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ARTICLE INFO ABSTRACT

Keywords: The accelerating shift toward renewable energy necessitates robust planning frameworks that can accommodate
Natural disasters unexpected disruptions. While various energy system modeling methods are widely used for planning and
Innovations

decision-making, they each have their own strengths and weaknesses in capturing uncertainty in the outcomes of
disruptive event modeling. This review addresses a critical research gap by systematically analyzing how such
methods quantify and mitigate the impact of disruptive events on renewable energy supply. It is the first to
comprehensively assess modeling approaches specifically in this context. The study categorizes 108 disruptive
events from 102 articles into four primary types: natural (e.g., floods, heatwaves), human-caused intentional (e.
g., technological innovations), socio-political (e.g., wars, policy changes), and economic (e.g., interest rate shifts,
carbon tax changes). Articles were selected using a PRISMA-compliant methodology from multiple sources,
applying strict inclusion criteria: relevance to renewable energy, a clear focus on disruptive events, and use of
modeling methods. Findings confirm the hypothesis that incorporating broader socio-economic and environ-
mental criteria into modeling improves the robustness and realism of planning under disruptive conditions. The
review shows that relying on one modeling objective such as cost often limits the ability to capture uncertainty
and stakeholder concerns. Instead, models that integrate multiple criteria and generate a range of feasible so-
lutions offer more resilient and adaptable planning outcomes. The study recommends combining complementary
modeling strategies and tailoring criteria to stakeholder priorities. Such combined modeling approaches are well
suited to future studies, enabling flexible, risk-informed, and context-sensitive modeling of disruptive events in
renewable energy supply systems.
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Introduction

Under the 2015 Paris Agreement, 195 countries pledged to limit
global warming to below 2 °C above pre-industrial levels by reducing
greenhouse gas emissions [1]. In the wake of the Fukushima nuclear
accident in March 2011, countries such as Switzerland and Germany
have accelerated the phase-out of nuclear power in light of the possi-
bilities of nuclear accidents [2]. For such countries, it is therefore crucial
to accelerate the deployment of renewable energy supply in order to
comply with the requirements set out in the Paris Agreement.

In recent decades, several events such as the European heat waves of
2003 and 2022 [3], the Covid-19 Pandemic [4] and the Rus-
sian—Ukrainian War [5], have had adverse effects on daily human ac-
tivities. Similarly, these types of disruptive events can have a huge

impact on power generation. For example, nearly 2.3 GW of renewable
energy installations in India were delayed due to lack of access to supply
chains during the Covid-19 pandemic in 2020. [6]. As previously stated,
accelerating the renewable energy supply is of paramount importance
for countries. It is therefore essential that future power system planning
considers the impact of such disruptive events on renewable power

supply.
What is a disruptive event?

The simple definition of the term “disruptive event” implies that it
has an extreme outcome. Broska et al. [7] note that an extreme event is a
dynamic situation with a limited time frame that can affect the func-
tioning of a system. Using the European Blackout of 2006 as a case study,
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the authors explain how the removal of a high-voltage transmission line
disrupted the functioning of the entire European electricity system for a
period of two hours. The study further suggests that the impact of a
disruptive event on a system is based on some characteristics of the
affected system, such as its responsiveness to disruptive events. Ac-
cording to Aquino et al. [8], although disruptive events have significant
consequences for the individuals experiencing them, these effects do not
occur equally across the entire population. The study shows that
severely limited financial, social, and cultural resources are likely rea-
sons for the variations in the impact of disruptive events on people
experiencing them. Mentges et al. [9] show that a disruptive event
causes a loss of performance and, as a result, a system cannot fully
absorb its impact. It shows that natural disasters, human or technical
errors, intentional sabotage, or even organizational policy decisions, can
induce a loss of performance in a system, making such activity a
disruptive event.

Many disruptive events, particularly natural disasters, lead to nega-
tive consequences, such as infrastructure damage and service in-
terruptions. However, not all disruptions are inherently harmful.
Human-caused intentional events such as technological innovations
can act as positive disruptions that improve system performance [10].
For instance, advancements in digital technologies, including artificial
intelligence and the Internet of Things (IoT) have been pivotal in
transforming renewable energy systems [11]. These innovations
improve grid stability, optimize energy storage, and facilitate the inte-
gration of variable energy sources by enhancing the overall resilience of
energy infrastructures [12]. Fig. 1 is a hypothetical illustration that
shows the positive impact of technological innovation, using the cu-
mulative solar PV electricity generation in a region as an example. It
shows the difference in impact between a positive and negative
disruptive event in a single figure. In a disruptive event such as a solar
storm, photovoltaic cells can degrade significantly due to intense solar
radiation [13]. As a result, solar PV generation will be negatively
deviated compared to ordinary operation. In contrast, a disruptive
event, such as the replacement of the PV modules with a more efficient
one would have a positive impact due to the supply of more solar energy
[14]. Therefore, it would have better outcomes compared to the ordi-
nary operation.

Types of modeling techniques

Energy system modeling is an important tool that is being used not
only to obtain future predicted values related to energy planning but
also as a management tool for better decision-making [15]. Sub-
ramanian et al. [16] demonstrate that, based on the modeling approach,
energy system models can be broadly classified into three categories:
computational models, mathematical models, and physical models.

Disruptive
event

Cumulative electricity generation (GWh)
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Mathematical models employ either statistical techniques based on
regression and optimization or theoretical and first-principle-based
mechanistic models [16]. In the mathematical model based approach,
optimization based modeling usually minimizes the total cost of an en-
ergy system over a selected time period based on demand and supply
constraints [15]. Simulation-based modeling is another modeling
approach that involves the solving of mathematical models with the
intention of gaining an insight into how the system will function in
response to different operational conditions [16]. This approach enables
to investigate scenarios that may otherwise be too costly or otherwise
infeasible in a real-world setting [16].

Research objectives

These different modeling approaches have their own advantages and
disadvantages, and therefore it is important to analyze which ap-
proaches are more suitable when modeling disruptive events in the
context of renewable energy supply. This review on modeling disruptive
events in renewable energy supply was conducted to address this timely
requirement. It primarily explores how the impact of different disruptive
events on renewable energy supply can be quantified and mitigated
through various modeling techniques. This review provides a compre-
hensive overview of the various disruptive events in the supply of
renewable energy by conducting a systematic review of a wide range of
disruptive events across diverse categories. Based on the research
objective, this study is guided by the following hypotheses:

1. The integration of appropriate modeling techniques significantly
enhances the resilience and sustainability of renewable energy sys-
tems when subjected to disruptive events.

2. Incorporating socio-economic factors into energy system modeling
reduces uncertainties in planning for disruptive events and leads to
more robust and context-sensitive outcomes.

To the best of the authors’ knowledge, no review has yet been pub-
lished on the modeling of disruptive events specifically in renewable
energy supply. Hanna and Gross [17] conducted a review on disrup-
tiveness based on the definitions given by Refs. [19] and [20] based on
30 articles. Their study focused on different model types (e.g., optimi-
zation and partial equilibrium models, simulation and agent-based
models). Individual optimization methods such as Monte Carlo optimi-
zation and modeling to generate alternatives (MGA) have been dis-
cussed in the context of energy system modeling. However, less focus
has been placed on individual simulation tools. Additionally, Hanna and
Gross [17] investigated the importance of hybrid modeling methods
through integration of general agent-based and differential equation
models and soft-linking models. The present study investigated how the

Positive deviation due to the
disruptive event

= Qrdinary operation

Negative deviation due to
the disruptive event

2020 2025 2030 2035

Year
2040

Fig. 1. Hypothetical illustration of the impacts of positive and negative disruptive events on ordinary operation of solar PV electricity generation. Disruptive events
such as solar storms could have a negative impact while disruptive events such as using efficient solar PV modules have a positive impact. As this is a hypothetical
representation, not all effects are included in the course of the curves, such as the time required to replace the PV modules.



L. Wijesinghe et al.

combined individual optimization methods and combined general
optimization-simulation models can be used for enhancing the resilience
and sustainability of renewable energy systems in the face of disruptive
events.

The remainder of this review focuses on the review methodology
used, categorization of the results obtained, a discussion regarding the
evaluation of the modeling techniques that have been used in the results,
and, finally, the conclusions.

