used the preprocessed data made available by the orig-

inal authors of the dataset (Hanke et al., 2016). We acknowledge that

further preprocessing steps, such as scrubbing, might influence the

results. However, data quality control of the original dataset authors

revealed very few motion artifacts, highlighting the beneficial effect

of movie watching on participant motion (Hanke et al., 2016).

4.5 | Conclusion

The present study is the first to investigate inter- and intra-subject

similarity in NFC across an FNM. Our results show that inter- and

intra-subject similarity in NFC were sensitive to the progressing narra-

tive and emotions portrayed in the movie. The ER network displayed

the lowest similarity within and between subjects in NFC, followed by

networks associated with long-term memory processing. The sensitiv-

ity of these networks to the FNM might be explained by the highly

emotional narrative and continuous references to real world historical

events, highlighting the importance of specific features and content of

the chosen movie stimulus. The overarching narrative gives a unique

possibility to study emotions in a social context and how they develop

over time. These socio-cognitive aspects seem to specifically influence

similarity within subjects, as low intra-subject similarity was addition-

ally seen in networks involved in self- and other-related cognition.

Altogether, these results show that a network perspective might help

to elucidate the effects of different movie stimuli on specific cognitive

domains. Additionally, the relevance of employing FNM for studying

individual differences was highlighted. However, these results need to

be expanded upon using different stimuli, datasets and annotations in

MOCHALSKI ET AL. 11 of 14

 1
0
9
7
0
1
9
3
, 2

0
2
4
, 1

1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/h

b
m

.2
6
8
0
2
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [3

1
/0

3
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



the future to generalize our findings. Characterizing movie stimuli

in more detail to explore the effects of different features on inter-

and intra-subject similarity is critical for future research in NV.
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Abstract 

Functional connectivity analyses have given considerable insights into human brain function 

and organization. As research moves towards clinical application, test-retest reliability has 

become a main focus of the field. So far, the majority of studies have relied on resting-state 

paradigms to examine brain connectivity, based on its low demand and ease of 

implementation. However, the reliability of resting-state measures is mostly moderate, 

potentially due to its unconstrained nature. Recently, naturalistic viewing paradigms have 

gained popularity because they probe the human brain under more ecologically valid 

conditions, thereby possibly increasing reliability. Therefore, we here compared the reliability 

of graph metrics extracted from resting-state and naturalistic viewing in functional networks, 

across two sessions. We show that naturalistic viewing can increase reliability over resting-

state, but that its effect varies between stimuli and networks. Furthermore, we demonstrate 

that the effect of naturalistic viewing differs between two cohorts with Asian and European 

cultural backgrounds. Taken together, our study encourages the use of naturalistic viewing 

to increase reliability, but emphasizes the need to carefully select the appropriate stimulus 

and network for the respective research question. 

 

Introduction 
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Functional magnetic resonance imaging (fMRI) data has become a widely-used tool to 

investigate neurological diseases and their underlying patterns (Balthazar et al., 2014; 

Basaia et al., 2019; Supekar et al., 2008; Wu et al., 2009). The critical assumption behind all 

of these studies is that the measured brain activity is reliable, such that differences between 

subjects and timepoints are interpretable. However, the reported reliability of fMRI measures 

varies vastly across studies (Bennett and Miller, 2010), due to small test-retest samples and 

different analysis choices. As fMRI research moves towards the identification of biomarkers 

(Bassett et al., 2008; Rubinov et al., 2009; Supekar et al., 2008; Wang et al., 2009), 

increasing reliability has become a priority. In order to aid in the diagnosis and prognosis of 

brain disorders, a measure has to be capable of giving consistent results, otherwise it is 

unsuitable as a biomarker.  

 

The majority of prior reliability studies have relied on metrics derived from resting state (RS) 

(Braun et al., 2012; Guo et al., 2012; Wang et al., 2011). With low demands on the 

participants, RS is well suited for healthy as well as patient cohorts and allows for a quick 

data acquisition. Although various studies reported moderate to good reliability of RS-

derived measures (Braun et al., 2012; Deuker et al., 2009; Wang et al., 2011), the RS 

paradigm also suffers from a few drawbacks. Data acquired during the RS can be strongly 

confounded by head movement and drowsiness of the participant due to its unconstrained 

nature (Tagliazucchi and Laufs, 2014; Van Dijk et al., 2012), as participants struggle to 

remain awake and motionless in the absence of a task or stimulus. For the same reasons, 

RS is more susceptible to be influenced by spontaneous thought of the participant (Christoff 

et al., 2004; Gonzalez-Castillo et al., 2021).  

Naturalistic Viewing (NV) paradigms, during which participants are presented with a story or 

a film, have recently gained popularity because they might give insight into the brain's 

function under more ecologically valid conditions. It has been shown that NV poses several 

advantages over conventional RS such as increased participant engagement, reduced head 

movement and increased synchronization between subjects (Hasson et al., 2004; Wang et 

al., 2017). Especially relevant for clinical studies, NV shares with RS the advantage of 

minimizing demand on the participants (Eickhoff et al., 2020). On the other hand, NV 

paradigms place a behavioral constraint that allows for the study of normal and abnormal 

brain function, somewhat similar to task-based designs. Making use of these advantages, a 

series of studies could show altered connectivity during NV in patients (Guo et al., 2016, 

2015; Hyett et al., 2015; Yang et al., 2020), encouraging the application of NV measures as 

biomarkers.  

