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A B S T R A C T

The accelerating shift toward renewable energy necessitates robust planning frameworks that can accommodate 
unexpected disruptions. While various energy system modeling methods are widely used for planning and 
decision-making, they each have their own strengths and weaknesses in capturing uncertainty in the outcomes of 
disruptive event modeling. This review addresses a critical research gap by systematically analyzing how such 
methods quantify and mitigate the impact of disruptive events on renewable energy supply. It is the first to 
comprehensively assess modeling approaches specifically in this context. The study categorizes 108 disruptive 
events from 102 articles into four primary types: natural (e.g., floods, heatwaves), human-caused intentional (e. 
g., technological innovations), socio-political (e.g., wars, policy changes), and economic (e.g., interest rate shifts, 
carbon tax changes). Articles were selected using a PRISMA-compliant methodology from multiple sources, 
applying strict inclusion criteria: relevance to renewable energy, a clear focus on disruptive events, and use of 
modeling methods. Findings confirm the hypothesis that incorporating broader socio-economic and environ
mental criteria into modeling improves the robustness and realism of planning under disruptive conditions. The 
review shows that relying on one modeling objective such as cost often limits the ability to capture uncertainty 
and stakeholder concerns. Instead, models that integrate multiple criteria and generate a range of feasible so
lutions offer more resilient and adaptable planning outcomes. The study recommends combining complementary 
modeling strategies and tailoring criteria to stakeholder priorities. Such combined modeling approaches are well 
suited to future studies, enabling flexible, risk-informed, and context-sensitive modeling of disruptive events in 
renewable energy supply systems.

Introduction

Under the 2015 Paris Agreement, 195 countries pledged to limit 
global warming to below 2 ◦C above pre-industrial levels by reducing 
greenhouse gas emissions [1]. In the wake of the Fukushima nuclear 
accident in March 2011, countries such as Switzerland and Germany 
have accelerated the phase-out of nuclear power in light of the possi
bilities of nuclear accidents [2]. For such countries, it is therefore crucial 
to accelerate the deployment of renewable energy supply in order to 
comply with the requirements set out in the Paris Agreement.

In recent decades, several events such as the European heat waves of 
2003 and 2022 [3], the Covid-19 Pandemic [4] and the Rus
sian–Ukrainian War [5], have had adverse effects on daily human ac
tivities. Similarly, these types of disruptive events can have a huge 

impact on power generation. For example, nearly 2.3 GW of renewable 
energy installations in India were delayed due to lack of access to supply 
chains during the Covid-19 pandemic in 2020. [6]. As previously stated, 
accelerating the renewable energy supply is of paramount importance 
for countries. It is therefore essential that future power system planning 
considers the impact of such disruptive events on renewable power 
supply.

What is a disruptive event?

The simple definition of the term “disruptive event” implies that it 
has an extreme outcome. Broska et al. [7] note that an extreme event is a 
dynamic situation with a limited time frame that can affect the func
tioning of a system. Using the European Blackout of 2006 as a case study, 
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the authors explain how the removal of a high-voltage transmission line 
disrupted the functioning of the entire European electricity system for a 
period of two hours. The study further suggests that the impact of a 
disruptive event on a system is based on some characteristics of the 
affected system, such as its responsiveness to disruptive events. Ac
cording to Aquino et al. [8], although disruptive events have significant 
consequences for the individuals experiencing them, these effects do not 
occur equally across the entire population. The study shows that 
severely limited financial, social, and cultural resources are likely rea
sons for the variations in the impact of disruptive events on people 
experiencing them. Mentges et al. [9] show that a disruptive event 
causes a loss of performance and, as a result, a system cannot fully 
absorb its impact. It shows that natural disasters, human or technical 
errors, intentional sabotage, or even organizational policy decisions, can 
induce a loss of performance in a system, making such activity a 
disruptive event.

Many disruptive events, particularly natural disasters, lead to nega
tive consequences, such as infrastructure damage and service in
terruptions. However, not all disruptions are inherently harmful. 
Human-caused intentional events such as technological innovations 
can act as positive disruptions that improve system performance [10]. 
For instance, advancements in digital technologies, including artificial 
intelligence and the Internet of Things (IoT) have been pivotal in 
transforming renewable energy systems [11]. These innovations 
improve grid stability, optimize energy storage, and facilitate the inte
gration of variable energy sources by enhancing the overall resilience of 
energy infrastructures [12]. Fig. 1 is a hypothetical illustration that 
shows the positive impact of technological innovation, using the cu
mulative solar PV electricity generation in a region as an example. It 
shows the difference in impact between a positive and negative 
disruptive event in a single figure. In a disruptive event such as a solar 
storm, photovoltaic cells can degrade significantly due to intense solar 
radiation [13]. As a result, solar PV generation will be negatively 
deviated compared to ordinary operation. In contrast, a disruptive 
event, such as the replacement of the PV modules with a more efficient 
one would have a positive impact due to the supply of more solar energy 
[14]. Therefore, it would have better outcomes compared to the ordi
nary operation.

Types of modeling techniques

Energy system modeling is an important tool that is being used not 
only to obtain future predicted values related to energy planning but 
also as a management tool for better decision-making [15]. Sub
ramanian et al. [16] demonstrate that, based on the modeling approach, 
energy system models can be broadly classified into three categories: 
computational models, mathematical models, and physical models. 

Mathematical models employ either statistical techniques based on 
regression and optimization or theoretical and first-principle-based 
mechanistic models [16]. In the mathematical model based approach, 
optimization based modeling usually minimizes the total cost of an en
ergy system over a selected time period based on demand and supply 
constraints [15]. Simulation-based modeling is another modeling 
approach that involves the solving of mathematical models with the 
intention of gaining an insight into how the system will function in 
response to different operational conditions [16]. This approach enables 
to investigate scenarios that may otherwise be too costly or otherwise 
infeasible in a real-world setting [16].

Research objectives

These different modeling approaches have their own advantages and 
disadvantages, and therefore it is important to analyze which ap
proaches are more suitable when modeling disruptive events in the 
context of renewable energy supply. This review on modeling disruptive 
events in renewable energy supply was conducted to address this timely 
requirement. It primarily explores how the impact of different disruptive 
events on renewable energy supply can be quantified and mitigated 
through various modeling techniques. This review provides a compre
hensive overview of the various disruptive events in the supply of 
renewable energy by conducting a systematic review of a wide range of 
disruptive events across diverse categories. Based on the research 
objective, this study is guided by the following hypotheses: 

1. The integration of appropriate modeling techniques significantly 
enhances the resilience and sustainability of renewable energy sys
tems when subjected to disruptive events.

2. Incorporating socio-economic factors into energy system modeling 
reduces uncertainties in planning for disruptive events and leads to 
more robust and context-sensitive outcomes.

To the best of the authors’ knowledge, no review has yet been pub
lished on the modeling of disruptive events specifically in renewable 
energy supply. Hanna and Gross [17] conducted a review on disrup
tiveness based on the definitions given by Refs. [19] and [20] based on 
30 articles. Their study focused on different model types (e.g., optimi
zation and partial equilibrium models, simulation and agent-based 
models). Individual optimization methods such as Monte Carlo optimi
zation and modeling to generate alternatives (MGA) have been dis
cussed in the context of energy system modeling. However, less focus 
has been placed on individual simulation tools. Additionally, Hanna and 
Gross [17] investigated the importance of hybrid modeling methods 
through integration of general agent-based and differential equation 
models and soft-linking models. The present study investigated how the 

Fig. 1. Hypothetical illustration of the impacts of positive and negative disruptive events on ordinary operation of solar PV electricity generation. Disruptive events 
such as solar storms could have a negative impact while disruptive events such as using efficient solar PV modules have a positive impact. As this is a hypothetical 
representation, not all effects are included in the course of the curves, such as the time required to replace the PV modules.
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combined individual optimization methods and combined general 
optimization-simulation models can be used for enhancing the resilience 
and sustainability of renewable energy systems in the face of disruptive 
events.

The remainder of this review focuses on the review methodology 
used, categorization of the results obtained, a discussion regarding the 
evaluation of the modeling techniques that have been used in the results, 
and, finally, the conclusions.

Review methodology

In order to answer the primary research question and test the two 
research hypotheses, it is paramount that literature relevant to disrup
tive events in renewable energy supply is identified as much as feasible. 
To identify the relevant literature for review, a keyword-based search 
related to the modeling of disruptive events in renewable energy supply 
was first conducted in the Scopus literature database [18]. Scopus was 
used for the primary literature search because it covers a wider range of 
journals [19] and more recent sources [20] than other databases. The 
following search string for this keyword-based search was used:

TITLE-ABS-KEY ((“renewable*”) AND (“energy system*”) AND 
(“disruptive” OR “disorder*” OR “uncontrollable” OR “conflict” OR “war” 
OR “clash” OR “invasion” OR “disaster” OR “catastrophe” OR “calamity” 
OR “pandemic” OR “crisis” OR “upheaval” OR “extreme weather” OR 
“geo politic*” OR “innovation” OR “novel technology”) AND (“generation” 
OR “capacity” OR “supply”) AND (“simulation” OR “modeling ” OR 
“optimization” OR “analysis”)) AND (LIMIT-TO (DOCTYPE, “ar”)).

The idea was to include as many keywords related to disruptiveness 
as possible. Therefore, synonyms relating to disruptiveness were used (e. 
g., disorder, disaster, catastrophe) based on exploratory testing. At the 
same time, the most prominent keywords related to disruptive events 
occurred during the past few years (e.g., pandemic, crisis, war) and their 
synonyms (e.g., clash, upheaval) were included in order to increase the 
search range. Furthermore, key words such as innovation and novel 

technology were deliberately incorporated to encompass positive 
disruptive events. The search was then narrowed only to articles related 
to renewable energy supply. This keyword-based search yielded 395 
relevant research articles.