Review methodology

In order to answer the primary research question and test the two
research hypotheses, it is paramount that literature relevant to disrup-
tive events in renewable energy supply is identified as much as feasible.
To identify the relevant literature for review, a keyword-based search
related to the modeling of disruptive events in renewable energy supply
was first conducted in the Scopus literature database [18]. Scopus was
used for the primary literature search because it covers a wider range of
journals [19] and more recent sources [20] than other databases. The
following search string for this keyword-based search was used:

TITLE-ABS-KEY ((“renewable*”) AND (“energy system*”) AND
(“disruptive” OR “disorder*” OR “uncontrollable” OR “conflict” OR “war”
OR “clash” OR “invasion” OR “disaster” OR “catastrophe” OR “calamity”
OR “pandemic” OR “crisis” OR “upheaval” OR “extreme weather” OR
“geo politic*” OR “innovation” OR “novel technology”) AND ( “generation”
OR “capacity” OR “supply”) AND (“simulation” OR “modeling ” OR
“optimization” OR “analysis”)) AND (LIMIT-TO (DOCTYPE, “ar”)).

The idea was to include as many keywords related to disruptiveness
as possible. Therefore, synonyms relating to disruptiveness were used (e.
g., disorder, disaster, catastrophe) based on exploratory testing. At the
same time, the most prominent keywords related to disruptive events
occurred during the past few years (e.g., pandemic, crisis, war) and their
synonyms (e.g., clash, upheaval) were included in order to increase the
search range. Furthermore, key words such as innovation and novel

Sustainable Energy Technologies and Assessments 83 (2025) 104561

technology were deliberately incorporated to encompass positive
disruptive events. The search was then narrowed only to articles related
to renewable energy supply. This keyword-based search yielded 395
relevant research articles.

A systematic literature review method corresponding to the
“Preferred Reporting Items for Systematic review and Meta-Analyses”
(PRISMA) [21] was used in order to filter and identify the most relevant
literature for this review (see Fig. 2). Initially, all the 395 articles were
screened based on the title and abstract. Based on the title and abstract,
articles which were in a language other than English (e.g., Ref. [22]) and
articles that had a study focus outside a modeling of disruptive event in
renewable energy supply (e.g., Refs. [23,24]) were excluded. During the
next step of the screening process, articles that did not have a clear focus
on a disruptive event (e.g., Refs. [25,26]) or did not follow a modeling
approach (e.g., Refs. [27,28]), or the focused technology in the article
was not related to renewable energy (e.g., Refs. [29,30]) were excluded
based on the full content of the articles. In addition to the search results
obtained from the keyword-based search in Scopus, 24 additional sci-
entific articles obtained from Google Scholar and through citation
tracking have been included. The same exclusion criteria that applied to
the articles obtained from the keyword-based search were also applied
to these additional articles. Importantly, none of these 24 articles met
any of the aforementioned exclusion criteria, meaning that all of them
were ultimately included in this review, except for one article that was
not peer-reviewed at the time of this study [31].

Based on these filter criteria, a total of 102 relevant articles for this
review were obtained. Exclusion or inclusion criteria applicable to all
419 articles and the summary of the data extracted from the selected 102
articles is available for download on Jiilich Data [32] in Microsoft Excel
format. This study and the results outlined in the following sections of
this review are based on the results of these 102 selected articles pre-
sented in this Excel document.
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Fig. 2. Flow diagram representing the systematic literature review process as per the guidelines set out by PRISMA.
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Results

This section presents the main findings of the analysis of the 102
studies. Section “category of disruptive events and impacts” shows the
categorization of the disruptive events and their impacts and Section
“system boundaries” the system boundaries of the reviewed studies. In
Section “considered criteria”, the criteria that have been used to model
the disruptive events in the reviewed articles are analyzed to test the
research hypothesis on the role of socio-economic factors in the
modeling of renewable energy systems. The different types of models
and methods used by the studies are analyzed in section “models and
methodologies”. These modeling techniques will be used to assess how
the impact of different disruptive events on renewable energy supply can
be quantified and mitigated.

Category of disruptive events and impacts

The reviewed articles contain a total of 108 disruptive events related
to renewable energy supply, including similar types of disruptive events.
First, these 108 events were categorized based on the cause of the event.
From an organizational perspective, disruptions can be classified into
three main categories, namely natural, negligent, or intentional [33].
However, based on the reviewed disruptions in renewable energy sup-
ply, this categorization was further extended into events related to
natural, human-caused intentional, socio-political, and economic factors
(see Table 1). The articles that were obtained for this review using the
methodology described in Section “review methodology” were pub-
lished between 2003 and September 2023, with the publication trend
shown in Fig. 3a. A significant increase in the number of studies after
2018 in almost all categories of disruptive events can be observed.

Furthermore, the different types of disruptive events have an impact
on different demand sectors. In the reviewed studies, four types of de-
mand sectors to which the generated renewable energy is coupled could
be identified, namely electricity, fuel, hydrogen, and heat. Fig. 3b shows
which disruptive event category had an impact on which demand sector
in the reviewed articles. In each disruptive event category, the primary
demand sector focused on was electricity. The reason for this could be
that the term renewable energy supply is mainly associated with elec-
tricity generation. The following is an analysis of the impact of the
various categories of disruptive events on the various demand sectors.

In the natural category, all the natural hazards or disruptive events
that were caused by a natural effect were included. Strong winds from
hurricanes or tornadoes can cause damage to wind turbines, resulting in
the breakage of blades or the collapse of entire turbines or wildfire
smoke and particulates can block sunlight, significantly reducing solar
panel output. In the natural category, there has been a focus during the
recent half-decade on the impact of extreme weather events
[38,41,43,45,49], global warming-related ones such as heat waves
[37,39,52], and droughts [51], which can critically affect renewable
energy supply. A low focus, with only one study, was in the case of
natural disruptive events affecting hydrogen production [43].

Table 1
Categorization of disruptive events in this literature review.
Category Example disruptive events Studies No. of
studies
Natural Hurricanes, floods, heat [34-53] 20
waves, droughts
Human-caused Invention of high [47,54-92] 40
intentional efficiency solar cells, novel
hybrid energy systems
Socio-political Wars, oppositions by [35,37,93-122] 32

society, new energy
policies

Increase in interest rates,
reduction in carbon tax

Economic [70,102,120,123-135] 16

Sustainable Energy Technologies and Assessments 83 (2025) 104561

Nevertheless, more attention should be paid to this issue, as future en-
ergy systems will have a larger share of green hydrogen, while natural
disasters continue to increase.

In the human-caused intentional category includes the disruptive
events caused due to a new technological innovation. For example, in-
novations in solar panel materials can significantly increase the effi-
ciency of the conversion of sunlight into electricity [14]. Higher
efficiency means that more electricity can be generated from the same
amount of surface area, making solar energy more viable in regions with
less sunlight. A more stable and reliable energy supply can be achieved
through innovations in hybrid systems that combine different renewable
energy sources (e.g., solar and wind) with storage [136]. In the human-
caused intentional category, the number of studies increased continu-
ously due to new technical improvements in the renewable energy
supply. These improvements include the use of hybrid energy technol-
ogies [39,67], improved wind turbine selection process for new wind
plants [61], and novel wind turbine foundation design [91]. The cate-
gory human-caused intentional includes most disruptive events, mainly
due to a high proportion of studies focusing on new inventions in the
field of renewable energy supply. In particular, there was a higher focus
on green hydrogen production in articles [65,85,88,89] published dur-
ing the last four years. In contrast, there was little focus on the fuel
sector, which has primarily emphasized biofuel production (e.g.,
Ref. [98]).

The socio-political category includes events caused by social activ-
ities or political decisions. Investors may view politically unstable re-
gions as high risk, resulting in reduced investments for renewable
energy projects [137]. The result can be a slowdown in the deployment
of renewable energy even in regions with significant potential. Local
opposition due to concerns about visual impact (e.g., Ref. [138]), noise,
land use, or environmental impacts can arise for renewable energy
projects such as wind farms or large solar installations [139]. This can
cause projects to get delayed, cost more, or even cancelled [140]. After
2021, a steep increase in the number of articles written in the socio-
political category could be observed, mainly due to the impact of
renewable energy supply as a result of the Covid-19 pandemic
[111,113,118] and the Russian—-Ukrainian war [115]. The energy crises
due to the war between Russia and Ukraine was a major reason for
disruptive events regarding heat demand in the socio-political category
(e.g., Ref. [115]).