 

Furthermore, several studies suggest that NV increases test-retest reliability in comparison 

with RS (O9Connor et al., 2017; Wang et al., 2017; Zhang et al., 2022). This improvement 

can be attributed to several factors. First, many studies have pointed out that NV improves 

signal properties by increasing participant engagement (Eickhoff et al., 2020; Finn and 

Bandettini, 2020; Li et al., 2022; Vanderwal et al., 2017). Secondly, by reducing head 

movement and drowsiness, NV is less susceptible to noise than conventional RS. Thirdly, by 

presenting the same stimulus across sessions, NV is less influenced by spontaneous 

thought of the participant while also placing a behavioral constraint that reduces variance. 

However, the effect of NV on reliability is dependent on various factors such as attention (Ki 

et al., 2016), successful episodic encoding (Hasson et al., 2008) as well as the chosen 

movie stimulus (Hasson et al., 2010; Kröll et al., 2023; Tian et al., 2021) and differs between 

different brain regions and networks (Wang et al., 2017).  
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The present study aims to further evaluate the test-retest reliability of NV, by investigating its 

influence on the reliability of five commonly used graph theoretical measures. The 

application of graph theoretical measures to fMRI data is an established method (Braun et 

al., 2012; Guo et al., 2012; Reijneveld et al., 2007; Stam and Reijneveld, 2007), and has 

given insights into the complex functional structure of the brain (Bullmore and Sporns, 2009; 

Rubinov and Sporns, 2010), both in healthy and patient cohorts. To benchmark the reliability 

of NV, we compare it to that of RS. Further, we evaluate the influence of the movie content, 

by employing stimuli with different levels of social content, ranging from the neutral movie 

Inscapes, over the silent movie The Circus, to the most social movie Indiana Jones and the 

Temple of Doom. In addition, several authors have suggested that the same NV stimuli 

might deviate in its effect between different populations (Eickhoff et al., 2020; Hasson et al., 

2010; Telesford et al., 2010). The cultural background of a participant is likely to influence 

how a given movie is perceived and might result in deviating effects across cohorts. 

Therefore, in this study, we compare the effect of NV in two independent samples from 

Europe and Asia, respectively, using the same stimuli. In contrast to the majority of previous 

studies, we here compare reliability on the basis of a priori defined networks, and not on a 

whole-brain basis. 

The analysis of network based measures allows us to investigate how NV influences the 

reliability in different cognitive domains. The networks implemented in this study are meta-

analytically defined networks that represent the most likely core nodes involved in a given 

cognitive function, because they incorporate convergent information from a multitude of 

studies.  

 

 

2. Methods  

 

2.1 Participants 

 

Dataset IMAX 

For the first dataset, 36 healthy right-handed and ambidextrous adults were scanned at the 

Centre for Translational MR Research, National University of Singapore. Exclusion criteria 

were neurological or psychiatric diagnoses, significant visual or hearing impairment, alcohol 

or caffeine consumption 6 hours prior to the scan and self-reporting of bad sleep the night 

before the scan days. All participants underwent three identical testing sessions within a 

one-week interval. Subjects gave written, informed consent and were compensated for their 

participation. The study was approved by the institutional review board of the National 

University of Singapore.  

 

Dataset JUMAX 

For the second dataset, 36 healthy adults were scanned at the Forschungszentrum Jülich. 

Exclusion criteria were neurological or psychiatric diagnoses, significant visual or hearing 

impairment, alcohol or caffeine consumption 6 hours prior to the scan and self-reporting of 

bad sleep the night before the scan days. All participants underwent three identical testing 

sessions within a one-week interval. Subjects gave written, informed consent and were 

compensated for their participation. The study was approved by the ethics committee of the 

Heinrich Heine University, Düsseldorf.  
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Due to unavailability of part of the data of the JUMAX sample, the final cohort comprised 33 

subjects (14 females, mean age 27.5 +/- 3 years). Accordingly, to match the number of 

available subjects from the JUMAX dataset, only the first 33 subjects were used from the 

IMAX sample (17 females, 27 +/- 2.7). For all subsequent analyses, only the first two 

sessions of both samples were used. 

 

2.2 Data acquisition 

 

For both datasets, the data was acquired on a Siemens Magnetom PrismaFit 3-Tesla with a 

20-Channel head coil. Structural images were collected using an MP-RAGE sequence 

(TR=2300ms, TE =2,28ms, TI=900ms, flip-angle=8°) and 1mm voxel size. All RS and NV 

runs used the same echo planar imaging sequence (TR=719ms, TE=30ms, flip-angle=52°, 

slices=44, FOV=225x225 mm2) resulting in 2.96x2.96x3 mm voxel size. Data from 

collaborators at the National University of Singapore were retrieved and structured in the 

form of a DataLad dataset, a research data management solution providing data versioning, 

data transport, and provenance capture (Halchenko et al., 2021). Each of the three testing 

sessions per participant, which were conducted within a seven day period, comprised three 

NV runs and two RS scans. The order of scans was identical on all three days, starting with 

a structural scan, followed by 5 functional scans in the order of RS 1, Inscapes, Circus, 

Indiana Jones and RS 2, with each functional scan lasting for 10 minutes. All movies had 

been cut to the same length. For RS scans, participants were asked to lay as still as possible 

and think of nothing in particular, while keeping their eyes open. Instructions for the NV 

scans were to watch the movies while staying as still as possible. For all scans, participants 

were asked to not fall asleep during the measurement. Foam wedges were fitted around 

each subject's head for comfort and to decrease movement. For all subsequent analyses, 

only the first two scan sessions and the first RS scan (RS1) of each session were used. The 

movie clips were presented via a mirror that was mounted on the head coil and the sound 

was played through headphones.   