A systematic literature review method corresponding to the 
“Preferred Reporting Items for Systematic review and Meta-Analyses” 
(PRISMA) [21] was used in order to filter and identify the most relevant 
literature for this review (see Fig. 2). Initially, all the 395 articles were 
screened based on the title and abstract. Based on the title and abstract, 
articles which were in a language other than English (e.g., Ref. [22]) and 
articles that had a study focus outside a modeling of disruptive event in 
renewable energy supply (e.g., Refs. [23,24]) were excluded. During the 
next step of the screening process, articles that did not have a clear focus 
on a disruptive event (e.g., Refs. [25,26]) or did not follow a modeling 
approach (e.g., Refs. [27,28]), or the focused technology in the article 
was not related to renewable energy (e.g., Refs. [29,30]) were excluded 
based on the full content of the articles. In addition to the search results 
obtained from the keyword-based search in Scopus, 24 additional sci
entific articles obtained from Google Scholar and through citation 
tracking have been included. The same exclusion criteria that applied to 
the articles obtained from the keyword-based search were also applied 
to these additional articles. Importantly, none of these 24 articles met 
any of the aforementioned exclusion criteria, meaning that all of them 
were ultimately included in this review, except for one article that was 
not peer-reviewed at the time of this study [31].

Based on these filter criteria, a total of 102 relevant articles for this 
review were obtained. Exclusion or inclusion criteria applicable to all 
419 articles and the summary of the data extracted from the selected 102 
articles is available for download on Jülich Data [32] in Microsoft Excel 
format. This study and the results outlined in the following sections of 
this review are based on the results of these 102 selected articles pre
sented in this Excel document.

Fig. 2. Flow diagram representing the systematic literature review process as per the guidelines set out by PRISMA.

L. Wijesinghe et al.                                                                                                                                                                                                                             Sustainable Energy Technologies and Assessments 83 (2025) 104561 

3 



Results

This section presents the main findings of the analysis of the 102 
studies. Section “category of disruptive events and impacts” shows the 
categorization of the disruptive events and their impacts and Section 
“system boundaries” the system boundaries of the reviewed studies. In 
Section “considered criteria”, the criteria that have been used to model 
the disruptive events in the reviewed articles are analyzed to test the 
research hypothesis on the role of socio-economic factors in the 
modeling of renewable energy systems. The different types of models 
and methods used by the studies are analyzed in section “models and 
methodologies”. These modeling techniques will be used to assess how 
the impact of different disruptive events on renewable energy supply can 
be quantified and mitigated.

Category of disruptive events and impacts

The reviewed articles contain a total of 108 disruptive events related 
to renewable energy supply, including similar types of disruptive events. 
First, these 108 events were categorized based on the cause of the event. 
From an organizational perspective, disruptions can be classified into 
three main categories, namely natural, negligent, or intentional [33]. 
However, based on the reviewed disruptions in renewable energy sup
ply, this categorization was further extended into events related to 
natural, human-caused intentional, socio-political, and economic factors 
(see Table 1). The articles that were obtained for this review using the 
methodology described in Section “review methodology” were pub
lished between 2003 and September 2023, with the publication trend 
shown in Fig. 3a. A significant increase in the number of studies after 
2018 in almost all categories of disruptive events can be observed.

Furthermore, the different types of disruptive events have an impact 
on different demand sectors. In the reviewed studies, four types of de
mand sectors to which the generated renewable energy is coupled could 
be identified, namely electricity, fuel, hydrogen, and heat. Fig. 3b shows 
which disruptive event category had an impact on which demand sector 
in the reviewed articles. In each disruptive event category, the primary 
demand sector focused on was electricity. The reason for this could be 
that the term renewable energy supply is mainly associated with elec
tricity generation. The following is an analysis of the impact of the 
various categories of disruptive events on the various demand sectors.

In the natural category, all the natural hazards or disruptive events 
that were caused by a natural effect were included. Strong winds from 
hurricanes or tornadoes can cause damage to wind turbines, resulting in 
the breakage of blades or the collapse of entire turbines or wildfire 
smoke and particulates can block sunlight, significantly reducing solar 
panel output. In the natural category, there has been a focus during the 
recent half-decade on the impact of extreme weather events 
[38,41,43,45,49], global warming-related ones such as heat waves 
[37,39,52], and droughts [51], which can critically affect renewable 
energy supply. A low focus, with only one study, was in the case of 
natural disruptive events affecting hydrogen production [43]. 

Nevertheless, more attention should be paid to this issue, as future en
ergy systems will have a larger share of green hydrogen, while natural 
disasters continue to increase.

In the human-caused intentional category includes the disruptive 
events caused due to a new technological innovation. For example, in
novations in solar panel materials can significantly increase the effi
ciency of the conversion of sunlight into electricity [14]. Higher 
efficiency means that more electricity can be generated from the same 
amount of surface area, making solar energy more viable in regions with 
less sunlight. A more stable and reliable energy supply can be achieved 
through innovations in hybrid systems that combine different renewable 
energy sources (e.g., solar and wind) with storage [136]. In the human- 
caused intentional category, the number of studies increased continu
ously due to new technical improvements in the renewable energy 
supply. These improvements include the use of hybrid energy technol
ogies [39,67], improved wind turbine selection process for new wind 
plants [61], and novel wind turbine foundation design [91]. The cate
gory human-caused intentional includes most disruptive events, mainly 
due to a high proportion of studies focusing on new inventions in the 
field of renewable energy supply. In particular, there was a higher focus 
on green hydrogen production in articles [65,85,88,89] published dur
ing the last four years. In contrast, there was little focus on the fuel 
sector, which has primarily emphasized biofuel production (e.g., 
Ref. [98]).

The socio-political category includes events caused by social activ
ities or political decisions. Investors may view politically unstable re
gions as high risk, resulting in reduced investments for renewable 
energy projects [137]. The result can be a slowdown in the deployment 
of renewable energy even in regions with significant potential. Local 
opposition due to concerns about visual impact (e.g., Ref. [138]), noise, 
land use, or environmental impacts can arise for renewable energy 
projects such as wind farms or large solar installations [139]. This can 
cause projects to get delayed, cost more, or even cancelled [140]. After 
2021, a steep increase in the number of articles written in the socio- 
political category could be observed, mainly due to the impact of 
renewable energy supply as a result of the Covid-19 pandemic 
[111,113,118] and the Russian–Ukrainian war [115]. The energy crises 
due to the war between Russia and Ukraine was a major reason for 
disruptive events regarding heat demand in the socio-political category 
(e.g., Ref. [115]).

The events related to economic reasons are included in the economic 
category. The occurrence of economic problems can result in the 
imposition of higher interest rates, which can consequently elevate the 
financial burden associated with the procurement of capital for renew
able energy projects [141]. Subsidies, tax credits and other incentives 
that support renewable energy may be reduced or eliminated by gov
ernments facing economic difficulties [142]. Without this financial 
support, the viability of renewable energy projects may be reduced. 
Comparatively, only a small number of studies have focused on 
economically-related disruptive events. However. the number of articles 
in this category increased in the last few years due to the effects of 
changes in carbon emission trading [70,130,132] and carbon tax related 
to renewable energy supply [125,126,133].

System boundaries

This section outlines the system boundaries that have been consid
ered by the reviewed studies. Section “considered technologies” includes 
the types of different energy technologies that were considered, whereas 
section “spatial resolution and location” shows the geographical scope 
related to the case studies.

Considered technologies
The reviewed articles considered different renewable energy tech

nologies. 19 of the 102 studies focused on a single energy technology, 
while [38,103,105,127] did not specify the technology they focused on. 

Table 1 
Categorization of disruptive events in this literature review.

Category Example disruptive events Studies No. of 
studies

Natural Hurricanes, floods, heat 
waves, droughts

[34–53] 20

Human-caused 
intentional

Invention of high 
efficiency solar cells, novel 
hybrid energy systems

[47,54–92] 40

Socio-political Wars, oppositions by 
society, new energy 
policies

[35,37,93–122] 32

Economic Increase in interest rates, 
reduction in carbon tax

[70,102,120,123–135] 16
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Fig. 3. a. Three-year moving average number of articles in each category that have been published in each year. Articles published from 2003 to 2011 do not show a 
clear trend hence omitted in this figure. b. number of disruptive events that focused on the four demand sectors of electricity, fuel, hydrogen, and heat demand in 
each category of disruptive event.

Fig. 4. Overview of the number of articles including specific technologies. If two nodes are connected by an edge, the number of articles that include both two 
connected technologies is displayed on the edge.
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Instead, the latter studies treated all renewable energy technologies as a 
single energy source. The remaining studies focused on multiple tech
nologies, including conventional ones such as coal, natural gas, nuclear 
energy, and diesel generators, in addition to their renewable energy- 
based counterparts. However, in this review, only renewable energy- 
related technologies have been considered. The frequency of consider
ation of each energy technology in the reviewed articles is shown in 
Fig. 4.