The events related to economic reasons are included in the economic
category. The occurrence of economic problems can result in the
imposition of higher interest rates, which can consequently elevate the
financial burden associated with the procurement of capital for renew-
able energy projects [141]. Subsidies, tax credits and other incentives
that support renewable energy may be reduced or eliminated by gov-
ernments facing economic difficulties [142]. Without this financial
support, the viability of renewable energy projects may be reduced.
Comparatively, only a small number of studies have focused on
economically-related disruptive events. However. the number of articles
in this category increased in the last few years due to the effects of
changes in carbon emission trading [70,130,132] and carbon tax related
to renewable energy supply [125,126,133].

System boundaries

This section outlines the system boundaries that have been consid-
ered by the reviewed studies. Section “considered technologies” includes
the types of different energy technologies that were considered, whereas
section “spatial resolution and location” shows the geographical scope
related to the case studies.

Considered technologies

The reviewed articles considered different renewable energy tech-
nologies. 19 of the 102 studies focused on a single energy technology,
while [38,103,105,127] did not specify the technology they focused on.
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Instead, the latter studies treated all renewable energy technologies as a
single energy source. The remaining studies focused on multiple tech-
nologies, including conventional ones such as coal, natural gas, nuclear
energy, and diesel generators, in addition to their renewable energy-
based counterparts. However, in this review, only renewable energy-
related technologies have been considered. The frequency of consider-
ation of each energy technology in the reviewed articles is shown in
Fig. 4.

Solar photovoltaic (PV) systems were the most modeled technology,
appearing in 72 of the 102 studies (see Fig. 4). Notably, 68 of these
studies combined solar PV with other technologies, such as stationary
batteries or fuel cells with hydrogen storage, reflecting the need for
complementary systems to address PV’s intermittency. Several studies
examined the resilience of hybrid systems under disruptive conditions
such as pandemics or natural disasters, highlighting growing interest in
integrating mobility and stationary storage into energy planning (e.g.,
Refs.[46,111]). Studies on battery—electric vehicles and stationary bat-
tery storage were also included if the usage of these technologies directly
relates to renewable energy supply. Although fuel cell vehicles have
emerged as a promising technology, particularly for the transportation
sector [143], very few studies have addressed their vulnerability or
performance under disruptive conditions. This points to a significant
research gap in this regard. The notable insights for the main energy
technologies identified in the reviewed articles are summarized in
Table 2, which was developed by combining the findings in Sections
“category of disruptive events and impacts” and “considered
technologies”.

Spatial resolution and location

Table 3 presents the studies that focused on the different types of
geographic scopes. 14 did not disclose this information. Of these 14
studies, more than 85 % discuss new technological inventions and thus
consider human-caused intentional disruptive events. The reason for
this may be that modeling a new technological invention is typically not
limited to a specific geographic area, as the benefits of the inventions are
likely to be experienced in other regions as well.

Among the studies that mentioned the geographic scope, the ma-
jority focused on modeling disruptive effects at the individual country
level. For the socio-political event category, most studies focus on gov-
ernment policy decisions that impact the entire country
[35,94,103,116,121,144]. In the category of natural disruptive events,
there has been a greater emphasis on regional geographic scopes. These
studies include flood events in river basins [42,51] and typhoon events
in coastal areas [52]. The “selected region” geographic scope refers to
specific areas within a country, such as counties or provinces (e.g., Refs.
[75,129]) and specific areas within a region, such as western Europe
[54]. Disruptive events in remote rural areas and villages have received
little attention so far. However, rural communities are more vulnerable
to long-term disruptive events, such as the effects of climate change, due
to poor economic conditions, emergency facilities, or inadequate health

Table 2
Summary of technology focuses on the reviewed studies.

Energy technology No. of Notable insights
studies
Solar PV 72 Key technology for most studies however,
fewer studies on standalone PV systems.
Stationary battery 28 An essential element of enhancing system
storage reliability.
Fuel cell with 21 Growing attention for long-term storage, but
hydrogen storage less focus in natural disaster contexts.
Electric vehicle 3 Linked to demand-side flexibility and
(with battery) resilience, however, few resilience-focused
case studies.
Fuel cell vehicles 1 High future potential in transport applications,

but significant gap in disruption-focused
modeling.

Sustainable Energy Technologies and Assessments 83 (2025) 104561

Table 3
Number of articles based on the disruptive events category that have focused on
different types of geographic scopes.

Geographic Natural ~ Human-caused Socio- Economic
scope intentional political

Remote rural - 3 - -

area

Continent — — 1 2
Country 4 5 12 5
Village - 1 1 1
Municipal city 4 2 4 4
Industrial park 1 1 - -
Building 1 6 1 2
Island 2 2 1 -
Selected region 5 6 10 3

systems [145]. Therefore, it is important to pay more attention to
potentially disruptive events associated with renewable power supply in
rural areas in the future.

Considered criteria

Approximately 22 % of the reviewed articles use multiple criteria or
objectives to assess the impact of the disruptive events on renewable
energy supply. Among the multi criteria that have been used in the
reviewed articles, cost was an important criterion, with 58 (57 %) of the
total studies utilizing it. In some of the studies that do not take costs into
account, the additional consideration of costs would have allowed for
better results in order to compare the results with other studies. For
example, in Hai et al. [84], the objectives were to achieve a balance
between energy output and environmental sustainability regarding the
addition of hydrogen to both the anode and afterburner of a solid oxide
fuel cell. Considering cost as a criterion would have been important in
this study, as the future deployment of this technology may be influ-
enced by the decision to prioritize cost considerations.

The results of the reviewed articles demonstrate that the application
of more relevant criteria leads to a greater degree of realism in the
findings. Table 4 lists the target criteria other than cost that were
considered in the multi-criteria studies. Here, similar types of criteria
that feature a common focus are clustered together. For example, Ding
et al. [36] used the criterion of wasted renewable energy to improve the
utilization of renewable resources. Sasse and Trutnevyte [93] used the
criterion of renewable electricity generation to increase the generation
of renewable electricity. Both these are listed under renewable energy
usage in Table 4 due to their similarity in the outcome. In the reviewed
articles, greenhouse gas emissions were a key criterion in six studies (see

Table 4
Target criteria other than cost in multi-criteria studies.
Criteria Study No. of
studies

Greenhouse gas emission
Criteria related to environmental
damage

[36,64,89,120,133,135] 6
[68,80,83,84,107] 5

Energy efficiency [58,66,80,90] 4
Stakeholder satisfaction [68,77,107] 3
Renewable energy usage [43,93] 2
Net power output [83,84] 2
Impacts on distribution grids [77,107] 2
Primary energy consumption [89] 1
Jobs generated [120] 1
Power tracking [471 1
Heat control [47] 1
Loss of power supply probability [44] 1
Hydraulic damping [75] 1
Fuel consumption [66] 1
Energy saving ratio [64] 1
Availability of spare parts [68] 1
Optimal policy mix [103] 1
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Table 4), all of which have a smaller geographical scope, such as a city or
smaller settlement. Surprisingly, there was not a single multi criteria
study with a larger geographic scope such as regional or country level,
that applied this criterion. Four of the five studies considering the
environmental damage criterion [68,83,84,107] were in the human-
caused intentional category. This shows that human-caused inten-
tional disruptive events tend to have an impact on the environment.

The use of multi-objective optimization has helped many authors
address the needs of different stakeholders in the context of disruptive
events in renewable energy supply. Liu et al. [77], for instance, dis-
cussed the planning and optimization of a sea water desalination plant-
based hybrid renewable energy system as a solution to energy crisis and
freshwater shortage. The authors used three optimization criteria,
namely cost, demand-side management loss, and distribution grid
impact. The cost criterion is derived from a planning and investment
perspective, whereas the demand side management loss criterion mea-
sures the end user dissatisfaction from a customer perspective and the
distribution grid impact criterion attempts to minimize the impact on
the system grid from a utility perspective. Using these criteria when
modeling disruptive events can help design systems that are robust,
resilient, and capable of meeting future demands and challenges. Simi-
larly, Martinez-Martinez et al. [110] performed a Multi Attribute
Decision-Making (MADM) site suitability analysis combined with an
ecosystem services approach as a solution to land use conflicts in
renewable energy development in south-central Chile. Here, 29 different
attributes were used, taking into account the provisioning (e.g., wild
food and mineral resources availability), regulatory (e.g., water and soil
quality regulations), and cultural requirements (e.g., aesthetic value and
cultural heritage) of each ecosystem. The manner in which these
different criteria can be effectively combined to reduce uncertainity in
the model outcomes are reviewed in Section “using socio-economic
factors in the modeling of renewable energy systems”.