 

2.3 Stimulus material 

 

Three different movie stimuli with different levels of social content (Inscapes < The Circus < 

Indiana Jones) were used. Inscapes is a nonverbal, non-social series of animated abstract 

shapes created by Vanderwal et al. which was looped to match the 10 minutes duration 

(Vanderwal et al., 2015). The Circus (United Artists Digital Studios, 1928, directed by Charlie 

Chaplin) is a silent black-and-white. Participants were shown the first 10 minutes of the film 

which depicts the protagonist being chased by the police and unintentionally causing comic 

situations during his escape. Indiana Jones and the Temple of Doom (Paramount Pictures, 

1984, directed by Steven Spielberg) shows the first 10 minutes of the movie during which the 

protagonist has to fight off several hitmen who are trying to kill him and finally escapes by 

taking a plane. The end of the clips used from The Circus and Indiana Jones both coincide 

with a change of scene in the respective movie itself.  

 

2.4 Data preprocessing  

Preprocessing of MRI data was performed using fMRIPrep, version 22.0.0 (Esteban et al., 

2019). In brief, the T1-weighted volumes were corrected for intensity non-uniformity and 

skull-stripped. The extracted brain images were then transformed into Montreal Neurological 

Institute (MNI) space and motion corrected using Advanced Normalization Tools (Avants et 
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al., 2009). The functional data was motion-corrected with MCflirt (Jenkinson et al., 2002) and 

subsequently co-registered to the native T1-weighted image using boundary based 

registration with six degrees of freedom from Freesurfer (Greve and Fischl, 2009). 

Subsequently, an isotropic Gaussian kernel of 6mm FWHM (full-width half-maximum) was 

applied for spatial smoothing. The images were further regressed out of nuisance signals 

and bandpass filtered (0.013 0.1 Hz). Nuisance signals were the global signals extracted 

within the CSF, the WM, and the whole-brain masks which were regressed from the 

preprocessed fMRI data for each subject. In addition, the standard six motion parameters 

and their first temporal derivatives were regressed out.  

Subsequently, network functional connectivity (NFC) matrices were constructed for 14 meta-

analytical networks, comprising nine to 23 nodes (a detailed description of the networks can 

be found in the supplements). In short, isotropic 5 mm spheres were created around the 

local maxima of each meta-analytical network node and only gray matter voxels were 

included. Using the Junifer toolbox (Synchon Mandal et al., 2023), we extracted the mean 

time series of each node and computed the Pearson's correlation coefficient between all 

node pairs to produce a node times node connectivity matrix for each subject and each 

condition.  The networks cover affective (Amft et al., 2015; Buhle et al., 2014; Liu et al., 

2011; Sabatinelli et al., 2011), social (Amft et al., 2015; Bzdok et al., 2012; Caspers et al., 

2010), executive(Camilleri et al., 2018; Cieslik et al., 2015; Langner and Eickhoff, 2013; 

Rottschy et al., 2012), memory (Binder et al., 2009; Spreng et al., 2009) and motor (Witt et 

al., 2008) functions. 

 

 

 

2.5 Graph theoretical analyses  

Subsequently, graph metrics were derived from the NFC matrices. The fully connected node  

x node matrices were thresholded at 0.1 to determine the presence or absence of 

connections (edges) between nodes. Connections above the threshold retained their 

correlation coefficient, whereas subthreshold edges were assigned values of 0. This 

thresholding procedure was performed on both positive and negative connections.  

Five different Graph metrics were extracted from the thresholded NFC matrices using the 

NetworkX toolbox (A Hagberg et al., 2008), including degree centrality, clustering coefficient, 

betweenness centrality, global efficiency and mean shortest path length. Degree centrality 

measures the connectedness of each node, computed as the weighted sum of all edges 

connected to that node. The clustering coefficient for a given node is a measure of local 

connectedness, measuring the proportion of existing connections out of all possible 

connections between the nearest neighbors of that node. Betweenness centrality measures 

the centrality of a node in the network, calculated as the ratio of shortest paths (that is the 

smallest number of links that need to be traversed to go from one node to another) in the 

whole graph that pass through that node. The efficiency of a pair of nodes in a graph is the 

reciprocal of the shortest path distance between these two nodes. The global efficiency of a 

graph is the average efficiency of all pairs of nodes. Shortest path length denotes the 

minimum number of nodes that need to be passed through to connect one node to another. 

Mean shortest path length is the average shortest path length between all nodes of the 

graph. 

 

2.6 Test-retest reliability 
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The reliability of each graph metric was quantified by calculating the intraclass correlation 

coefficient (ICC) across these measures derived from the two scans (McGraw and Wong, 

1996; Shrout and Fleiss, 1979). A one-way ANOVA was applied to the measures of the two 

scan sessions across subjects, to calculate between-subject mean square (MSp) and mean 

square error (MSe). ICC values were then calculated as: 

 

!""		 = 	%&'	 2 	%&)	/	%&' + (- 2 1)	%&) 

 

where d is equal to the number of observations per subject. For each graph measure, we 

calculated reliability at the scan-wise level. Scan-wise reliability estimates the reliability of 

one score derived from the entire scan session, opposed to calculating one ICC value for the 

graph metric of each node (Guo et al., 2012; Wang et al., 2017). Here, a single ICC value 

was calculated for the mean graph metric averaged across all nodes of the network. The 

reliability results are considered excellent (ICC > 0.8), good ( ICC 0.6-0.79), moderate (ICC 

0.4-0.59), fair (ICC 0.2-0.39), and poor (ICC < 0.2) (Guo et al., 2012). As negative ICCs are 

difficult to interpret and reasons for negative values are unclear (Müller and Büttner, 1994), 

in the following we set negative ICCs to zero (that is completely non-reliable) as has been 

suggested in previous studies (Braun et al., 2012; Kong et al., 2007; Zhang et al., 2011). 