Solar photovoltaic (PV) systems were the most modeled technology, 
appearing in 72 of the 102 studies (see Fig. 4). Notably, 68 of these 
studies combined solar PV with other technologies, such as stationary 
batteries or fuel cells with hydrogen storage, reflecting the need for 
complementary systems to address PV’s intermittency. Several studies 
examined the resilience of hybrid systems under disruptive conditions 
such as pandemics or natural disasters, highlighting growing interest in 
integrating mobility and stationary storage into energy planning (e.g., 
Refs.[46,111]). Studies on battery–electric vehicles and stationary bat
tery storage were also included if the usage of these technologies directly 
relates to renewable energy supply. Although fuel cell vehicles have 
emerged as a promising technology, particularly for the transportation 
sector [143], very few studies have addressed their vulnerability or 
performance under disruptive conditions. This points to a significant 
research gap in this regard. The notable insights for the main energy 
technologies identified in the reviewed articles are summarized in 
Table 2, which was developed by combining the findings in Sections 
“category of disruptive events and impacts” and “considered 
technologies”.

Spatial resolution and location
Table 3 presents the studies that focused on the different types of 

geographic scopes. 14 did not disclose this information. Of these 14 
studies, more than 85 % discuss new technological inventions and thus 
consider human-caused intentional disruptive events. The reason for 
this may be that modeling a new technological invention is typically not 
limited to a specific geographic area, as the benefits of the inventions are 
likely to be experienced in other regions as well.

Among the studies that mentioned the geographic scope, the ma
jority focused on modeling disruptive effects at the individual country 
level. For the socio-political event category, most studies focus on gov
ernment policy decisions that impact the entire country 
[35,94,103,116,121,144]. In the category of natural disruptive events, 
there has been a greater emphasis on regional geographic scopes. These 
studies include flood events in river basins [42,51] and typhoon events 
in coastal areas [52]. The “selected region” geographic scope refers to 
specific areas within a country, such as counties or provinces (e.g., Refs. 
[75,129]) and specific areas within a region, such as western Europe 
[54]. Disruptive events in remote rural areas and villages have received 
little attention so far. However, rural communities are more vulnerable 
to long-term disruptive events, such as the effects of climate change, due 
to poor economic conditions, emergency facilities, or inadequate health 

systems [145]. Therefore, it is important to pay more attention to 
potentially disruptive events associated with renewable power supply in 
rural areas in the future.

Considered criteria

Approximately 22 % of the reviewed articles use multiple criteria or 
objectives to assess the impact of the disruptive events on renewable 
energy supply. Among the multi criteria that have been used in the 
reviewed articles, cost was an important criterion, with 58 (57 %) of the 
total studies utilizing it. In some of the studies that do not take costs into 
account, the additional consideration of costs would have allowed for 
better results in order to compare the results with other studies. For 
example, in Hai et al. [84], the objectives were to achieve a balance 
between energy output and environmental sustainability regarding the 
addition of hydrogen to both the anode and afterburner of a solid oxide 
fuel cell. Considering cost as a criterion would have been important in 
this study, as the future deployment of this technology may be influ
enced by the decision to prioritize cost considerations.

The results of the reviewed articles demonstrate that the application 
of more relevant criteria leads to a greater degree of realism in the 
findings. Table 4 lists the target criteria other than cost that were 
considered in the multi-criteria studies. Here, similar types of criteria 
that feature a common focus are clustered together. For example, Ding 
et al. [36] used the criterion of wasted renewable energy to improve the 
utilization of renewable resources. Sasse and Trutnevyte [93] used the 
criterion of renewable electricity generation to increase the generation 
of renewable electricity. Both these are listed under renewable energy 
usage in Table 4 due to their similarity in the outcome. In the reviewed 
articles, greenhouse gas emissions were a key criterion in six studies (see 

Table 2 
Summary of technology focuses on the reviewed studies.

Energy technology No. of 
studies

Notable insights

Solar PV 72 Key technology for most studies however, 
fewer studies on standalone PV systems.

Stationary battery 
storage

28 An essential element of enhancing system 
reliability.

Fuel cell with 
hydrogen storage

21 Growing attention for long-term storage, but 
less focus in natural disaster contexts.

Electric vehicle 
(with battery)

3 Linked to demand-side flexibility and 
resilience, however, few resilience-focused 
case studies.

Fuel cell vehicles 1 High future potential in transport applications, 
but significant gap in disruption-focused 
modeling.

Table 3 
Number of articles based on the disruptive events category that have focused on 
different types of geographic scopes.

Geographic 
scope

Natural Human-caused 
intentional

Socio- 
political

Economic

Remote rural 
area

− 3 − −

Continent − − 1 2
Country 4 5 12 5
Village − 1 1 1
Municipal city 4 2 4 4
Industrial park 1 1 − −

Building 1 6 1 2
Island 2 2 1 −

Selected region 5 6 10 3

Table 4 
Target criteria other than cost in multi-criteria studies.

Criteria Study No. of 
studies

Greenhouse gas emission [36,64,89,120,133,135] 6
Criteria related to environmental 

damage
[68,80,83,84,107] 5

Energy efficiency [58,66,80,90] 4
Stakeholder satisfaction [68,77,107] 3
Renewable energy usage [43,93] 2
Net power output [83,84] 2
Impacts on distribution grids [77,107] 2
Primary energy consumption [89] 1
Jobs generated [120] 1
Power tracking [47] 1
Heat control [47] 1
Loss of power supply probability [44] 1
Hydraulic damping [75] 1
Fuel consumption [66] 1
Energy saving ratio [64] 1
Availability of spare parts [68] 1
Optimal policy mix [103] 1
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Table 4), all of which have a smaller geographical scope, such as a city or 
smaller settlement. Surprisingly, there was not a single multi criteria 
study with a larger geographic scope such as regional or country level, 
that applied this criterion. Four of the five studies considering the 
environmental damage criterion [68,83,84,107] were in the human- 
caused intentional category. This shows that human-caused inten
tional disruptive events tend to have an impact on the environment.

The use of multi-objective optimization has helped many authors 
address the needs of different stakeholders in the context of disruptive 
events in renewable energy supply. Liu et al. [77], for instance, dis
cussed the planning and optimization of a sea water desalination plant- 
based hybrid renewable energy system as a solution to energy crisis and 
freshwater shortage. The authors used three optimization criteria, 
namely cost, demand-side management loss, and distribution grid 
impact. The cost criterion is derived from a planning and investment 
perspective, whereas the demand side management loss criterion mea
sures the end user dissatisfaction from a customer perspective and the 
distribution grid impact criterion attempts to minimize the impact on 
the system grid from a utility perspective. Using these criteria when 
modeling disruptive events can help design systems that are robust, 
resilient, and capable of meeting future demands and challenges. Simi
larly, Martínez-Martínez et al. [110] performed a Multi Attribute 
Decision-Making (MADM) site suitability analysis combined with an 
ecosystem services approach as a solution to land use conflicts in 
renewable energy development in south-central Chile. Here, 29 different 
attributes were used, taking into account the provisioning (e.g., wild 
food and mineral resources availability), regulatory (e.g., water and soil 
quality regulations), and cultural requirements (e.g., aesthetic value and 
cultural heritage) of each ecosystem. The manner in which these 
different criteria can be effectively combined to reduce uncertainity in 
the model outcomes are reviewed in Section “using socio-economic 
factors in the modeling of renewable energy systems”.

Models and methodologies

This section presents the models and methodologies used in the 
studies. Most reviewed studies employed simulation (39 studies, e.g., 
[62,101]) or optimization (59 studies, e.g., [108,131]) methods in the 
modeling process. Some others made use of econometric models [127], 
statistical models [53] or simplified energy balance equations [78,88]. 
In this section, an overview is provided of the two main modeling 
methods employed in the reviewed articles (simulation and 

optimization) to model renewable supply disruptions. The tools used for 
simulation and optimization are summarized in Table 5. The tools 
include software (e.g., HOMER, EnergyPLAN), models (e.g., MARKAL), 
and toolboxes (e.g., PyPSA) used for modeling.

Renewable energy systems are complex and involve interactions 
between weather patterns, energy demand, grid infrastructure, and 
market dynamics. Simulation models can effectively capture these in
teractions and provide valuable decision support through the integra
tion of technical, economic, environmental, and social factors [146]. 
Simulation models can be used to explore multiple scenarios [147], such 
as the impact of extreme weather events (like hurricanes or droughts) on 
wind, solar, or hydroelectric generation. This helps to understand the 
range of possible outcomes and the system’s sensitivity to different types 
of disturbances. Simulation models play a particularly important role in 
risk assessment and management [148]. This is done by predicting po
tential disruptions and assess their impact on energy supply, demand, 
and prices [149]. For example, they can simulate the effect of prolonged 
cloud cover on solar power output or the impact of a wind turbine failure 
on overall power generation. This predictive power is critical for risk 
management and contingency planning. However, the quality and 
availability of data is critical to the accuracy of simulation models [150]. 
In regions where data on renewable energy performance, weather pat
terns, or grid operations is scarce or unreliable, model predictions may 
be less accurate. The simulation models used in the reviewed articles are 
discussed in more detail in section “using simulation tools in disruptive 
events modeling” in order to address how the impact of different 
disruptive events on renewable energy supply can be quantified and 
mitigated through these models.

Optimization models facilitate decision making by providing insight 
into the best strategies for investment and operation of renewable en
ergy [149]. This includes activities such as identifying where renewable 
energy resources such as wind farms or solar arrays should be located, 
and how energy storage should be distributed to mitigate the effects of 
disruptive events. However, their effectiveness depends on how well 
they can represent the complexity and uncertainty of such events [151]. 
Similar to simulation models, optimization models require detailed and 
accurate data to work effectively. Incomplete or inaccurate data can lead 
to sub-optimal or unrealistic solutions [152]. Optimization models use 
different optimization methods such as stochastic optimization and 
robust optimization for the optimization process (see Table 6). In energy 
system optimization models, these different optimization methods have 
their own advantages. The optimization methods used in the reviewed 

Table 5 
Tools used for simulation and optimization in the reviewed articles.