Models and methodologies

This section presents the models and methodologies used in the
studies. Most reviewed studies employed simulation (39 studies, e.g.,
[62,101]) or optimization (59 studies, e.g., [108,131]) methods in the
modeling process. Some others made use of econometric models [127],
statistical models [53] or simplified energy balance equations [78,88].
In this section, an overview is provided of the two main modeling
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optimization) to model renewable supply disruptions. The tools used for
simulation and optimization are summarized in Table 5. The tools
include software (e.g., HOMER, EnergyPLAN), models (e.g., MARKAL),
and toolboxes (e.g., PyPSA) used for modeling.

Renewable energy systems are complex and involve interactions
between weather patterns, energy demand, grid infrastructure, and
market dynamics. Simulation models can effectively capture these in-
teractions and provide valuable decision support through the integra-
tion of technical, economic, environmental, and social factors [146].
Simulation models can be used to explore multiple scenarios [147], such
as the impact of extreme weather events (like hurricanes or droughts) on
wind, solar, or hydroelectric generation. This helps to understand the
range of possible outcomes and the system’s sensitivity to different types
of disturbances. Simulation models play a particularly important role in
risk assessment and management [148]. This is done by predicting po-
tential disruptions and assess their impact on energy supply, demand,
and prices [149]. For example, they can simulate the effect of prolonged
cloud cover on solar power output or the impact of a wind turbine failure
on overall power generation. This predictive power is critical for risk
management and contingency planning. However, the quality and
availability of data is critical to the accuracy of simulation models [150].
In regions where data on renewable energy performance, weather pat-
terns, or grid operations is scarce or unreliable, model predictions may
be less accurate. The simulation models used in the reviewed articles are
discussed in more detail in section “using simulation tools in disruptive
events modeling” in order to address how the impact of different
disruptive events on renewable energy supply can be quantified and
mitigated through these models.

Optimization models facilitate decision making by providing insight
into the best strategies for investment and operation of renewable en-
ergy [149]. This includes activities such as identifying where renewable
energy resources such as wind farms or solar arrays should be located,
and how energy storage should be distributed to mitigate the effects of
disruptive events. However, their effectiveness depends on how well
they can represent the complexity and uncertainty of such events [151].
Similar to simulation models, optimization models require detailed and
accurate data to work effectively. Incomplete or inaccurate data can lead
to sub-optimal or unrealistic solutions [152]. Optimization models use
different optimization methods such as stochastic optimization and
robust optimization for the optimization process (see Table 6). In energy
system optimization models, these different optimization methods have

methods employed in the reviewed articles (simulation and their own advantages. The optimization methods used in the reviewed

Table 5

Tools used for simulation and optimization in the reviewed articles.
Tool Type of tool Study No. of studies
HOMER/HOMER PRO Simulation [49,55,59,60,62,65,67,73,81,82,86,111,113] 13
LEAP Simulation [95,112,116,119] 4
EnergyPLAN Simulation [35,97,109] 3
MESSAGE Optimization [56,114,126] 3
TIMES Optimization [56,94,121] 3
Calliope Optimization [42,123] 2
MARKAL Optimization [96,124] 2
PyPSA Optimization [93,115] 2
BeWhere Optimization [98] 1
CleanGrid Simulation [79] 1
CCAM Simulation [39] 1
DECAPLAN Optimization [135] 1
EMPIRE Optimization [117] 1
EXPANSE Optimization [93] 1
GAMS Optimization [48] 1
GUSTO Optimization [117] 1
GCAM4.0 Simulation [57] 1
GENeSYS-MOD Optimization [130] 1
NESSI4D Simulation [132] 1
PCR-GLOBWB Simulation [51] 1
PRIMES Simulation [105] 1
RIES Optimization [43] 1
Risk matrix Simulation [45] 1
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Table 6

Optimization-based methods used in the reviewed articles. It should be noted
that some of the optimization methods such as robust optimization and Myopic
optimization utilize mixed integer linear programming (MILP) or linear pro-
gramming (LP) in their basic optimization algorithms but are not counted. Only
the studies that have used MILP and LP without specifying a further specification
are counted as MILP and LP, respectively. Furthermore, genetic algorithms,
particle swarm optimization, and differential evolution methods are usually
considered as variants of stochastic modeling [153] but are listed separately
from stochastic optimization.

No. of
studies

Method Study

Stochastic optimization

Mixed integer linear programming
(MILP)

Linear programming (LP)

Particle swarm optimization (PSO)

Robust optimization

Modeling to generate alternatives
(MGA)

[37,38,40,100,104,108,117] 7
[41,44,48,52,98,117,135] 7

[54,70,96,121,124,125] 6
[66,69,75,118,133] 5
[37,38,89,104] 4
[93,94,122,123] 4

Genetic algorithms [61,77,90] 3
Multi criteria decision making [68,107] 2
(MCDM)
Monte Carlo [85,94] 2
Agent based [134] 1
Multi objective optimization [43] 1
Myopic optimization [115] 1
AHP-CRITIC mixed weighting [80] 1
Branch-and-cut [58] 1
Differential evolution [103] 1
Slime mould algorithm [87]1 1
Zone model predictive control [47] 1

articles are discussed in section “using optimization methods in
disruptive events modeling” in order to address how these methods can
be used to quantified and mitigate the impact of different disruptive
events on renewable energy supply.

Discussion

In this section, the findings from Section “Results” are reviewed and
assessed. In Section “using socio-economic factors in the modeling of
renewable energy systems”, the research hypothesis that incorporating
socio-economic factors into energy system modeling reduces un-
certainties in planning for disruptive events and leads to more robust
and context-sensitive outcomes is tested. The main research question of
this review, which is how the impact of different disruptive events on
renewable energy supply can be quantified and mitigated through
different types of modeling techniques are assessed in Section “using
simulation tools in disruptive events modeling” and “using optimization
methods in disruptive events modeling”. The research hypothesis that
integrating appropriate modeling techniques significantly enhances the
resilience and sustainability of renewable energy systems under
disruptive events is tested in Section “using modeling tools to enhance
resilience and sustainability of renewable energy systems”.

Using socio-economic factors in the modeling of renewable energy systems

Section “considered criteria” showed that most of the simulation-
based studies are based on cost evaluations. The studies that utilize
cost as a modeling criterion illustrate the significance of incorporating
cost as a criterion in the modeling of disruptive events. According to the
simulated results of Pedersen et al. [115], if Europe aims to keep the
temperature increase below 2 °C, the average electricity cost could in-
crease up to 65 €/MWh by 2025 due to the gas supply limitation caused
by the Russia-Ukraine war. This offers a clear indication of how
geopolitical conflicts can disrupt energy markets, leading to higher en-
ergy prices. It converts the abstract concept of energy supply limitations
into a tangible, economic burden on consumers and industries. As per
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the findings of Bennett et al. [40], projected electricity costs based on
the historical hurricane frequencies in Puerto Rico in 2040 could in-
crease by as much as 32 %. It shows how natural disasters can lead to
significant financial challenges. This further highlights the need to
invest in resilient infrastructure that can withstand extreme weather,
potentially reducing future costs.

Although cost is a very important parameter in the modeling of
disruptive events, taking only the direct costs associated with a disrup-
tive event into account is not an ideal way to evaluate the results thereof
[154]. This is due to the fact that not only disruptive events but also the
activities associated with the methods used to mitigate the effects of
such disruptive events are uncertain in today’s context. For example, the
ideal renewable energy supply for an electrolysis-based green hydrogen
system to reduce carbon emissions in the transport sector can be
considered. Here, apart from the renewable energy supply with the
lowest direct cost, policy regulations and the consent of the people living
near power plants etc. should also be considered to evaluate the pro-
ject’s feasibility. The impacts of these other factors on the above prob-
lem are not visible in relation to the direct cost of the project unless they
have been properly identified and converted into monetary values.
Therefore, the lack of consideration of these factors increases the un-
certainty of the outcome of the disruptive event. This section will
explore how the factors such as renewable energy usage, greenhouse gas
emissions, environmental damage, and stakeholder satisfaction as listed
in Table 4 can be used to reduce the uncertainty in the model outcomes.