 

 

3. Results 

 

 

 

3.1 Reliability of graph metrics in the IMAX sample 
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Figure 1. ICC of graph metrics across the 14 networks in the IMAX sample. Graph metrics 

are shown for the RS scan and three different movies. ICC values below zero are not 

depicted. (AM =Autobiographical Memory, CogAC = Cognitive Attention 

Control,eMDN=extended Multiple Demand Network, EmoSF= Emotional Scene and Face 

Processing, ER = Emotion Regulation, eSAD=Extended Social-affective Default, MNS = 

Mirror Neuron System, Rew = Reward, SM = Semantic Memory, ToM = Theory of Mind, 

VigAtt= Vigilant Attention, WM = Working memory) 

 

We investigated the reliability of five graph measures derived from 14 different networks. For 

the IMAX sample, we found low to good reliability across networks. Degree centrality, cluster 

coefficient and efficiency showed a trend towards higher reliability than between centrality 

and shortest path length.  

 

Degree centrality showed the highest ICC during RS in five (AM, CogAC, MNS, Rew and 

VigAtt), during Inscapes in three (SM, ER, extDMN), during Circus in four (EmoSF, Empathy, 

ToM, WM) and during Jones in three (eSAD, Motor, Empathy) networks.  

 

Cluster coefficient showed the highest ICC during RS in four (Rew, Empathy, VigAtt, 

EmoSF), during Inscapes in three (MNS,ER,extDMN), during Circus in three (AM, SM, ToM) 

and during Jones in five (CogAC, Motor, EmoSF, eSAD, WM) networks. 

 

Efficiency showed the highest ICC during RS in eight (AM, MNS, CogAC, EmoSF, Rew, 

eSAD, extDMN, WM), during Inscapes in three (Motor, SM, ER, extDMN), during Circus in 

three (Empathy, ToM, WM) and during Jones in two (VigAtt, WM) networks. 

 

Between centrality showed the highest ICC during RS in two (EmoSF, Empathy), during 

Inscapes in five networks (AM, MNS, SM, eSAD, extDMN), during Circus in four (Motor, ER, 

ToM, WM) and during Jones in three (CogAC, Rew, VigAtt) networks. 

 

Shortest path length showed the highest ICC during RS in four (MNS, EmoSF, eSAD, WM), 

during Inscapes in four (AM, Motor, Empathy, extDMN), during Circus in two (ER, ToM) and 

during Jones in four (CogAC, Rew, SM, VigAtt) networks.  

 

 

3.2 Reliability of graph metrics in the JUMAX sample  
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Figure 2. ICC of graph metrics across the 14 networks in the JUMAX sample. Graph metrics 

are shown for the RS scan and three different movies. ICC values below zero are not 

depicted. (AM =Autobiographical Memory, CogAC = Cognitive Attention 

Control,eMDN=extended Multiple Demand Network, EmoSF= Emotional Scene and Face 

Processing, ER = Emotion Regulation, eSAD=Extended Social-affective Default, MNS = 

Mirror Neuron System, Rew = Reward, SM = Semantic Memory, ToM = Theory of Mind, 

VigAtt= Vigilant Attention, WM = Working memory) 

 

For JUMAX we found low to excellent reliability across networks. Degree centrality, cluster 

coefficient and efficiency showed a trend towards higher reliability than between centrality 

and shortest path length.  

 

Degree centrality showed the highest ICC during RS in nine (AM, CogAC, EmoSF, Empathy, 

ER, MNS, Motor, VigAtt, WM), during Inscapes in one (eSAD) and during Circus in three 

(Rew, SM, ToM) networks. 

 

Cluster coefficient showed the highest ICC during RS in five (CogAC, Motor, EmoSF, SM, 

WM), during Inscapes in two (AM, eSAD), during Circus in four (Rew, ER, ToM, VigAtt) and 

during Jones in three (MNS, Empathy, extDMN) networks. 

 

Efficiency showed the highest ICC during RS in ten (AM, MNS, CogAC, Motor, EmoSF, 

Empathy, ER, eSAD, VigAtt, extDMN), during Circus in three (Rew, SM, WM) and during 

Jones in one (ToM) networks. 

 

Between centrality showed the highest ICC during RS in four (AM, Motor, Rew, ER), during 

Inscapes in two (Empathy, ToM), during Circus in one (SM) and during Jones in seven 

(CogAC, EmoSF, MNS, eSAD, VigAtt, extDMN, WM) networks. 

 

Shortest path length showed the highest ICC during RS in nine (AM, MNS, CogAC, EmoSF, 

Rew, ER, SM, ToM, VigAtt, extDMN), during Circus in two (Empathy, SM) and during Jones 

in three (Motor, eSAD, WM) networks. 

 

3.3 Comparison of the two samples 
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Comparing the results across the two samples, it was evident that the ICC was generally 

higher in the JUMAX sample than in the IMAX sample. However, in both samples, degree 

centrality and efficiency tended to show the highest ICCs, followed by cluster coefficient and  

then by between centrality and shortest path length. The AM, MNS, Empathy and SM 

networks showed similar results in both samples, while the rest of the networks showed 

more distinct results. Overall there was not one stimulus which led to more consistent results 

than other stimuli across the two samples.  