Tool Type of tool Study No. of studies

HOMER/HOMER PRO Simulation [49,55,59,60,62,65,67,73,81,82,86,111,113] 13
LEAP Simulation [95,112,116,119] 4
EnergyPLAN Simulation [35,97,109] 3
MESSAGE Optimization [56,114,126] 3
TIMES Optimization [56,94,121] 3
Calliope Optimization [42,123] 2
MARKAL Optimization [96,124] 2
PyPSA Optimization [93,115] 2
BeWhere Optimization [98] 1
CleanGrid Simulation [79] 1
CCAM Simulation [39] 1
DECAPLAN Optimization [135] 1
EMPIRE Optimization [117] 1
EXPANSE Optimization [93] 1
GAMS Optimization [48] 1
GUSTO Optimization [117] 1
GCAM4.0 Simulation [57] 1
GENeSYS-MOD Optimization [130] 1
NESSI4D Simulation [132] 1
PCR-GLOBWB Simulation [51] 1
PRIMES Simulation [105] 1
RIES Optimization [43] 1
Risk matrix Simulation [45] 1
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articles are discussed in section “using optimization methods in 
disruptive events modeling” in order to address how these methods can 
be used to quantified and mitigate the impact of different disruptive 
events on renewable energy supply.

Discussion

In this section, the findings from Section “Results” are reviewed and 
assessed. In Section “using socio-economic factors in the modeling of 
renewable energy systems”, the research hypothesis that incorporating 
socio-economic factors into energy system modeling reduces un
certainties in planning for disruptive events and leads to more robust 
and context-sensitive outcomes is tested. The main research question of 
this review, which is how the impact of different disruptive events on 
renewable energy supply can be quantified and mitigated through 
different types of modeling techniques are assessed in Section “using 
simulation tools in disruptive events modeling” and “using optimization 
methods in disruptive events modeling”. The research hypothesis that 
integrating appropriate modeling techniques significantly enhances the 
resilience and sustainability of renewable energy systems under 
disruptive events is tested in Section “using modeling tools to enhance 
resilience and sustainability of renewable energy systems”.

Using socio-economic factors in the modeling of renewable energy systems

Section “considered criteria” showed that most of the simulation- 
based studies are based on cost evaluations. The studies that utilize 
cost as a modeling criterion illustrate the significance of incorporating 
cost as a criterion in the modeling of disruptive events. According to the 
simulated results of Pedersen et al. [115], if Europe aims to keep the 
temperature increase below 2 ◦C, the average electricity cost could in
crease up to 65 €/MWh by 2025 due to the gas supply limitation caused 
by the Russia–Ukraine war. This offers a clear indication of how 
geopolitical conflicts can disrupt energy markets, leading to higher en
ergy prices. It converts the abstract concept of energy supply limitations 
into a tangible, economic burden on consumers and industries. As per 

the findings of Bennett et al. [40], projected electricity costs based on 
the historical hurricane frequencies in Puerto Rico in 2040 could in
crease by as much as 32 %. It shows how natural disasters can lead to 
significant financial challenges. This further highlights the need to 
invest in resilient infrastructure that can withstand extreme weather, 
potentially reducing future costs.

Although cost is a very important parameter in the modeling of 
disruptive events, taking only the direct costs associated with a disrup
tive event into account is not an ideal way to evaluate the results thereof 
[154]. This is due to the fact that not only disruptive events but also the 
activities associated with the methods used to mitigate the effects of 
such disruptive events are uncertain in today’s context. For example, the 
ideal renewable energy supply for an electrolysis-based green hydrogen 
system to reduce carbon emissions in the transport sector can be 
considered. Here, apart from the renewable energy supply with the 
lowest direct cost, policy regulations and the consent of the people living 
near power plants etc. should also be considered to evaluate the pro
ject’s feasibility. The impacts of these other factors on the above prob
lem are not visible in relation to the direct cost of the project unless they 
have been properly identified and converted into monetary values. 
Therefore, the lack of consideration of these factors increases the un
certainty of the outcome of the disruptive event. This section will 
explore how the factors such as renewable energy usage, greenhouse gas 
emissions, environmental damage, and stakeholder satisfaction as listed 
in Table 4 can be used to reduce the uncertainty in the model outcomes.

The use of renewable energy diversifies the energy mix and reduces 
dependence on imported fossil fuels, which can be prone to geopolitical 
risks (e.g. the Russia-Ukraine conflict). Therefore, utilizing renewable 
energy usage as a modeling criterion helps to assess energy security by 
identifying the vulnerability of energy supply to external disruptions. 
The transition to energy systems with lower greenhouse gas emissions 
could reduce operating costs over the long term. This is especially 
important for small communities with limited budgets, where cost- 
effective energy solutions are critical. Environmental damage often 
represents an externality, a cost that is not borne by the producer or 
consumer, but by society as a whole (e.g., health effects of air pollution, 
degradation of ecosystems). Including environmental damage as a cri
terion in energy system modeling helps account for these externalities. 
This leads to more accurate cost-benefit analyses and more economically 
efficient outcomes. Stakeholders in energy system planning are guided 
by a set of defined objectives, including cost effectiveness, reliability, 
environmental impact, or profit margins. Using stakeholder satisfaction 
as a modeling criterion ensures that energy system design aligns with 
these diverse objectives, leading to broader support and smoother 
implementation of the energy transition.

Therefore, energy system modeling can be enriched by incorporating 
socio-economic modeling criteria, which can help mitigate uncertainty 
surrounding disruptive events. This is achieved by capturing the broader 
context in which energy systems operate, including human behavior, 
policy responses, market dynamics, and institutional factors. The 
modeling of disruptive events in renewable energy supply should not 
focus on a single objective. Instead, the inclusion of criteria related to a 
broader context associated with the disruptive event in the modeling 
process will result in a significant reduction in the risk associated with 
the modeling output.

Based on the reviewed studies, Fig. 5 represents the criteria that are 
likely to be of interest to various stakeholder groups. Therefore, in the 
event that the stakeholders are also involved in the modeling process, it 
would be most prudent for them to prioritize the criteria that are rele
vant to their role. For example, if a novel hybrid power renewable en
ergy plant is modeled by the utility electricity supplier, more focus 
should be placed on the loss of power probability and its impact on the 
distribution grid, in addition to cost. This will help attain more precise 
and resilient results from the utility supplier’s perspective. This tailored 
focus on relevant criteria ultimately leads to more precise and resilient 
modeling outcomes.

Table 6 
Optimization-based methods used in the reviewed articles. It should be noted 
that some of the optimization methods such as robust optimization and Myopic 
optimization utilize mixed integer linear programming (MILP) or linear pro
gramming (LP) in their basic optimization algorithms but are not counted. Only 
the studies that have used MILP and LP without specifying a further specification 
are counted as MILP and LP, respectively. Furthermore, genetic algorithms, 
particle swarm optimization, and differential evolution methods are usually 
considered as variants of stochastic modeling [153] but are listed separately 
from stochastic optimization.

Method Study No. of 
studies

Stochastic optimization [37,38,40,100,104,108,117] 7
Mixed integer linear programming 

(MILP)
[41,44,48,52,98,117,135] 7

Linear programming (LP) [54,70,96,121,124,125] 6
Particle swarm optimization (PSO) [66,69,75,118,133] 5
Robust optimization [37,38,89,104] 4
Modeling to generate alternatives 

(MGA)
[93,94,122,123] 4

Genetic algorithms [61,77,90] 3
Multi criteria decision making 

(MCDM)
[68,107] 2

Monte Carlo [85,94] 2
Agent based [134] 1
Multi objective optimization [43] 1
Myopic optimization [115] 1
AHP-CRITIC mixed weighting [80] 1
Branch-and-cut [58] 1
Differential evolution [103] 1
Slime mould algorithm [87] 1
Zone model predictive control [47] 1
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These findings support the hypothesis presented in Section 
“Introduction” which is, incorporating socio-economic factors into en
ergy system modeling reduces uncertainty in planning for disruptive 
events and yields more robust and context-sensitive outcomes. 
Furthermore, the ways in which different modeling techniques aid the 
stakeholders in attaining improved resilience and risk reduction out
comes are explored in Sections “using simulation tools in disruptive 
events modeling” and “using optimization methods in disruptive events 
modeling”.

Using simulation tools in disruptive events modeling

This section reviews the major simulation-based models and soft
ware that have been used to model disruptive events, and how well each 
modeled the uncertainty of the events in the reviewed studies. HOMER 
(Hybrid Optimization of Multiple Energy Resources), EnergyPLAN, and 
LEAP (Long-range Energy Alternative Planning) represent the most used 
simulation-based models and software. The strengths and weaknesses of 
these models are summarized in Table 7, along with the cases of their 
use in the reviewed articles and the practical relevance of these models 
for various stakeholders.