The use of renewable energy diversifies the energy mix and reduces
dependence on imported fossil fuels, which can be prone to geopolitical
risks (e.g. the Russia-Ukraine conflict). Therefore, utilizing renewable
energy usage as a modeling criterion helps to assess energy security by
identifying the vulnerability of energy supply to external disruptions.
The transition to energy systems with lower greenhouse gas emissions
could reduce operating costs over the long term. This is especially
important for small communities with limited budgets, where cost-
effective energy solutions are critical. Environmental damage often
represents an externality, a cost that is not borne by the producer or
consumer, but by society as a whole (e.g., health effects of air pollution,
degradation of ecosystems). Including environmental damage as a cri-
terion in energy system modeling helps account for these externalities.
This leads to more accurate cost-benefit analyses and more economically
efficient outcomes. Stakeholders in energy system planning are guided
by a set of defined objectives, including cost effectiveness, reliability,
environmental impact, or profit margins. Using stakeholder satisfaction
as a modeling criterion ensures that energy system design aligns with
these diverse objectives, leading to broader support and smoother
implementation of the energy transition.

Therefore, energy system modeling can be enriched by incorporating
socio-economic modeling criteria, which can help mitigate uncertainty
surrounding disruptive events. This is achieved by capturing the broader
context in which energy systems operate, including human behavior,
policy responses, market dynamics, and institutional factors. The
modeling of disruptive events in renewable energy supply should not
focus on a single objective. Instead, the inclusion of criteria related to a
broader context associated with the disruptive event in the modeling
process will result in a significant reduction in the risk associated with
the modeling output.

Based on the reviewed studies, Fig. 5 represents the criteria that are
likely to be of interest to various stakeholder groups. Therefore, in the
event that the stakeholders are also involved in the modeling process, it
would be most prudent for them to prioritize the criteria that are rele-
vant to their role. For example, if a novel hybrid power renewable en-
ergy plant is modeled by the utility electricity supplier, more focus
should be placed on the loss of power probability and its impact on the
distribution grid, in addition to cost. This will help attain more precise
and resilient results from the utility supplier’s perspective. This tailored
focus on relevant criteria ultimately leads to more precise and resilient
modeling outcomes.
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Fig. 5. Main modeling criteria used and the parties likely to be interested in the
criteria in the reviewed articles and the number of studies which used
each criterion.

These findings support the hypothesis presented in Section
“Introduction” which is, incorporating socio-economic factors into en-
ergy system modeling reduces uncertainty in planning for disruptive
events and yields more robust and context-sensitive outcomes.
Furthermore, the ways in which different modeling techniques aid the
stakeholders in attaining improved resilience and risk reduction out-
comes are explored in Sections “using simulation tools in disruptive
events modeling” and “using optimization methods in disruptive events
modeling”.

Using simulation tools in disruptive events modeling

This section reviews the major simulation-based models and soft-
ware that have been used to model disruptive events, and how well each
modeled the uncertainty of the events in the reviewed studies. HOMER
(Hybrid Optimization of Multiple Energy Resources), EnergyPLAN, and
LEAP (Long-range Energy Alternative Planning) represent the most used
simulation-based models and software. The strengths and weaknesses of
these models are summarized in Table 7, along with the cases of their
use in the reviewed articles and the practical relevance of these models
for various stakeholders.

HOMER first simulates multiple configurations based on user re-
quirements and ranks these configurations against their associated
lifecycle costs which are calculated using total net present cost (NPC)
[155]. As mentioned in section “considered criteria”, using cost as a
criterion is important when modeling for disruptive events. However, in
HOMER simulations, the lowest NPC configuration may not always be
sufficient to reflect the uncertainty associated with the operational part
of the problem, whereas configurations with higher NPCs may have this
capability (see the case study example of HOMER in Table 7). Further-
more, HOMER can perform sensitivity analysis on the modeled out-
comes by measuring how sensitive the output could be to changes in the
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input data. This helps with robust decision making in long-term energy
planning. When using sensitivity analysis, the reviewed studies assumed
that changing one parameter did not affect the other parameters hence
the varied parameter was always independent during the sensitivity
analysis. In reality though, in modeling disruptive events in renewable
energy supply, one parameter change can affect the performance of
other parameters significantly. For instance, when simulating the impact
of heat waves on solar PV generation, various factors, including solar
panel efficiency, electricity demand, and transmission line capacity, can
be impacted concurrently. Therefore, when the sensitivity of solar panel
efficiency to temperature is analyzed, overconfident or misleading
conclusions could be reached if the other factors are assumed to be
constant. In such instances, global sensitivity analysis, which has the
capacity to quantify the extent to which the variance in model output is
attributable to each input, including interaction effects, is a useful tool
[156].

Using EnergyPLAN, Mathiesen et al. [96] provide a good example of
taking multi-criteria in addition to cost into account for modeling to
reduce uncertainty (see Table 7). Sections “considered criteria” and
“using socio-economic factors in the modeling of renewable energy
systems” discussed the importance of using multiple criteria, including
cost, to reduce the uncertainty of model outcomes. Although Ener-
gyPLAN is ideal for modeling of short-term rapidly changing events, the
usually used one-year modeling horizon limits the inclusion of long-term
dynamics such as technological advances, aging infrastructure, changes
in energy consumption, and gradual climate change. This makes Ener-
gyPLAN less feasible for long-term forecasting or multi-year transitions.
Therefore, based on the reviewed articles that used EnergyPLAN, it may
not be the ideal simulation tool when modeling for policy-related events
because the effects of such events cannot usually be measured in a single
year [157]. In situations where planning across multiple years is
essential, particularly for assessing policy transitions, investment stra-
tegies, or the progression of emissions over time, it is advisable to utilize
approaches as in Ghanadan et al. [95] with the LEAP simulation.

The LEAP model can be used for scenario-based studies [147] to
explore a wide range of possible outcomes and thereby reduce the un-
certainty in the outcomes. As all simulation models, the LEAP model has
the risk that the choice of scenarios and assumptions may result in
biased results that reflect the perspective of the modeler rather than
objective outcomes (see the case study example of LEAP in Table 7).
LEAP can also develop future forecasts based on certain assumptions
using a simulation approach [158]. Forecasting is useful when future
energy demands are needed to be anticipated for long-term strategic
planning [159]. Compared to scenario-based modeling, forecasting
identifies the most likely pathways and is only effective when ample
information about the disruptive event is available [95]. While LEAP can
be used for long-term forecasting of CO5 emissions as shown in Table 7,
the accuracy of such forecasts is limited by uncertainties in technolog-
ical innovation, policy dynamics, and socio-economic behavior. Once
forecasts are established, they may diverge significantly from reality if
disruptive events such as breakthroughs in clean energy or sudden
regulatory shifts occur. This highlights the importance of scenario
modeling and sensitivity analysis in modeling of disruptive events.

Using optimization methods in disruptive events modeling

In this section, the main optimization-based methods that have been
used to model disruptive events in renewable energy supply are
reviewed. The optimization methods that were used in this study are
shown in Table 6 and Table 8 provides a summary of the strengths and
weaknesses of each reviewed optimization method. The latter also in-
cludes the used cases for each method in the reviewed articles and the
practical relevance of the methods for stakeholders.

Stochastic optimization
The most commonly used optimization method among the reviewed
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Table 7

Major simulation-based models and software that have been used in the reviewed articles. This table provides information about the advantages and drawbacks of
these models and software in the studies considered. For each model, the cases used by the reviewed articles are provided, as well as the model’s suitability for reducing

the uncertainty of the given case. The practical relevance of these modeling tools for various stakeholders is demonstrated based on these used cases.

Model/Software Approach Strengths Weaknesses Applied by Practical relevance of the model/
software for;
EnergyPLAN Uncertain and Can take multi-criteria into Has a modeling horizon =~ Mathiesen et al. [96] used Policymakers:
radically changing account for modeling to of only one year [160]. EnergyPLAN to simulate
events modeling reduce uncertainty. Denmark’s policy for achieving a  Gain insight into long-term

100 % renewable energy system energy transition strategies by
by 2050. The EnergyPLAN simulating key milestone years
software helped to identify and evaluating how well future
effective strategies for scenarios align with short-term
maximizing the use of renewable  policy goals and technical
energy while maintaining the constraints.
stability of the system and
meeting the energy demand in Industry stakeholders:
the year 2050. It considers other Able to test the yearly impact of
criteria such as technical renewable integration, demand
feasibility, economic benefits of fluctuations, and flexibility
the transition to a renewable measures due to long-term
energy-based system, and social transition plans.
impacts which have a fast
changing behavior.