 

 

4 Discussion 

 

The primary goal of this study was to investigate the reliability of NV and RS, across various 

functional networks. Graph metrics indicate that NV is - in certain conditions - more reliable 

than RS, consistent with previous results from Wang et al. 2017 (Wang et al., 2017). 

However, our results demonstrated that this effect is dependent on a variety of factors. 

Firstly, the choice of the NV stimulus impacts the reliability of a given graph metric. 

Secondly,  the effect of NV stimuli varies across cohorts. Thirdly, the increase in reliability is 

not uniform across the brain, but varies between different functional networks.  

 

NV vs RS 

Starting from observations indicating that graph metrics extracted from RS fMRI can be used 

to investigate abnormalities in brain organization (Petrella, 2011; Wu et al., 2009), 

researchers have focused on investigating the reliability with which these graph metrics can 

be extracted. With ongoing efforts to use characteristic abnormalities to successfully detect 

and track neurological diseases, it will be crucial to increase reliability as much as possible. 

Therefore, researchers have shifted to extracting graph metrics from other modalities than 

RS such as task-based fMRI (Aron et al., 2006; Cao et al., 2014) or NV (Rikandi et al., 2022; 

Zhang and Liu, 2021). In contrast to task-free RS, these modalities place a constraint on the 

participant which might reduce variability that is otherwise induced by spontaneous thoughts 

(Finn et al., 2017; Hasson et al., 2010; Vanderwal et al., 2017). Our results confirmed the 

notion that behavioral constraints can prove to be beneficial to increase reliability over 

unconstrained RS. In multiple networks, NV stimuli increased reliability of one or more graph 

metrics in comparison with RS (Fig.1, Fig.2). Furthermore, this improvement of reliability is 

observable across networks dealing with affective, social, executive, memory and motor 

functions, indicating that NV increases engagement not only in sensory, but also in higher 

order networks. On the other hand, our results also showed that in many instances RS was 

more reliable than NV, which is in line with previous studies that showed that NV does not 

unconditionally increase reliability (Hlinka et al., 2022; Zhang et al., 2022). Nevertheless, 

these results, in our opinion, encourage the use of NV to improve reliability as NV increased 

reliability over RS drastically in certain cases. But rather than viewing NV as a one-fits-all 

tool, our findings further underline the importance of using specific NV stimuli (and brain 

networks) for a specific purpose.  

The observed reliability in our study matches results from previous studies investigating 

graph metrics extracted from RS and NV (Braun et al., 2012; Cao et al., 2014; Wang et al., 

2017). However, in contrast to Wang et al (Wang et al., 2017) we showed that NV does not 

generally improve reliability of graph metrics, but that its effect varies across networks, 

stimuli and graph metric.  
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Variance across cohorts 

One of the advantages of using NV stimuli is that they are easier to share across multiple 

sites than traditional tasks (DuPre et al., 2020; Eickhoff et al., 2020). By combining data from 

a multitude of studies using the same NV stimuli, one can not only achieve large sample 

sizes, but also place the same behavioral constraint on all subjects across sites. However, 

several studies have suggested that cultural differences between movies (and/or cohorts) 

might hinder generalizability (DuPre et al., 2020; Eickhoff et al., 2020; Hasson et al., 2010). 

In this study, we compared an asian and a european cohort that were subjected to the same 

three NV stimuli. In both samples, NV stimuli increased reliability of graph metrics in 

comparison with RS. However, we did not observe that the same combination of stimulus, 

network and graph metric led to improved reliability over RS in both samples (Fig.3). 

Although some of the networks (AM, MNS, Empathy and SM) show similar trends, it is not 

generally the case that results from both samples are highly overlapping. These differences 

might have been driven by the different cultural backgrounds of the participants. The 

appreciation of a film is culturally specific (Saarimäki, 2021) and likely different between the 

european and asian cohorts. Several studies have demonstrated cultural differences in the 

perception of faces (Adams et al., 2010; Goh et al., 2010; Harada et al., 2020), a factor that 

is especially relevant for the NV stimuli Circus and Jones during which a variety of different 

faces are depicted. Related, in a study from Sneddon et al., 2011 (Sneddon et al., 2011) 

participants from Northern Ireland, Serbia, Guatemala and Peru showed systematic 

differences in their rating of positive and negative emotions being displayed in twelve short 

movie clips. Our study provides further evidence for the notion that future studies should 

take into account cultural differences between cohorts when selecting a movie stimulus.  

 

Variance across networks and stimuli 

In our analysis, we employed meta-analytically defined networks that represent the most 

likely core nodes of a given brain function. Alternatively to approaches where the effect of 

NV is considered from a whole brain perspective, we here investigated how NV engages 

different networks. Similar to previous studies, we observed that the effect of different NV 

stimuli varies across different networks (Finn and Bandettini, 2020; Kröll et al., 2023; Wang 

et al., 2017) and reliability of graph metrics was not unconditionally increased over RS. One 

of the advantages of NV is the possibility to more effectively engage brain networks of 

interest, in comparison with RS (Eickhoff et al., 2020; Guo et al., 2015). Intuitively, one would 

expect that a network responsible for the processing of emotions is differently engaged by 

an emotional clip than e.g. the motor network. This effect can also be seen in our results as 

different networks exhibit varying reliabilities in response to the same stimulus 

To analyze the effect of the chosen movie stimulus on the reliability of a given graph metric, 

we employed three movies with different levels of social content. Various studies have 

shown that different NV stimuli can lead to significantly different results. Finn et al., 2021 

reported that FC derived from different movies varied in its ability to accurately predict 

emotion and cognition scores (Finn and Bandettini, 2020). Similarly, Gal et al., 2022 showed 

that the accuracy with which task-activation maps could be predicted differed between FC 

derived from Hollywood NV stimuli and independent NV stimuli (Gal et al., 2022). Our results 

extend these findings by showing that NV stimuli also divert in their impact on the reliability 

of extracted graph measures. Previous studies have shown that reliability is strongly 

dependent on attention (Ki et al., 2016) and several studies have suggested that NV stimuli 

with social content are best suited to engage participants and keep their attention over a 

longer period of time (Finn and Bandettini, 2020; Saarimäki, 2021; Schaefer et al., 2010). In 
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line with that, we observed a tendency that the two more social stimuli, Circus and Jones, 

more frequently led to improvement than the abstract movie Inscapes. 