HOMER first simulates multiple configurations based on user re
quirements and ranks these configurations against their associated 
lifecycle costs which are calculated using total net present cost (NPC) 
[155]. As mentioned in section “considered criteria”, using cost as a 
criterion is important when modeling for disruptive events. However, in 
HOMER simulations, the lowest NPC configuration may not always be 
sufficient to reflect the uncertainty associated with the operational part 
of the problem, whereas configurations with higher NPCs may have this 
capability (see the case study example of HOMER in Table 7). Further
more, HOMER can perform sensitivity analysis on the modeled out
comes by measuring how sensitive the output could be to changes in the 

input data. This helps with robust decision making in long-term energy 
planning. When using sensitivity analysis, the reviewed studies assumed 
that changing one parameter did not affect the other parameters hence 
the varied parameter was always independent during the sensitivity 
analysis. In reality though, in modeling disruptive events in renewable 
energy supply, one parameter change can affect the performance of 
other parameters significantly. For instance, when simulating the impact 
of heat waves on solar PV generation, various factors, including solar 
panel efficiency, electricity demand, and transmission line capacity, can 
be impacted concurrently. Therefore, when the sensitivity of solar panel 
efficiency to temperature is analyzed, overconfident or misleading 
conclusions could be reached if the other factors are assumed to be 
constant. In such instances, global sensitivity analysis, which has the 
capacity to quantify the extent to which the variance in model output is 
attributable to each input, including interaction effects, is a useful tool 
[156].

Using EnergyPLAN, Mathiesen et al. [96] provide a good example of 
taking multi-criteria in addition to cost into account for modeling to 
reduce uncertainty (see Table 7). Sections “considered criteria” and 
“using socio-economic factors in the modeling of renewable energy 
systems” discussed the importance of using multiple criteria, including 
cost, to reduce the uncertainty of model outcomes. Although Ener
gyPLAN is ideal for modeling of short-term rapidly changing events, the 
usually used one-year modeling horizon limits the inclusion of long-term 
dynamics such as technological advances, aging infrastructure, changes 
in energy consumption, and gradual climate change. This makes Ener
gyPLAN less feasible for long-term forecasting or multi-year transitions. 
Therefore, based on the reviewed articles that used EnergyPLAN, it may 
not be the ideal simulation tool when modeling for policy-related events 
because the effects of such events cannot usually be measured in a single 
year [157]. In situations where planning across multiple years is 
essential, particularly for assessing policy transitions, investment stra
tegies, or the progression of emissions over time, it is advisable to utilize 
approaches as in Ghanadan et al. [95] with the LEAP simulation.

The LEAP model can be used for scenario-based studies [147] to 
explore a wide range of possible outcomes and thereby reduce the un
certainty in the outcomes. As all simulation models, the LEAP model has 
the risk that the choice of scenarios and assumptions may result in 
biased results that reflect the perspective of the modeler rather than 
objective outcomes (see the case study example of LEAP in Table 7). 
LEAP can also develop future forecasts based on certain assumptions 
using a simulation approach [158]. Forecasting is useful when future 
energy demands are needed to be anticipated for long-term strategic 
planning [159]. Compared to scenario-based modeling, forecasting 
identifies the most likely pathways and is only effective when ample 
information about the disruptive event is available [95]. While LEAP can 
be used for long-term forecasting of CO2 emissions as shown in Table 7, 
the accuracy of such forecasts is limited by uncertainties in technolog
ical innovation, policy dynamics, and socio-economic behavior. Once 
forecasts are established, they may diverge significantly from reality if 
disruptive events such as breakthroughs in clean energy or sudden 
regulatory shifts occur. This highlights the importance of scenario 
modeling and sensitivity analysis in modeling of disruptive events.

Using optimization methods in disruptive events modeling

In this section, the main optimization-based methods that have been 
used to model disruptive events in renewable energy supply are 
reviewed. The optimization methods that were used in this study are 
shown in Table 6 and Table 8 provides a summary of the strengths and 
weaknesses of each reviewed optimization method. The latter also in
cludes the used cases for each method in the reviewed articles and the 
practical relevance of the methods for stakeholders.

Stochastic optimization
The most commonly used optimization method among the reviewed 

Fig. 5. Main modeling criteria used and the parties likely to be interested in the 
criteria in the reviewed articles and the number of studies which used 
each criterion.
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Table 7 
Major simulation-based models and software that have been used in the reviewed articles. This table provides information about the advantages and drawbacks of 
these models and software in the studies considered. For each model, the cases used by the reviewed articles are provided, as well as the model’s suitability for reducing 
the uncertainty of the given case. The practical relevance of these modeling tools for various stakeholders is demonstrated based on these used cases.

Model/Software Approach Strengths Weaknesses Applied by Practical relevance of the model/ 
software for;

EnergyPLAN Uncertain and 
radically changing 
events modeling

Can take multi-criteria into 
account for modeling to 
reduce uncertainty.

Has a modeling horizon 
of only one year [160].

Mathiesen et al. [96] used 
EnergyPLAN to simulate 
Denmark’s policy for achieving a 
100 % renewable energy system 
by 2050. The EnergyPLAN 
software helped to identify 
effective strategies for 
maximizing the use of renewable 
energy while maintaining the 
stability of the system and 
meeting the energy demand in 
the year 2050. It considers other 
criteria such as technical 
feasibility, economic benefits of 
the transition to a renewable 
energy-based system, and social 
impacts which have a fast 
changing behavior.

Policymakers:  

Gain insight into long-term 
energy transition strategies by 
simulating key milestone years 
and evaluating how well future 
scenarios align with short-term 
policy goals and technical 
constraints.  

Industry stakeholders: 
Able to test the yearly impact of 
renewable integration, demand 
fluctuations, and flexibility 
measures due to long-term 
transition plans.

HOMER (Hybrid 
Optimization of 
Multiple Energy 
Resources)

Lifecycle costs 
calculated using total 
net present cost (NPC) 
to select the ideal 
configuration

NPC can be used to identify 
the benefits and trade-offs 
between multiple 
configurations in an effective 
and straightforward manner.

Use of NPC as the sole 
modeling criterion 
could make the results 
less useful for multi- 
objective requirements.

Ali et al. [49] used HOMER to 
simulate and analyze the 
resilience of different energy 
systems during grid disruptions 
for a hospital on Lombok Island in 
Indonesia. The model analyzed 
NPC and cost of energy (COE) for 
two scenarios to decide the more 
cost-effective setup in case of a 
utility power outage. Conversely, 
a slightly more expensive option 
may offer improved reliability 
and sustained power which are 
essential for critical purposes like 
hospitals or emergency services.

Policymakers: 
Support the planning of energy 
resilience strategies for critical 
infrastructure, particularly in 
remote or disaster-prone areas.  

Utility supplier: 
Use the analysis to prioritize 
backup systems emergency 
services such as hospitals, 
thereby reducing vulnerability 
during blackouts. 

Sensitivity analysis Solutions which remain 
viable under a range of 
conditions can be identified.

Change of only one 
parameter at a time is 
considered.

Huseyin [86] used sensitivity 
analysis on various factors such 
as interest rate, fuel costs, wind 
speed, solar radiation, and 
maintenance expenses to assess a 
hybrid renewable energy 
system’s feasibility for city power 
supply. Sensitivity analysis 
revealed a higher sensitivity of 
the energy system’s NPC to diesel 
fuel prices and maintenance 
costs, with minimal impact from 
changes in solar radiation and 
wind speed. This reduces 
financial uncertainty caused by 
solar and wind power 
intermittency, allowing modelers 
to prioritize diesel price 
variations and maintenance costs 
for the project.

Disaster Management Agencies: 
Identify financial risk in system 
disruptions due to price volatility 
(e.g., diesel shortages) to enable 
better planning for contingency 
fuel needs.  

Project proponent: 
Make informed decisions by 
focusing on the most impactful 
cost factors and thereby reducing 
financial risk. 

LEAP (Long-range 
Energy 
Alternative 
Planning)

Scenario based 
modeling

Helps consider different 
future scenarios, such as best, 
worst, and most likely 
outcomes, managing 
uncertainty from disruptive 
events.

Results can be biased by 
the modeler’s choice of 
scenarios and 
assumptions.

Asim et al. [116] used scenario- 
based modeling in LEAP to 
determine the best choice for 
Pakistan’s future energy system. 
The LEAP model assessed 
scenarios for energy use and CO2 

emissions to find the most 
sustainable and cost-effective 
solution. It identified a green 
energy option with the lowest 
costs as the best system. 
However, the use of CO2 

emissions may appear to be 
biased in favor of getting a green 
energy scenario as the ideal 
solution.

Policymakers: 
Support the decision-making 
process by comparing multiple 
future energy paths and 
identifying the ones that 
minimize costs and emissions.

(continued on next page)
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Table 7 (continued )

Model/Software Approach Strengths Weaknesses Applied by Practical relevance of the model/ 
software for;

Forecasting Useful when the actual data 
for an event is not readily 
identifiable.

Once forecasts are 
established, they cannot 
easily adapt to 
unexpected changes.

Raza et al. [112] used energy 
demand, production and CO2 

emissions forecasts to model the 
energy sector of Pakistan from 
the year 2020 until the year 2070. 
However, the results may not 
always be accurate when 
predicting parameters such as 
CO2 emissions. This is because 
once forecasts are established, 
CO2 emissions can change with 
technological breakthroughs or 
policy changes that could arise 
later.

Industry stakeholders: 
Can anticipate future energy 
needs and emission targets, 
aiding infrastructure and 
research and development 
planning.

Table 8 
Summary of the optimization methods used in the reviewed articles including strengths and weaknesses of each method. For each method, the cases used by the 
reviewed articles are provided. The practical relevance of these optimization methods for various stakeholders is demonstrated based on these used cases.

Method Strengths Weaknesses Applied by Practical relevance of the method for;

Stochastic 
optimization

Accounts for uncertainty 
using probabilistic 
scenarios

Requires a lot of data or 
expertise knowledge to 
assign probability values

In Bennet et al. [40], stochastic optimization was 
used to identify hurricane risk in energy system 
planning for Puerto Rico. Their scenarios were 
based on different levels of hurricane severity and 
the probability of hurricane severity was 
calculated using historical data.

