001047157 001__ 1047157
001047157 005__ 20260109202555.0
001047157 0247_ $$2doi$$a10.1016/j.seta.2025.104561
001047157 0247_ $$2ISSN$$a2213-1388
001047157 0247_ $$2ISSN$$a2213-1396
001047157 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04114
001047157 037__ $$aFZJ-2025-04114
001047157 041__ $$aEnglish
001047157 082__ $$a333.7
001047157 1001_ $$0P:(DE-Juel1)199069$$aWijesinghe, Lovindu$$b0$$eCorresponding author
001047157 245__ $$aModeling disruptive events in renewable energy supply: A review
001047157 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
001047157 3367_ $$2DRIVER$$aarticle
001047157 3367_ $$2DataCite$$aOutput Types/Journal article
001047157 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767962291_4728
001047157 3367_ $$2BibTeX$$aARTICLE
001047157 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047157 3367_ $$00$$2EndNote$$aJournal Article
001047157 520__ $$aThe accelerating shift toward renewable energy necessitates robust planning frameworks that can accommodate unexpected disruptions. While various energy system modeling methods are widely used for planning and decision-making, they each have their own strengths and weaknesses in capturing uncertainty in the outcomes of disruptive event modeling. This review addresses a critical research gap by systematically analyzing how such methods quantify and mitigate the impact of disruptive events on renewable energy supply. It is the first to comprehensively assess modeling approaches specifically in this context. The study categorizes 108 disruptive events from 102 articles into four primary types: natural (e.g., floods, heatwaves), human-caused intentional (e.g., technological innovations), socio-political (e.g., wars, policy changes), and economic (e.g., interest rate shifts, carbon tax changes). Articles were selected using a PRISMA-compliant methodology from multiple sources, applying strict inclusion criteria: relevance to renewable energy, a clear focus on disruptive events, and use of modeling methods. Findings confirm the hypothesis that incorporating broader socio-economic and environmental criteria into modeling improves the robustness and realism of planning under disruptive conditions. The review shows that relying on one modeling objective such as cost often limits the ability to capture uncertainty and stakeholder concerns. Instead, models that integrate multiple criteria and generate a range of feasible solutions offer more resilient and adaptable planning outcomes. The study recommends combining complementary modeling strategies and tailoring criteria to stakeholder priorities. Such combined modeling approaches are well suited to future studies, enabling flexible, risk-informed, and context-sensitive modeling of disruptive events in renewable energy supply systems.
001047157 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
001047157 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
001047157 536__ $$0G:(DE-HGF)POF4-110$$a110 - Energiesystemdesign (ESD) (POF4-100)$$cPOF4-100$$fPOF IV$$x2
001047157 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047157 7001_ $$0P:(DE-Juel1)190787$$aWeinand, Jann Michael$$b1
001047157 7001_ $$0P:(DE-Juel1)176842$$aHoffmann, Maximilian$$b2
001047157 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3$$ufzj
001047157 773__ $$0PERI:(DE-600)2701012-0$$a10.1016/j.seta.2025.104561$$gVol. 83, p. 104561 -$$p104561 -$$tSustainable energy technologies and assessments$$v83$$x2213-1388$$y2025
001047157 8564_ $$uhttps://juser.fz-juelich.de/record/1047157/files/1-s2.0-S2213138825003923-main.pdf$$yOpenAccess
001047157 8767_ $$d2025-12-16$$eHybrid-OA$$jDEAL
001047157 909CO $$ooai:juser.fz-juelich.de:1047157$$popenaire$$popen_access$$pOpenAPC_DEAL$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001047157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199069$$aForschungszentrum Jülich$$b0$$kFZJ
001047157 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)199069$$aRWTH Aachen$$b0$$kRWTH
001047157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190787$$aForschungszentrum Jülich$$b1$$kFZJ
001047157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176842$$aForschungszentrum Jülich$$b2$$kFZJ
001047157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b3$$kFZJ
001047157 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b3$$kRWTH
001047157 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
001047157 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
001047157 9131_ $$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$x2
001047157 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001047157 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001047157 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001047157 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-27
001047157 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001047157 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUSTAIN ENERGY TECHN : 2022$$d2024-12-27
001047157 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
001047157 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047157 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSUSTAIN ENERGY TECHN : 2022$$d2024-12-27
001047157 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
001047157 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001047157 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001047157 920__ $$lyes
001047157 9201_ $$0I:(DE-Juel1)ICE-2-20101013$$kICE-2$$lJülicher Systemanalyse$$x0
001047157 980__ $$ajournal
001047157 980__ $$aVDB
001047157 980__ $$aUNRESTRICTED
001047157 980__ $$aI:(DE-Juel1)ICE-2-20101013
001047157 980__ $$aAPC
001047157 9801_ $$aAPC
001047157 9801_ $$aFullTexts