However, in the majority of cases, reliability was higher for graph metrics extracted from RS 

than these extracted from NV. This was somewhat unexpected since RS is generally seen 

as an unconstrained state and one would therefore expect more variability between sessions 

than for more constrained states like NV. Several factors might have led to the relative 

decrease in reliability for NV. Firstly, familiarity with a given movie might have played a role 

as multiple studies have shown that expected stimuli reduce the neuronal response (Alink et 

al., 2010; Koster-Hale and Saxe, 2013). The sessions for both datasets were conducted 

within a week and therefore participants will be familiar with the movie during the second 

session. This effect might have induced variability for the NV conditions, while RS on the 

other hand has been shown to remain stable across sessions (Mason et al., 2007; Wang et 

al., 2011). Secondly, some of the networks employed here (AM, SM and eSAD) are 

overlapping with the default mode network which is linked to intrinsically oriented functions, 

rather than the processing of external stimuli (Golland et al., 2007; Hasson et al., 2004). This 

may plausibly lead to decreased reliability of NV in comparison with RS, in these networks.  

These results emphasize that future studies should carefully consider which combination of 

graph metric, stimulus and network is suited for the research question at hand. Using 

purpose-built movies, such as emotionally salient clips for patients with depression (Guo et 

al., 2016), in combination with the functionally involved network will help improve reliability 

and advance the characterization of disease specific alterations in the brain. 

 

 

4 Limitations 

While the current study sheds new light onto the reliability of NV in comparison with RS, it 

comes with some limitations. Firstly, the reliability of graph metrics is strongly influenced by 

the choice of the applied preprocessing (Andellini et al., 2015). In this study, we applied 

motion correction and regressed out WM and CSF signals, as has been done in most 

previous studies (Braun et al., 2012; Cao et al., 2014; Wang et al., 2017). On top of that, we 

here applied basic (that is only removing the mean signal of the whole brain) global signal 

regression. There is an ongoing debate of whether or not to apply global signal regression, 

with some studies claiming that it introduces spurious anti-correlations while other reports 

suggest that these anti-correlations are true negative connections (Liang et al., 2012; 

Murphy et al., 2009). However, a review by Andellini et al., 2015 found no significant 

differences between the reliability of data with and without the inclusion of global signal 

regression across five studies (Andellini et al., 2015). Secondly, we here considered both, 

negative and positive connections, with the assumption that both are true representations of 

connectivity. However, several papers have indicated that negative correlations should be 

evaluated with care since they tend to reduce test-retest reliability (Andellini et al., 2015; 

Schwarz and McGonigle, 2011; Wang et al., 2011). Therefore, the reliability of single graph 

metrics in our study might have been decreased by the inclusion of negative connections. 

Thirdly, our results are based on weighted adjacency matrices, because they better 

characterize the underlying connectivity by considering connectivity strength. However, 

previous studies have suggested that binarized adjacency matrices may lead to higher 

reliability (Andellini et al., 2015; Wang et al., 2011). Nevertheless, we think that using 

weighted adjacency matrices is preferable, especially for clinical studies where subtle 

changes in connectivity might help to identify disease specific alterations. 
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Conclusion 

NV has been suggested to improve the reliability of graph based measures in comparison 

with RS. Our findings extend the current knowledge by investigating this effect in different 

networks, with multiple NV stimuli and in two different cohorts. We demonstrate that the 

potential increase in reliability is dependent on the chosen NV stimuli and varies between 

functional networks. Furthermore we suggest that cultural differences should be considered 

when sharing NV stimuli across sites. Our study supports the use of NV to increase reliability 

of graph metrics, but emphasizes the need to carefully select the appropriate stimulus and 

network for the research question at hand.  
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5 Discussion 

 

5.1 Interpretable ML frameworks 

 Despite the opportunities provided by large datasets and ever more advanced ML 

algorithms, only a fraction of proposed ML methods make it to clinical application. One of the 

major hurdles for clinical translation is the interpretability of a given method (Dinsdale et al., 

2022; Thibeau-Sutre et al., 2023). With first disease-modifying treatments becoming available 

for AD (Mintun et al., 2021; Van Dyck et al., 2023), accurate diagnosis and prognosis of the 

disease have become even more urgent. Likewise, this places a high demand on the 

explainability of potential biomarkers as decisions based on these biomarkers will lead to drug-

administration.Various examples have shown that “blackbox” models applied in clinical 

settings can produce seemingly accurate results, relying on confounders, but will fail to 

generalize on new data (DeGrave et al., 2021; Thibeau-Sutre et al., 2023; Winkler et al., 2019). 