Policymakers:  

Helps in formulating disaster response 
strategies and infrastructure investment 
strategies that take risk into account and are 
tailored to high-risk regions.  

Disaster management agencies: 
Assists with contingency planning by 
identifying system vulnerabilities and 
anticipated performance under various 
scenarios related to natural disasters.

Enables more accurate 
cost and risk projections

High computational 
complexity and time

Commonly used in energy 
system planning

Particle swarm 
optimization 
(PSO)

Efficient in exploring 
complex solution spaces

May converge to local 
optima

Zhao et al. [75] introduced a novel small signal 
model for pumped storage units. In this study, 
PSO was used to enhance the performance of the 
pumped storage plant by considering primary 
frequency control, hydraulic damping caused by 
the pumped storage plant, and hydraulic damping 
caused by surge tanks.

Plant operator: 
Help to optimize complex operations and 
reduce downtime in critical infrastructure.  

Policymakers: 
Supports grid stability regulations by 
demonstrating the role of flexible power 
plant operation (pumped storage in this 
instance) in improving grid performance.

Suitable for multi- 
objective and parallel 
problems

Yang et al. [66] introduced a hybrid power 
system for ships, emphasizing the integration of 
solar power with a diesel generator. This study 
used PSO to reduce fuel consumption and 
maximize the diesel generator efficiency of the 
ship to improve the efficiency and stability of its 
power systems.

Heavy machinery industry: 
Provides cost beneficial plans to improve 
fuel efficiency in complicated machines with 
numerous systems.Fast convergence in 

practice

Modeling to 
generate 
alternatives 
(MGA)

Provides multiple near- 
optimal solutions

Increased computational 
time with the number of 
alternative solutions

Patankar et al. [122] used MGA to generate 160 
carbon–neutral electricity generation portfolios 
in order to evaluate the land use impacts 
associated with solar and wind power generation. 
These portfolios were generated with respect to 
some qualitative rather than quantitative facts 
such as technology options, key trade-offs, and 
policy considerations associated with a carbon- 
free electricity supply plan.

Policymakers: 
Enables the exploration of multiple viable 
options that incorporate non-quantifiable 
sociopolitical concerns, such as land use and 
public acceptance.  

Investors: 
Supports flexible investment strategies and 
adaptation to a range of feasible regulatory 
and market scenarios.

Past data or probability 
values are not required

Requires interpretation of 
many alternatives

Robust 
optimization

Provides worst-case 
resilient solutions

Can be overly conservative Henao et al. [37] used robust optimization to 
address uncertainty in the Colombian power 
sector’s expansion planning. In this case, the 
optimization model suggested that in order to 
meet Colombia’s electricity demand over the next 
15 years, even under adverse conditions, 37.8 GW 
of solar PV and 2.1 GW of wind power should be 
installed

Disaster management agencies: 
Ensures that critical power systems remain 
operational in high-impact, low-probability 
scenarios, thereby enhancing emergency 
resilience.  

Policymakers: 
Provides long-term, conservative 
infrastructure investment strategies which 
maintain energy security even under 
extreme conditions.

Lower computational 
burden than stochastic 
optimization and MGA

May lead to higher costs or 
rigid plans
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optimization-based articles is stochastic optimization (see Table 6). This 
approach is primarily used for problems that involve uncertainty 
because it introduces randomness into the optimization process [161]. 
Rather than relying on deterministic assumptions that may not hold in 
the real world, the inclusion of randomness allows the model to account 
for a wide range of possible scenarios. Therefore, similar to HOMER and 
LEAP, stochastic optimization also considers multiple scenarios [162]. 
Each scenario represents a possible outcome for an uncertainty factor 
related to the optimization problem, which is assigned with a probabi
listic value [162]. There are several advantages to the use of probability 
values in the optimization process. In the study of Bennet et al. [40] (see 
Table 8), inclusion of probability values helps authors make more 
informed decisions by taking into account the likelihood of hurricane 
events and their impact on the power grid. It also allows for more ac
curate cost projections by factoring in potential damage and required 
rebuilding following hurricanes. This makes stochastic optimization an 
ideal method for uncertain probabilistic disruptive events modeling (e. 
g., natural disruptive events such as floods). Calculating or identifying 
the feasible probability value is very important in stochastic optimiza
tion in order to obtain accurate results. However, reliance on accurate 
probability distributions can be difficult to define for rare or unprece
dented disruptive events. In such cases, robust optimization offers a 
practical alternative by focusing on worst-case scenarios without 
needing probability values.

Linear programming (LP) is a powerful mathematical technique that 
is used to find the best possible outcome in a given mathematical model 
represented by linear relationships [163]. However, LP lacks the ability 
to incorporate uncertainty and without this, LP cannot effectively 
manage or mitigate risk [164]. For example, in the supply of renewable 
energy, factors such as weather patterns, equipment failures, or market 
prices are inherently uncertain. LP in its basic form would have difficulty 
providing robust solutions that account for these uncertainties, resulting 
in solutions that may not perform well under real-world conditions. 
Therefore, stochastic optimization can be considered a technique that 
combines the advantages of both LP and simulation [165]. In addition, 
the fact that stochastic optimization is the most commonly used opti
mization method as identified in this review shows that it could deal 
with the uncertainty of disruptive events to a greater extent. However, 
solving exact stochastic optimizations is also associated with signifi
cantly higher model complexities and longer computing times compared 
to simulations [166]. On such occasions, metaheuristic approaches such 
as particle swarm optimization (PSO) can provide faster, approximate 
solutions in large and complex problem spaces.

Particle swarm optimization
The metaheuristic particle swarm optimization (PSO) is also used in 

several of the reviewed studies. PSO was developed based on the social 
behavior of flocks of birds and uses an iterative process to identify and 
update the best solution following each iteration [167]. Therefore, it can 
be used in computationally-intensive applications, because it can 
explore the solution space in parallel, which speeds up the optimization. 
Table 8 includes two used cases of PSO from the reviewed articles. These 
cases demonstrate the effectiveness of the PSO model in coordinating 
conflicting objectives and thus providing decision support to operators 
for complex tasks. PSO’s ability to explore a wide range of solutions 
effectively avoids oversimplified or unstable solutions that might not be 
ideal for modeling disruptive events in renewable energy supply, 
thereby reducing uncertainty. Although PSO is suitable for complex, 
computationally-expensive problems, it carries the risk of not being able 
to escape local optima [168]. This can be problematic when global op
tima are required, especially when modeling critical disruptive events. 
For example, a local optimum could lead to a sub-optimal system design 
that reduces only costs but does not provide adequate backup during a 
critical grid failure. Furthermore, due to the possibility of converging to 
a local optimum, PSO is less reliable for modeling worst-case disruptive 
events.

Modeling to generate alternatives
Some of the problems related to disruptive events in renewable en

ergy supply are qualitative rather than quantitative in nature (e.g., user 
acceptance of a policy decision). Therefore, it is sometimes difficult for 
the modelers to translate these into a mathematical formula. Modeling 
to generate alternatives (MGA) has been developed as a solution to this 
[169]. In this review, MGA has been used in studies in the socio-political 
[93,94,122] and economic [123] categories of disruptive events. MGA 
provides multiple feasible near-optimal solutions that differ significantly 
from each other and may be evaluated significantly better than the 
optimal solution [170]. Fig. 6 shows how the optimal solution and the 
results of the MGA are illustrated in the near-optimal region for a 
problem with two decision variables. In the MGA formulation, an 
additional constraint is introduced in order to identify the region of the 
near optimal solutions as shown in the figure.

When it comes to energy system modeling, due to the uncertain 
nature of the real world disruptive events, a single optimal solution may 
not be able to satisfy all the requirements set by decision makers [171]. 
However, if there are alternative near-optimal solutions that fall within 
the appropriate bounds of these requirements, there is a greater chance 

Fig. 6. Illustration of near-optimal solutions of the MGA problem with two decision variables. An additional constraint is introduced for the identification of the 
near-optimal solution space within the feasible solution space. Maximally different near-optimal solutions are identified compared to the optimal solution.
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that one or more of them will satisfy the decision makers. These alter
native solutions are similar to the different scenarios used in stochastic 
optimization. However, in MGA, these solutions are identified by the 
optimization model during the optimization rather than the modeler 
defining each scenario prior to optimization. These alternative solutions 
can also be used as a tool for reducing risk. For example, MGA can 
explore flexible solutions that can adapt to changing circumstances, 
such as the integration of different types of renewable energy sources or 
varying levels of storage and demand response in the event of disruptive 
events. Furthermore, MGA offers a variety of system configurations that 
can all achieve the same objective (e.g., net-zero emissions), but with 
different combinations of technologies or investments. This flexibility 
allows policymakers to test multiple approaches and reduce their reli
ance on one policy assumption. However, the computation time may 
increase when a larger number of alternative solutions are generated by 
MGA [172]. This is especially true for optimizations that involve 
detailed weather patterns, regional renewable energy networks, and 
market dynamics. To address this issue, metaheuristic methods, such as 
particle swarm optimization, can be integrated with MGA. This allows 
for the efficient exploration of a broad solution space while keeping 
computational demands manageable.