HOMER (Hybrid Lifecycle costs NPC can be used to identify Use of NPC as the sole Ali et al. [49] used HOMER to Policymakers:

Optimization of calculated using total

Multiple Energy net present cost (NPC)
Resources) to select the ideal
configuration

Sensitivity analysis

Scenario based
modeling

LEAP (Long-range
Energy
Alternative
Planning)

the benefits and trade-offs
between multiple
configurations in an effective
and straightforward manner.

Solutions which remain
viable under a range of
conditions can be identified.

Helps consider different
future scenarios, such as best,
worst, and most likely
outcomes, managing
uncertainty from disruptive
events.

modeling criterion
could make the results
less useful for multi-
objective requirements.

Change of only one
parameter at a time is
considered.

Results can be biased by
the modeler’s choice of
scenarios and
assumptions.

10

simulate and analyze the
resilience of different energy
systems during grid disruptions
for a hospital on Lombok Island in
Indonesia. The model analyzed
NPC and cost of energy (COE) for
two scenarios to decide the more
cost-effective setup in case of a
utility power outage. Conversely,
a slightly more expensive option
may offer improved reliability
and sustained power which are
essential for critical purposes like
hospitals or emergency services.
Huseyin [86] used sensitivity
analysis on various factors such
as interest rate, fuel costs, wind
speed, solar radiation, and
maintenance expenses to assess a
hybrid renewable energy
system’s feasibility for city power
supply. Sensitivity analysis
revealed a higher sensitivity of
the energy system’s NPC to diesel
fuel prices and maintenance
costs, with minimal impact from
changes in solar radiation and
wind speed. This reduces
financial uncertainty caused by
solar and wind power
intermittency, allowing modelers
to prioritize diesel price
variations and maintenance costs
for the project.

Asim et al. [116] used scenario-
based modeling in LEAP to
determine the best choice for
Pakistan’s future energy system.
The LEAP model assessed
scenarios for energy use and CO,
emissions to find the most
sustainable and cost-effective
solution. It identified a green
energy option with the lowest
costs as the best system.
However, the use of CO5
emissions may appear to be
biased in favor of getting a green
energy scenario as the ideal
solution.

Support the planning of energy
resilience strategies for critical
infrastructure, particularly in

remote or disaster-prone areas.

Utility supplier:

Use the analysis to prioritize
backup systems emergency
services such as hospitals,
thereby reducing vulnerability
during blackouts.

Disaster Management Agencies:
Identify financial risk in system
disruptions due to price volatility
(e.g., diesel shortages) to enable
better planning for contingency
fuel needs.

Project proponent:

Make informed decisions by
focusing on the most impactful
cost factors and thereby reducing
financial risk.

Policymakers:

Support the decision-making
process by comparing multiple
future energy paths and
identifying the ones that
minimize costs and emissions.

(continued on next page)
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Table 7 (continued)
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Model/Software Approach Strengths Weaknesses Applied by Practical relevance of the model/
software for;
Forecasting Useful when the actual data Once forecasts are Raza et al. [112] used energy Industry stakeholders:
for an event is not readily established, they cannot ~ demand, production and CO, Can anticipate future energy
identifiable. easily adapt to emissions forecasts to model the needs and emission targets,
unexpected changes. energy sector of Pakistan from aiding infrastructure and
the year 2020 until the year 2070.  research and development
However, the results may not planning.
always be accurate when
predicting parameters such as
CO, emissions. This is because
once forecasts are established,
CO;, emissions can change with
technological breakthroughs or
policy changes that could arise
later.
Table 8

Summary of the optimization methods used in the reviewed articles including strengths and weaknesses of each method. For each method, the cases used by the
reviewed articles are provided. The practical relevance of these optimization methods for various stakeholders is demonstrated based on these used cases.

Method Strengths Weaknesses Applied by Practical relevance of the method for;
Stochastic Accounts for uncertainty Requires a lot of data or In Bennet et al. [40], stochastic optimization was  Policymakers:
optimization using probabilistic expertise knowledge to used to identify hurricane risk in energy system

Particle swarm
optimization
(PSO)

Modeling to
generate
alternatives
(MGA)

Robust
optimization

scenarios

Enables more accurate
cost and risk projections
Commonly used in energy
system planning

Efficient in exploring
complex solution spaces

Suitable for multi-
objective and parallel
problems

Fast convergence in
practice

Provides multiple near-
optimal solutions

Past data or probability
values are not required

Provides worst-case
resilient solutions
Lower computational
burden than stochastic
optimization and MGA

assign probability values
High computational
complexity and time

May converge to local
optima

Increased computational
time with the number of
alternative solutions
Requires interpretation of
many alternatives

Can be overly conservative

May lead to higher costs or
rigid plans

planning for Puerto Rico. Their scenarios were
based on different levels of hurricane severity and
the probability of hurricane severity was
calculated using historical data.

Zhao et al. [75] introduced a novel small signal
model for pumped storage units. In this study,
PSO was used to enhance the performance of the
pumped storage plant by considering primary
frequency control, hydraulic damping caused by
the pumped storage plant, and hydraulic damping
caused by surge tanks.

Yang et al. [66] introduced a hybrid power
system for ships, emphasizing the integration of
solar power with a diesel generator. This study
used PSO to reduce fuel consumption and
maximize the diesel generator efficiency of the
ship to improve the efficiency and stability of its
power systems.

Patankar et al. [122] used MGA to generate 160
carbon-neutral electricity generation portfolios
in order to evaluate the land use impacts
associated with solar and wind power generation.
These portfolios were generated with respect to
some qualitative rather than quantitative facts
such as technology options, key trade-offs, and
policy considerations associated with a carbon-
free electricity supply plan.

Henao et al. [37] used robust optimization to
address uncertainty in the Colombian power
sector’s expansion planning. In this case, the
optimization model suggested that in order to
meet Colombia’s electricity demand over the next
15 years, even under adverse conditions, 37.8 GW
of solar PV and 2.1 GW of wind power should be
installed

Helps in formulating disaster response
strategies and infrastructure investment
strategies that take risk into account and are
tailored to high-risk regions.

Disaster management agencies:

Assists with contingency planning by
identifying system vulnerabilities and
anticipated performance under various
scenarios related to natural disasters.
Plant operator:

Help to optimize complex operations and
reduce downtime in critical infrastructure.

Policymakers:

Supports grid stability regulations by
demonstrating the role of flexible power
plant operation (pumped storage in this
instance) in improving grid performance.
Heavy machinery industry:

Provides cost beneficial plans to improve
fuel efficiency in complicated machines with
numerous systems.

Policymakers:

Enables the exploration of multiple viable
options that incorporate non-quantifiable
sociopolitical concerns, such as land use and
public acceptance.

Investors:

Supports flexible investment strategies and
adaptation to a range of feasible regulatory
and market scenarios.

Disaster management agencies:

Ensures that critical power systems remain
operational in high-impact, low-probability
scenarios, thereby enhancing emergency
resilience.

Policymakers:

Provides long-term, conservative
infrastructure investment strategies which
maintain energy security even under
extreme conditions.

11
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optimization-based articles is stochastic optimization (see Table 6). This
approach is primarily used for problems that involve uncertainty
because it introduces randomness into the optimization process [161].
Rather than relying on deterministic assumptions that may not hold in
the real world, the inclusion of randomness allows the model to account
for a wide range of possible scenarios. Therefore, similar to HOMER and
LEAP, stochastic optimization also considers multiple scenarios [162].
Each scenario represents a possible outcome for an uncertainty factor
related to the optimization problem, which is assigned with a probabi-
listic value [162]. There are several advantages to the use of probability
values in the optimization process. In the study of Bennet et al. [40] (see
Table 8), inclusion of probability values helps authors make more
informed decisions by taking into account the likelihood of hurricane
events and their impact on the power grid. It also allows for more ac-
curate cost projections by factoring in potential damage and required
rebuilding following hurricanes. This makes stochastic optimization an
ideal method for uncertain probabilistic disruptive events modeling (e.
g., natural disruptive events such as floods). Calculating or identifying
the feasible probability value is very important in stochastic optimiza-
tion in order to obtain accurate results. However, reliance on accurate
probability distributions can be difficult to define for rare or unprece-
dented disruptive events. In such cases, robust optimization offers a
practical alternative by focusing on worst-case scenarios without
needing probability values.