This dissertation provides a framework that not only improves accurate diagnosis and prognosis 

of AD, by constructing complex features, but also maintains interpretability of the constructed 

features. For both applications, the features constructed by the GE framework improved 

performance across all four metrics used in the study, in comparison with models using base 

features (Study 1, Table 3, 4). The performance of the models were comparable to results 

reported in other studies that employed explainable ML frameworks for diagnosis and prognosis 

of AD (Bloch et al., 2021; Bogdanovic et al., 2022; Böhle et al., 2019; Pohl et al., 2022). The 

features that were constructed by the GE framework integrate information about the complex 

interactions between base features, such that the result is still interpretable. An analysis of the 

constructed features showed that they combined brain regions that are known to be affected in 

AD, such as the temporal pole (Scheltens et al., 1992), Amygdala (Poulin et al., 2011), Putamen 

(de Jong et al., 2008) and Thalamus (de Jong et al., 2008). More so, the constructed features 

were still interpretable as it was observable that they contained information about the atrophy 

or co-atrophy of AD-involved brain regions. 

5.2 Individual differences during RS and NV 

 One of the primary goals of neuroscience is to relate differences in brain functions to 

differences in phenotypes. However, analyzing differences in individual FC patterns that occur 

during RS has led to unsatisfactory results. Therefore, study 2 investigates how a new paradigm, 
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NV, enhances individual differences in comparison with RS. By calculating the identifiability 

of individual FC matrices extracted during three NV stimuli and RS, this dissertation provides 

clear evidence for improved detection of individual differences during movie-watching. Using 

identifiability or “fingerprinting” of FC matrices as a proxy for individual differences has been 

made popular by Finn et al (Finn et al., 2015) and was previously used by Vanderwal et al to 

show that NV can enhance individual differences on a whole brain basis (Vanderwal et al., 

2017). Similarly, identifiability was used in this dissertation to compare the effects of NV and 

RS on individual differences in functional networks. In ten out of fourteen networks, NV 

improved identification accuracy over RS (Study 2, Tab.1). The improvement seen for NV was 

most prominent for the Indiana Jones stimulus, which led to the highest identifiability in eight 

of the networks. On the other hand, the movie Inscapes was generally similar or inferior to RS, 

while Circus showed improvement in only two networks. These results are in line with previous 

studies that have suggested that in order to maximally engage the participant, NV stimuli with 

more social content might be preferable over neutral/abstract stimuli (Dmochowski et al., 2014; 

Finn and Bandettini, 2020; Nummenmaa et al., 2014; Schmälzle et al., 2015). This notion was 

further supported by comparing patterns of inter-individual NFC between conditions. NFC 

patterns during Inscapes were mostly similar to those during RS, while Circus and Indiana Jones 

exhibit connectivity profiles that are distinct from RS across networks (Study 2, Fig.1, Fig. 2). 

5.3 Variability across functional networks 

 The vast majority of studies that investigate the impact of NV have focused on whole-

brain connectivity. This dissertation instead focuses on connectivity on a network level and 

provides evidence that the effect of NV deviates across networks covering different cognitive 

domains. Study 2 investigated three different NV stimuli and revealed differences in within- 

and between-subject correlations during RS and NV that were obscured on a whole-brain level 

(Study 2, Fig 4, 5, S1, S2). Based on the overall increased identifiability during NV in Study 2, 

one might expect that within-subject correlations (as a measure for stable individual patterns) 

are increased during NV as well. However, identifiability is always dependent on the ratio of 

within- and between-subject correlations, e.g. subjects that are too similar to each other will be 

harder to identify even though they might exhibit stable patterns across sessions (Finn et al., 

2017). In Study 2, increased within-subject correlations were observed in meta-analytic 

networks that are essential for the perception and processing of action, behavior and emotions. 

With regards to the assumption that the social aspect of a movie stimulus induces stable 

individual connectivity patterns, it is only reasonable to expect that this effect is more 
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pronounced in networks that deal with the processing of social interactions. On a whole-brain 

level, between-subject correlations are generally presumed to be increased by NV, given that 

all subjects are presented with the same stimulus (Hasson et al., 2004; Vanderwal et al., 2017). 

However, this dissertation importantly shows that this effect is not unambiguously true across 

functional networks. NV increased between-subject correlations in networks that are associated 

with executive functions and/or stimulus evaluation. On the other hand, networks that are more 

related to intrinsically oriented functions exhibited reduced between-subject correlations during 

NV. Presumably, the function of these networks is suppressed during the processing of complex 

stimuli, thus preventing coordinated activity in these networks which in turn reduces similarity 

between subjects.  

 

This dissertation also investigated within- and between-subject correlations in functional 

networks during a full narrative movie (FNM), Forrest Gump, from studyforrest project (Hanke 

et al., 2016). Contrary to the shorter stimuli used in Study 2 (10 minutes), a FNM provides 

emotions embedded in a richer context and evolving over a longer time, allowing for a more 

comprehensive study of socio-affective processes. Study 3 showed that the effect of the FNM 

on changes in within- and between-subject correlations was dependent on the network (Study 

3, Fig. 3), confirming results from Study 2. Furthermore, Study 3 implemented linear mixed 

models to analyze how the narrative of the movie and the portrayed valence and arousal affected 

within- and between-subject correlations across networks. Based on valence and arousal 

annotations from Labs et al (Labs et al., 2015), the analysis revealed that within- and between-

subject correlations were best accounted for by network, movie segment, valence and a movie 

segment by valence interaction. Within-subject correlations were further explained by an 

interaction of movie segment, valence and arousal. Taken together, these findings show that 

within- and between-subject correlations during NV are sensitive to the progressing narrative 

and emotions portrayed in a stimulus and differ between networks. Lower within-subject 

correlations during the FNM were observed in the AM, ER, SM, ToM, and eSAD networks 

(Study 3, Fig. 3), which align with patterns observed in Study 2 that show a tendency for lower 

within-subject correlations during NV than during RS, in these networks (Study 2, Fig. 4). In 

addition, Study 3 could also demonstrate that within- and between-subject correlations across 

networks increased as the movie progressed, suggesting a general trend towards greater 

similarity in subjects' NFC over time (Study 3, Fig. 3). Related, previous work has demonstrated 

that certain cognitive and emotional processes develop only over extended time periods (Hasson 

et al., 2010). This dissertation shows that both, movie clips and FNMs, have different effects 
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across functional networks, emphasizing that a network perspective grants more detailed 

insights into the full effect of NV paradigms than whole-brain analysis. 