Robust optimization
Robust optimization is another relevant method for the modeling of 

disruptive events. Robust optimization also generates multiple solutions 
to the uncertain parameters and, at the same time, ensures that the 
optimal solution, which is based on a robustness criterion defined by the 
modeler, performs well in all scenarios [173]. Thus, robust optimization 
is ideal when planning for a worst-case scenario with respect to a 
disruptive event. Although the worst-case scenario may not be the most 
cost-effective solution, it is important to have a worst-case solution in 
place in case of uncertain critical disruptive events. When modeling 
high-probability disruptive events, this approach is very helpful because 
it greatly reduces the uncertainty of not having a robust energy system in 
the face of such events. Furthermore, robust optimization is beneficial 
for modeling socio-political and economic disruptive events because the 
worst-case result of such crucial events can be observed beforehand in 
the event of a critical error. Compared to stochastic optimization, robust 
optimization does not require probability values, and at the same time 
the computational complexity is lower [174]. When robust optimization 
is being used, modelers should pay special attention to ensure that the 
occurrence of the disruptive events is not overestimated. For example, if 
the energy system is designed to withstand the worst 1 % of hydro
electric power availability due to a drought, but in reality, if the prob
ability of getting less than 10 % of hydroelectric power is very low, the 
model will oversize storage and backup capacity, increasing costs 
significantly.

Using modeling tools to enhance resilience and sustainability of renewable 
energy systems

In Sections “using simulation tools in disruptive events modeling” 
and “using optimization methods in disruptive events modeling”, the use 
of various features to reduce uncertainty in the outcome of disruptive 
events related to renewable energy supply by simulation tools and 
optimization modeling methods has been analyzed. The impact of each 
feature’s strengths and weaknesses on the uncertainty surrounding the 
modeling outcomes has also been examined. These features used are 
summarized in Fig. 7. Some of the models and methods have more than 
one uncertainty reduction feature (e.g., LEAP or stochastic optimiza
tion). The figure also shows that some features are applied by both 
simulation models and optimization methods (e.g., scenario modeling). 
Combining the strengths of individual features could lead to enhanced, 
resilient modeling outcomes. The effectiveness of the combined features 
in modeling disruptive events related to renewable supply was deter
mined by examining which features have been used in combination in 

the reviewed articles.
Of the 59 reviewed articles that used optimization in this review, 

only three used combined optimizing models. The used combination of 
optimization methods are hybrid stochastic – robust optimization 
[37,38] and combined Monte Carlo – MGA [94]. All hybrid stochastic – 
robust optimization-based studies are related to the natural category of 
disruptive events. According to Piltan et al. [46], stochastic – robust 
hybrid optimizations can identify the optimal solutions in less compu
tation time compared to non-hybrid optimization methods. Perera et al. 
[38], used stochastic optimization to consider high-probability, low- 
impact scenarios to reflect typical climate variations in Sweden. At the 
same time, robust optimization was used to ensure system reliability 
during low-probability, high-impact extreme weather events. The au
thors applied this method to 30 Swedish cities and found that the hybrid 
algorithm prevented significant performance gaps and power supply 
drops that could arise from either neglecting extreme events or failing to 
account for common variations in demand and supply. A balanced trade- 
off between economy and security is achieved when both methods are 
used, and the energy system is made cost-efficient during normal op
erations and resilient during extreme conditions. This shows that sto
chastic optimization is a reliable and affordable approach to planning, 
especially when dealing with common variations. However, it might not 
be prepared for rare and extreme situations if it is used as the only 
planning method. Although robust optimization ensures system resil
ience in worst-case scenarios, it could be overly conservative and 
expensive if used alone.

Monte Carlo optimization, like stochastic optimization, involves 
incorporating randomness into the optimization process. However, un
like in stochastic optimization, uncertainty is captured through random 
sampling from probability distributions assigned to input variables 
[175]. Li & Trutnevyte [94] show that by combining Monte Carlo 

Fig. 7. Comparison of simulation software/models and optimization methods 
used in the reviewed articles. These software, models and methods are linked to 
various features which are used to reflect the uncertainty of the model outcome. 
Colors are used to represent different features associated with each software/ 
model/method.
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modeling with MGA, energy economy models can be better linked to 
power system models, which provides an advanced approach to uncer
tainty analysis. The authors explored technologically diverse pathways 
and their associated total costs to assess the future transition pathways 
for the electricity sector of the United Kingdom. The combined model 
allowed for a comprehensive exploration of uncertainty across multiple 
parameters, including policy, technology, and cost. By applying MGA in 
combination with Monte Carlo analysis, the authors investigated not 
only the cost-optimal but also the near-optimal pathways. The near- 
optimal pathways help to identify a variety of technologically 
different pathways that have similar total costs, providing multiple so
lutions rather than a single deterministic outcome. When combined with 
Monte Carlo, this helps decision-makers understand which configura
tions are robust and which are fragile under uncertainty. Monte Carlo 
focuses on quantitative uncertainty, meaning it is designed to handle 
uncertainty that can be described with numerical values and statistical 
distributions [175]. In contrast, qualitative constraints such as stake
holder preferences and political acceptability can be incorporated into 
MGA’s processes. Consequently, combined Monte Carlo–MGA models 
have the capacity to generate solutions that are not merely mathemat
ically optimal but also socially and politically viable.

Jing et al. [41], who considered extreme weather events in urban 
energy system planning, used an iterative combination of optimization 
and simulation approaches due to the computational cost of mixed 
optimization approaches. The objective of the study was twofold: first, 
to determine the optimal configuration and operation strategy for urban 
energy systems using stochastic optimization; and second, to validate 
whether the optimized strategy can meet critical energy demands during 
extreme weather events using simulations. This study shows that a 
mixed optimization and simulation approach helps planners make 
balanced decisions regarding the resilience, adaptability, and efficiency 
of energy systems. Disruptions in the supply of renewable energy can 
sometimes lead to non-linear cascading effects, such as grid instability or 
sudden changes in market prices. Hybrid simulation–optimization 
methods allow to explore these interactions in simulations, while opti
mization finds the best response strategy (e.g., dispatching storage, 
managing demand). In addition, hybrid simulation–optimization 
methods can be used to combine short and long-term decision making. 
For example, when modeling an event such as a blackout or dark 
renewable lull (dunkelflaute), simulations can model short-term oper
ational behavior such as how real-time grid balancing works during the 
event. Then optimization can focus on long-term investments and 
planning such as for storage installations or transmission line expansion. 
Similarly, for the integration of renewable energy sources into the power 
grid, a combined simulation and optimization technique can be used for 
scheduling and dispatching of energy. Through the simulation of grid 
disturbances such as power outages or demand fluctuations, these 
models can optimize the integration process to maintain grid stability. 
Therefore, hybrid simulation–optimization methods enable strategic 
planning that remains effective in real operational conditions.

Findings on Section “Discussion” prove the hypothesis presented in 
Section “Introduction”, that is the integration of appropriate modeling 
techniques significantly enhances the resilience and sustainability of 
renewable energy systems when subjected to disruptive events.

Summary and conclusions

The number of disruptive events that could threaten the growing 
supply of renewable energy around the world is increasing. Adequate 
modeling of these events is critical for robust renewable energy supply 
planning against such events. In order to address this prompt require
ment, the present study systematically assessed how the impact of 
various disruptive events on the supply of renewable energy can be 
quantified and mitigated through the use of modeling techniques. These 
disruptive events were categorized based on the cause of the respective 
events, namely natural, human-caused intentional, socio-political, and 

economic. The impact of each category of disruptive events on different 
demand sectors was also identified and the system boundaries such as 
technology focus, location, and spatial resolution modeled in the 
reviewed studies were further analyzed.

This review addressed the importance of economic and social factors 
in the modeling of renewable energy systems and how these factors can 
be effectively integrated to reduce uncertainty. The reviewed studies 
used many criteria to evaluate the impact of the disruptive events. 
Among these, cost was primarily used to indicate the impact of the 
disruptive events. Disruptive events such as natural disasters, geopolit
ical tensions, or technology failures can have a significant impact on the 
cost of energy production and distribution. Therefore, cost-based 
modeling is useful in the assessment of the financial risk associated 
with renewable energy projects. Some studies used modeling criteria 
other than cost. This enables multiple factors to be considered simul
taneously, including economic, environmental, social, and technical 
aspects associated with disruptive events. Criteria such as stakeholder 
satisfaction ensure broader sustainability goals and the long-term suc
cess of projects such as large-scale onshore wind farms.

Furthermore, this study investigated how stakeholders can benefit 
from these modeling methods to enhance resilience and mitigate risk in 
renewable energy supply, leading to more accurate model outcomes. 
The reviewed modeling approaches offer valuable decision-support in
sights for various stakeholders such as investors and disaster manage
ment agencies by enabling risk-informed planning, robust infrastructure 
investment, and adaptive system design. Sometimes, policymakers in 
renewable energy planning have strong concerns that are not addressed 
by most models, such as geopolitical dynamics, social equity, and public 
opinion. Therefore, due to these factors that are difficult to quantify in 
techno-economic models, feasible suboptimal solutions that can be ob
tained from modeling methods such as MGA may be preferable.

This review shows that simulation and optimization modeling are 
both critical for assessing the impact of disruptive events on renewable 
energy systems, though they have different strengths and limitations. 
Simulation tools, particularly those using scenario-based and forecasting 
techniques, are effective for exploring uncertainty and system behavior 
under various disruption scenarios. However, in some of these tools, 
their usefulness is constrained by narrow time horizons or modeling 
scope. Conversely, optimization methods provide targeted strategies for 
allocating costs and resources with strategies including probabilistic 
modeling, generating alternative solutions, and worst-case planning. 
Each of these approaches offers a different degree of resilience and 
adaptability. The evidence indicates that a single modeling method is 
not sufficient on its own. Rather, integrating multiple modeling features 
can enhance the realism and robustness of planning outcomes.