Linear programming (LP) is a powerful mathematical technique that
is used to find the best possible outcome in a given mathematical model
represented by linear relationships [163]. However, LP lacks the ability
to incorporate uncertainty and without this, LP cannot effectively
manage or mitigate risk [164]. For example, in the supply of renewable
energy, factors such as weather patterns, equipment failures, or market
prices are inherently uncertain. LP in its basic form would have difficulty
providing robust solutions that account for these uncertainties, resulting
in solutions that may not perform well under real-world conditions.
Therefore, stochastic optimization can be considered a technique that
combines the advantages of both LP and simulation [165]. In addition,
the fact that stochastic optimization is the most commonly used opti-
mization method as identified in this review shows that it could deal
with the uncertainty of disruptive events to a greater extent. However,
solving exact stochastic optimizations is also associated with signifi-
cantly higher model complexities and longer computing times compared
to simulations [166]. On such occasions, metaheuristic approaches such
as particle swarm optimization (PSO) can provide faster, approximate
solutions in large and complex problem spaces.

X1
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Particle swarm optimization

The metaheuristic particle swarm optimization (PSO) is also used in
several of the reviewed studies. PSO was developed based on the social
behavior of flocks of birds and uses an iterative process to identify and
update the best solution following each iteration [167]. Therefore, it can
be used in computationally-intensive applications, because it can
explore the solution space in parallel, which speeds up the optimization.
Table 8 includes two used cases of PSO from the reviewed articles. These
cases demonstrate the effectiveness of the PSO model in coordinating
conflicting objectives and thus providing decision support to operators
for complex tasks. PSO’s ability to explore a wide range of solutions
effectively avoids oversimplified or unstable solutions that might not be
ideal for modeling disruptive events in renewable energy supply,
thereby reducing uncertainty. Although PSO is suitable for complex,
computationally-expensive problems, it carries the risk of not being able
to escape local optima [168]. This can be problematic when global op-
tima are required, especially when modeling critical disruptive events.
For example, a local optimum could lead to a sub-optimal system design
that reduces only costs but does not provide adequate backup during a
critical grid failure. Furthermore, due to the possibility of converging to
a local optimum, PSO is less reliable for modeling worst-case disruptive
events.

Modeling to generate alternatives

Some of the problems related to disruptive events in renewable en-
ergy supply are qualitative rather than quantitative in nature (e.g., user
acceptance of a policy decision). Therefore, it is sometimes difficult for
the modelers to translate these into a mathematical formula. Modeling
to generate alternatives (MGA) has been developed as a solution to this
[169]. In this review, MGA has been used in studies in the socio-political
[93,94,122] and economic [123] categories of disruptive events. MGA
provides multiple feasible near-optimal solutions that differ significantly
from each other and may be evaluated significantly better than the
optimal solution [170]. Fig. 6 shows how the optimal solution and the
results of the MGA are illustrated in the near-optimal region for a
problem with two decision variables. In the MGA formulation, an
additional constraint is introduced in order to identify the region of the
near optimal solutions as shown in the figure.

When it comes to energy system modeling, due to the uncertain
nature of the real world disruptive events, a single optimal solution may
not be able to satisfy all the requirements set by decision makers [171].
However, if there are alternative near-optimal solutions that fall within
the appropriate bounds of these requirements, there is a greater chance

@ Solutions in the feasible space

QO Solutions in the near optimal
feasible space

@ Maximally different near optimal
solutions

@ Optimal solution

I:l Feasible solutions space

I:I Near optimal solutions space

X2

Fig. 6. Illustration of near-optimal solutions of the MGA problem with two decision variables. An additional constraint is introduced for the identification of the
near-optimal solution space within the feasible solution space. Maximally different near-optimal solutions are identified compared to the optimal solution.
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that one or more of them will satisfy the decision makers. These alter-
native solutions are similar to the different scenarios used in stochastic
optimization. However, in MGA, these solutions are identified by the
optimization model during the optimization rather than the modeler
defining each scenario prior to optimization. These alternative solutions
can also be used as a tool for reducing risk. For example, MGA can
explore flexible solutions that can adapt to changing circumstances,
such as the integration of different types of renewable energy sources or
varying levels of storage and demand response in the event of disruptive
events. Furthermore, MGA offers a variety of system configurations that
can all achieve the same objective (e.g., net-zero emissions), but with
different combinations of technologies or investments. This flexibility
allows policymakers to test multiple approaches and reduce their reli-
ance on one policy assumption. However, the computation time may
increase when a larger number of alternative solutions are generated by
MGA [172]. This is especially true for optimizations that involve
detailed weather patterns, regional renewable energy networks, and
market dynamics. To address this issue, metaheuristic methods, such as
particle swarm optimization, can be integrated with MGA. This allows
for the efficient exploration of a broad solution space while keeping
computational demands manageable.

Robust optimization

Robust optimization is another relevant method for the modeling of
disruptive events. Robust optimization also generates multiple solutions
to the uncertain parameters and, at the same time, ensures that the
optimal solution, which is based on a robustness criterion defined by the
modeler, performs well in all scenarios [173]. Thus, robust optimization
is ideal when planning for a worst-case scenario with respect to a
disruptive event. Although the worst-case scenario may not be the most
cost-effective solution, it is important to have a worst-case solution in
place in case of uncertain critical disruptive events. When modeling
high-probability disruptive events, this approach is very helpful because
it greatly reduces the uncertainty of not having a robust energy system in
the face of such events. Furthermore, robust optimization is beneficial
for modeling socio-political and economic disruptive events because the
worst-case result of such crucial events can be observed beforehand in
the event of a critical error. Compared to stochastic optimization, robust
optimization does not require probability values, and at the same time
the computational complexity is lower [174]. When robust optimization
is being used, modelers should pay special attention to ensure that the
occurrence of the disruptive events is not overestimated. For example, if
the energy system is designed to withstand the worst 1 % of hydro-
electric power availability due to a drought, but in reality, if the prob-
ability of getting less than 10 % of hydroelectric power is very low, the
model will oversize storage and backup capacity, increasing costs
significantly.

Using modeling tools to enhance resilience and sustainability of renewable
energy systems

In Sections “using simulation tools in disruptive events modeling”
and “using optimization methods in disruptive events modeling”, the use
of various features to reduce uncertainty in the outcome of disruptive
events related to renewable energy supply by simulation tools and
optimization modeling methods has been analyzed. The impact of each
feature’s strengths and weaknesses on the uncertainty surrounding the
modeling outcomes has also been examined. These features used are
summarized in Fig. 7. Some of the models and methods have more than
one uncertainty reduction feature (e.g., LEAP or stochastic optimiza-
tion). The figure also shows that some features are applied by both
simulation models and optimization methods (e.g., scenario modeling).
Combining the strengths of individual features could lead to enhanced,
resilient modeling outcomes. The effectiveness of the combined features
in modeling disruptive events related to renewable supply was deter-
mined by examining which features have been used in combination in
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Fig. 7. Comparison of simulation software/models and optimization methods
used in the reviewed articles. These software, models and methods are linked to
various features which are used to reflect the uncertainty of the model outcome.
Colors are used to represent different features associated with each software/
model/method.

the reviewed articles.

Of the 59 reviewed articles that used optimization in this review,
only three used combined optimizing models. The used combination of
optimization methods are hybrid stochastic — robust optimization
[37,38] and combined Monte Carlo — MGA [94]. All hybrid stochastic —
robust optimization-based studies are related to the natural category of
disruptive events. According to Piltan et al. [46], stochastic — robust
hybrid optimizations can identify the optimal solutions in less compu-
tation time compared to non-hybrid optimization methods. Perera et al.
[38], used stochastic optimization to consider high-probability, low-
impact scenarios to reflect typical climate variations in Sweden. At the
same time, robust optimization was used to ensure system reliability
during low-probability, high-impact extreme weather events. The au-
thors applied this method to 30 Swedish cities and found that the hybrid
algorithm prevented significant performance gaps and power supply
drops that could arise from either neglecting extreme events or failing to
account for common variations in demand and supply. A balanced trade-
off between economy and security is achieved when both methods are
used, and the energy system is made cost-efficient during normal op-
erations and resilient during extreme conditions. This shows that sto-
chastic optimization is a reliable and affordable approach to planning,
especially when dealing with common variations. However, it might not
be prepared for rare and extreme situations if it is used as the only
planning method. Although robust optimization ensures system resil-
ience in worst-case scenarios, it could be overly conservative and
expensive if used alone.