 

5.4 Reliability of NV stimuli 

For any research question at hand, the crucial prerequisite is that the used measurement is 

reliable, such that differences across subjects and time points can be meaningfully interpreted. 

This dissertation investigates the reliability of NV paradigms and compares it to that of 

conventional RS. Study 4 shows that NV can improve reliability over RS across networks 

dealing with affective, social, executive, memory and motor functions, in two samples (Study 

4, Fig. 1, Fig. 2). These results indicate that NV can increase engagement not only in sensory, 

but also in higher order networks. The observed reliability in study 4 matched results from 

previous studies investigating graph metrics extracted from RS and NV (Braun et al., 2012; Cao 

et al., 2014; Wang et al., 2017). Similar to Wang et al (Wang et al., 2017) and results from study 

2 and study 3, effects of NV varied across networks. However, in contrast to results from Wang 

et al, where the majority of networks showed improved reliability during NV, NV was less 

reliable than RS in the majority of networks and graph metrics in study 4. Possibly, since 

sessions for both datasets were conducted within a week, participants might have been rather 

familiar with the movie stimuli during the second session. Multiple studies have shown that 

expected stimuli reduce the neuronal response (Alink et al., 2010; Koster-Hale and Saxe, 2013), 

which in turn might have led to the relative decrease in reliability for NV here. Still, NV at least 

partially increased reliability over RS. In these cases, it was again observable that the NV 

stimuli with more social content, Circus and Indiana Jones, improved reliability more often than 

Inscapes. In addition, Study 4 investigated if the effect of NV stimuli is different across cohorts 

with different cultural backgrounds. Previous studies have demonstrated cultural differences 

for the perception of faces (Adams et al., 2010; Goh et al., 2010; Harada et al., 2020) and rating 

of emotions when watching movie clips (Sneddon et al., 2011). Similarly, the results of the 

Asian and European cohort in Study 4 were mostly different across stimulus, network and graph 

metric (Study 4, Fig. 3). Therefore, future studies should consider the cultural background of a 

cohort when choosing a movie stimulus. 

5.5 Conclusions 

This dissertation addressed primary challenges for the translation of MRI based biomarkers into 

clinical use, such as accuracy, reliability and interpretability. Therefore, a simple GE based 
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framework was provided that constructs complex feature representations while remaining 

interpretability. The GE framework was demonstrated to be applicable to the diagnosis and 

prognosis of AD, one of the most prevalent neurological diseases as of today, where it could 

significantly improve predictive performance. Subsequent inspection of the features uncovered 

humanly interpretable patterns of co-atrophy in brain regions typically impacted by AD. 

Further, this dissertation investigated if NV paradigms can improve key biomarker metrics such 

as reliability, reduced intra-subject variability and enhanced detection of individual differences, 

in comparison with RS. Therefore, different NV stimuli with varying levels of social content, 

as well as different lengths and their effect in functional brain networks were compared. The 

comparison of different NV stimuli revealed that certain stimuli, The Circus and Indiana Jones, 

are better suited to improve the detection of individual differences, possibly due to a higher 

level of social content. A clustering of the connectivity profiles during the different stimuli 

confirmed that these two stimuli were more distinct from RS than the movie Inscapes, which 

lacks social interaction. Further, an analysis of within- and between subject correlations 

demonstrated that shorter movie clips as well as a FNM can improve similarity within and 

between subjects, in comparison with RS. In addition, it was shown that NV stimuli can increase 

the reliability of fMRI, as measured by graph metrics. This dissertation extends the current 

knowledge about NV paradigms by examining their effect in functional networks. Contrary to 

previous studies that focused on whole-brain, it was demonstrated that NV stimuli do not 

unconditionally improve reliability, as well as within- and between-subject correlations across 

the brain, but rather that the effect varies between functional networks. Especially in networks 

that are related to intrinsically related functions, RS was shown to be preferable over NV.  

 

Looking forward, the provided GE framework can be helpful in future biomarker studies where 

interpretability of a model is a must, by promoting both accuracy and interpretability. As drug 

development for neurological diseases advances, biomarkers that diagnose and monitor these 

diseases will become increasingly important, and methods like the proposed framework have 

the potential to play a crucial role in the development of such biomarkers. Further, the results 

here encourage the use of NV stimuli to improve signal properties of fMRI, that are important 

for biomarker research. However, the results highlight the importance to carefully chose the 

appropriate stimulus for the research question at hand. Generally, NV stimuli with social 

content should be preferred. Future biomarker studies might benefit from NV paradigms by 

selecting a stimulus that is specific to their research focus such as anxiety-inducing movie clips 

to probe patients with anxiety or a NV stimulus with distractors for patients with attention-
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deficit/hyperactivity disorder (ADHD). Finally, this dissertation provides a new NV dataset, 

which employs three NV stimuli with different levels of social content, that is publicly available 

to the neuroimaging community.  
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