Monte Carlo optimization, like stochastic optimization, involves
incorporating randomness into the optimization process. However, un-
like in stochastic optimization, uncertainty is captured through random
sampling from probability distributions assigned to input variables
[175]. Li & Trutnevyte [94] show that by combining Monte Carlo
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modeling with MGA, energy economy models can be better linked to
power system models, which provides an advanced approach to uncer-
tainty analysis. The authors explored technologically diverse pathways
and their associated total costs to assess the future transition pathways
for the electricity sector of the United Kingdom. The combined model
allowed for a comprehensive exploration of uncertainty across multiple
parameters, including policy, technology, and cost. By applying MGA in
combination with Monte Carlo analysis, the authors investigated not
only the cost-optimal but also the near-optimal pathways. The near-
optimal pathways help to identify a variety of technologically
different pathways that have similar total costs, providing multiple so-
lutions rather than a single deterministic outcome. When combined with
Monte Carlo, this helps decision-makers understand which configura-
tions are robust and which are fragile under uncertainty. Monte Carlo
focuses on quantitative uncertainty, meaning it is designed to handle
uncertainty that can be described with numerical values and statistical
distributions [175]. In contrast, qualitative constraints such as stake-
holder preferences and political acceptability can be incorporated into
MGA'’s processes. Consequently, combined Monte Carlo-MGA models
have the capacity to generate solutions that are not merely mathemat-
ically optimal but also socially and politically viable.

Jing et al. [41], who considered extreme weather events in urban
energy system planning, used an iterative combination of optimization
and simulation approaches due to the computational cost of mixed
optimization approaches. The objective of the study was twofold: first,
to determine the optimal configuration and operation strategy for urban
energy systems using stochastic optimization; and second, to validate
whether the optimized strategy can meet critical energy demands during
extreme weather events using simulations. This study shows that a
mixed optimization and simulation approach helps planners make
balanced decisions regarding the resilience, adaptability, and efficiency
of energy systems. Disruptions in the supply of renewable energy can
sometimes lead to non-linear cascading effects, such as grid instability or
sudden changes in market prices. Hybrid simulation-optimization
methods allow to explore these interactions in simulations, while opti-
mization finds the best response strategy (e.g., dispatching storage,
managing demand). In addition, hybrid simulation-optimization
methods can be used to combine short and long-term decision making.
For example, when modeling an event such as a blackout or dark
renewable lull (dunkelflaute), simulations can model short-term oper-
ational behavior such as how real-time grid balancing works during the
event. Then optimization can focus on long-term investments and
planning such as for storage installations or transmission line expansion.
Similarly, for the integration of renewable energy sources into the power
grid, a combined simulation and optimization technique can be used for
scheduling and dispatching of energy. Through the simulation of grid
disturbances such as power outages or demand fluctuations, these
models can optimize the integration process to maintain grid stability.
Therefore, hybrid simulation-optimization methods enable strategic
planning that remains effective in real operational conditions.

Findings on Section “Discussion” prove the hypothesis presented in
Section “Introduction”, that is the integration of appropriate modeling
techniques significantly enhances the resilience and sustainability of
renewable energy systems when subjected to disruptive events.

Summary and conclusions

The number of disruptive events that could threaten the growing
supply of renewable energy around the world is increasing. Adequate
modeling of these events is critical for robust renewable energy supply
planning against such events. In order to address this prompt require-
ment, the present study systematically assessed how the impact of
various disruptive events on the supply of renewable energy can be
quantified and mitigated through the use of modeling techniques. These
disruptive events were categorized based on the cause of the respective
events, namely natural, human-caused intentional, socio-political, and
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economic. The impact of each category of disruptive events on different
demand sectors was also identified and the system boundaries such as
technology focus, location, and spatial resolution modeled in the
reviewed studies were further analyzed.

This review addressed the importance of economic and social factors
in the modeling of renewable energy systems and how these factors can
be effectively integrated to reduce uncertainty. The reviewed studies
used many criteria to evaluate the impact of the disruptive events.
Among these, cost was primarily used to indicate the impact of the
disruptive events. Disruptive events such as natural disasters, geopolit-
ical tensions, or technology failures can have a significant impact on the
cost of energy production and distribution. Therefore, cost-based
modeling is useful in the assessment of the financial risk associated
with renewable energy projects. Some studies used modeling criteria
other than cost. This enables multiple factors to be considered simul-
taneously, including economic, environmental, social, and technical
aspects associated with disruptive events. Criteria such as stakeholder
satisfaction ensure broader sustainability goals and the long-term suc-
cess of projects such as large-scale onshore wind farms.

Furthermore, this study investigated how stakeholders can benefit
from these modeling methods to enhance resilience and mitigate risk in
renewable energy supply, leading to more accurate model outcomes.
The reviewed modeling approaches offer valuable decision-support in-
sights for various stakeholders such as investors and disaster manage-
ment agencies by enabling risk-informed planning, robust infrastructure
investment, and adaptive system design. Sometimes, policymakers in
renewable energy planning have strong concerns that are not addressed
by most models, such as geopolitical dynamics, social equity, and public
opinion. Therefore, due to these factors that are difficult to quantify in
techno-economic models, feasible suboptimal solutions that can be ob-
tained from modeling methods such as MGA may be preferable.

This review shows that simulation and optimization modeling are
both critical for assessing the impact of disruptive events on renewable
energy systems, though they have different strengths and limitations.
Simulation tools, particularly those using scenario-based and forecasting
techniques, are effective for exploring uncertainty and system behavior
under various disruption scenarios. However, in some of these tools,
their usefulness is constrained by narrow time horizons or modeling
scope. Conversely, optimization methods provide targeted strategies for
allocating costs and resources with strategies including probabilistic
modeling, generating alternative solutions, and worst-case planning.
Each of these approaches offers a different degree of resilience and
adaptability. The evidence indicates that a single modeling method is
not sufficient on its own. Rather, integrating multiple modeling features
can enhance the realism and robustness of planning outcomes.

Therefore, this study examined how the integrated modeling
methods could enhance the resilience and sustainability of renewable
systems in the face of disruptive events. It is identified that combined
optimization methods could combine the advantages of individual
methods and thereby increase the robustness and flexibility of long-term
planning under uncertainty. Similar to combined optimization, hybrid
simulation and optimization techniques can provide a more compre-
hensive risk assessment by evaluating how optimized plans perform
under simulated disruptions. Despite their advantages, there is still little
focus on using combined approaches in modeling renewable energy
supply based disruptive events..

In light of these findings, the following recommendations and limi-
tations of this study could be helpful for future researchers regarding the
modeling methods that can be used to reduce uncertainty in disruptive
events in renewable energy supply.

Limitation

This study primarily focused on simulation and optimization ap-
proaches, which accounted for over 96 % of the reviewed articles. As a
result, less attention was given to other modeling techniques such as
econometric and statistical models. While these were not the focus of
this review, their potential in addressing uncertainty in disruptive event
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modeling for renewable energy systems should be explored in future
research.
Recommendations.

L. Identifying suitable modeling criteria is very important. Rather
than focusing on one criterion, using multiple criteria, such as
stakeholder satisfaction alongside cost, can help reduce uncer-
tainty in model outcomes by providing a more balanced approach
from an economic and social perspective.

II. Due to their ability to explore the system-wide impacts of

different types of disruptive events over multiple narratives,

scenario-based simulation models should be preferred when
quantitative precision is limited. Also, optimization methods such
as modeling to generate alternatives (MGA) should be used to
support decision-making under uncertainty when probability
data is scarce, or qualitative policy concerns are more important.

Development and application of combined optimization and

hybrid simulation-optimization approaches should be promoted

to improve the robustness and adaptability of renewable energy
system planning under disruptive events.

III.

Thus, combined optimization methods and hybrid simu-
lation-optimization methods could open new avenues for the future
modeling of disruptive events in renewable energy supply.
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