Therefore, this study examined how the integrated modeling 
methods could enhance the resilience and sustainability of renewable 
systems in the face of disruptive events. It is identified that combined 
optimization methods could combine the advantages of individual 
methods and thereby increase the robustness and flexibility of long-term 
planning under uncertainty. Similar to combined optimization, hybrid 
simulation and optimization techniques can provide a more compre
hensive risk assessment by evaluating how optimized plans perform 
under simulated disruptions. Despite their advantages, there is still little 
focus on using combined approaches in modeling renewable energy 
supply based disruptive events..

In light of these findings, the following recommendations and limi
tations of this study could be helpful for future researchers regarding the 
modeling methods that can be used to reduce uncertainty in disruptive 
events in renewable energy supply.

Limitation
This study primarily focused on simulation and optimization ap

proaches, which accounted for over 96 % of the reviewed articles. As a 
result, less attention was given to other modeling techniques such as 
econometric and statistical models. While these were not the focus of 
this review, their potential in addressing uncertainty in disruptive event 
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modeling for renewable energy systems should be explored in future 
research.

Recommendations. 

I. Identifying suitable modeling criteria is very important. Rather 
than focusing on one criterion, using multiple criteria, such as 
stakeholder satisfaction alongside cost, can help reduce uncer
tainty in model outcomes by providing a more balanced approach 
from an economic and social perspective.

II. Due to their ability to explore the system-wide impacts of 
different types of disruptive events over multiple narratives, 
scenario-based simulation models should be preferred when 
quantitative precision is limited. Also, optimization methods such 
as modeling to generate alternatives (MGA) should be used to 
support decision-making under uncertainty when probability 
data is scarce, or qualitative policy concerns are more important.

III. Development and application of combined optimization and 
hybrid simulation–optimization approaches should be promoted 
to improve the robustness and adaptability of renewable energy 
system planning under disruptive events.

Thus, combined optimization methods and hybrid simu
lation–optimization methods could open new avenues for the future 
modeling of disruptive events in renewable energy supply.
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et al. Extending energy system modelling to include extreme weather risks and 
application to hurricane events in Puerto Rico. Nat Energy 2021;6:240–9. https:// 
doi.org/10.1038/s41560-020-00758-6.

[41] Jing R, Wang X, Zhao Y, Zhou Y, Wu J, Lin J. Planning urban energy systems 
adapting to extreme weather. Adv Appl Energy 2021;3:100053. https://doi.org/ 
10.1016/j.adapen.2021.100053.

[42] Stevanato N, Rocco MV, Giuliani M, Castelletti A, Colombo E. Advancing the 
representation of reservoir hydropower in energy systems modelling: the case of 
Zambesi River Basin. PLoS One 2021;16:e0259876. https://doi.org/10.1371/ 
journal.pone.0259876.

[43] Li L, Wang J, Zhong X, Lin J, Wu N, Zhang Z, et al. Combined multi-objective 
optimization and agent-based modeling for a 100% renewable island energy 
system considering power-to-gas technology and extreme weather conditions. 
Appl Energy 2022;308:118376. https://doi.org/10.1016/j. 
apenergy.2021.118376.

[44] Cao Y, Taslimi MS, Dastjerdi SM, Ahmadi P, Ashjaee M. Design, dynamic 
simulation, and optimal size selection of a hybrid solar/wind and battery-based 
system for off-grid energy supply. Renew Energy 2022;187:1082–99. https://doi. 
org/10.1016/j.renene.2022.01.112.

[45] Ibrahim NA, Wan Alwi SR, Manan ZA, Mustaffa AA, Kidam K. Risk matrix 
approach of extreme temperature and precipitation for renewable energy systems 
in Malaysia. Energy 2022;254:124471. https://doi.org/10.1016/j. 
energy.2022.124471.

[46] Piltan G, Pirouzi S, Azarhooshang A, Rezaee Jordehi A, Paeizi A, Ghadamyari M. 
Storage-integrated virtual power plants for resiliency enhancement of smart 
distribution systems. J Energy Storage 2022;55:105563. https://doi.org/ 
10.1016/j.est.2022.105563.

[47] Xiong X, Wu X. Coordinated control of heat-power integrated energy system using 
zone model predictive control with variable zone width. Appl Therm Eng 2022; 
217:119270. https://doi.org/10.1016/j.applthermaleng.2022.119270.

[48] Zamani Gargari M, Tarafdar Hagh M, Ghassem Zadeh S. Preventive scheduling of 
a multi-energy microgrid with mobile energy storage to enhance the resiliency of 
the system. Energy 2023;263:125597. https://doi.org/10.1016/j. 
energy.2022.125597.

[49] Ali M, Vasquez JC, Guerrero JM, Guan Y, Golestan S, De La Cruz J, et al. 
A comparison of grid-connected local hospital loads with typical backup systems 
and renewable energy system based Ad Hoc microgrids for enhancing the 
resilience of the system. Energies 2023;16:1918. https://doi.org/10.3390/ 
en16041918.

[50] Hu J, Koning V, Bosshard T, Harmsen R, Crijns-Graus W, Worrell E, et al. 
Implications of a Paris-proof scenario for future supply of weather-dependent 
variable renewable energy in Europe. Adv Appl Energy 2023;10:100134. https:// 
doi.org/10.1016/j.adapen.2023.100134.

[51] Liu X, Yuan X, Ma F, Xia J. The increasing risk of energy droughts for hydropower 
in the Yangtze River basin. J Hydrol 2023;621:129589. https://doi.org/10.1016/ 
j.jhydrol.2023.129589.

[52] Ren H, Jiang Z, Wu Q, Li Q, Lv H. Optimal planning of an economic and resilient 
district integrated energy system considering renewable energy uncertainty and 
demand response under natural disasters. Energy 2023;277:127644. https://doi. 
org/10.1016/j.energy.2023.127644.

[53] Brás TA, Simoes SG, Amorim F, Fortes P. How much extreme weather events have 
affected European power generation in the past three decades? Renew Sustain 
Energy Rev 2023;183:113494. https://doi.org/10.1016/j.rser.2023.113494.

[54] Tokimatsu K, Konishi S, Ishihara K, Tezuka T, Yasuoka R, Nishio M. Role of 
innovative technologies under the global zero emissions scenarios. Appl Energy 
2016;162:1483–93. https://doi.org/10.1016/j.apenergy.2015.02.051.

[55] Diab F, Ali S. An economic and environment friendly solution for the rural 
households’ energy crisis in Egypt. J Renew Sustain Energy 2016;8:045904. 
https://doi.org/10.1063/1.4955112.

[56] Soria R, Lucena AFP, Tomaschek J, Fichter T, Haasz T, Szklo A, et al. Modelling 
concentrated solar power (CSP) in the Brazilian energy system: a soft-linked 
model coupling approach. Energy 2016;116:265–80. https://doi.org/10.1016/j. 
energy.2016.09.080.

[57] Zhang X, Ma C, Song X, Zhou Y, Chen W. The impacts of wind technology 
advancement on future global energy. Appl Energy 2016;184:1033–7. https:// 
doi.org/10.1016/j.apenergy.2016.04.029.

[58] Di Somma M, Yan B, Bianco N, Graditi G, Luh PB, Mongibello L, et al. Multi- 
objective design optimization of distributed energy systems through cost and 

exergy assessments. Appl Energy 2017;204:1299–316. https://doi.org/10.1016/ 
j.apenergy.2017.03.105.

[59] Singh G, Baredar P, Singh A, Kurup D. Optimal sizing and location of PV, wind 
and battery storage for electrification to an island: a case study of Kavaratti, 
Lakshadweep. J Energy Storage 2017;12:78–86. https://doi.org/10.1016/j. 
est.2017.04.003.

[60] Groppi D, Astiaso Garcia D, Lo Basso G, Cumo F, De Santoli L. Analysing 
economic and environmental sustainability related to the use of battery and 
hydrogen energy storages for increasing the energy independence of small 
islands. Energy Convers Manag 2018;177:64–76. https://doi.org/10.1016/j. 
enconman.2018.09.063.

[61] Optimizing operation of a large-scale pumped storage hydropower system 
coordinated with wind farm by means of genetic algorithms, Glob. NEST J. 2019. 
https://doi.org/10.30955/gnj.002978.

[62] Nko M, Chowdhury SPD, Popoola O. Application assessment of pumped storage 
and lithium-ion batteries on electricity supply grid. Energies 2019;12:2855. 
https://doi.org/10.3390/en12152855.

[63] Griese M, Hoffarth MP, Schneider J, Schulte T. Hardware-in-the-Loop simulation 
of an optimized energy management incorporating an experimental biocatalytic 
methanation reactor. Energy 2019;181:77–90. https://doi.org/10.1016/j. 
energy.2019.05.092.

[64] Ren T, Li X, Chang C, Chang Z, Wang L, Dai S. Multi-objective optimal analysis on 
the distributed energy system with solar driven metal oxide redox cycle based 
fuel production. J Clean Prod 2019;233:765–81. https://doi.org/10.1016/j. 
jclepro.2019.06.028.

[65] Dawood F, Shafiullah G, Anda M. Stand-Alone microgrid with 100% renewable 
energy: a case study with hybrid solar pv-battery-hydrogen. Sustainability 2020; 
12:2047. https://doi.org/10.3390/su12052047.

[66] Yang R, Yuan Y, Ying R, Shen B, Long T. A novel energy management strategy for 
a ship’s hybrid solar energy generation system using a particle swarm 
optimization algorithm. Energies 2020;13:1380. https://doi.org/10.3390/ 
en13061380.

[67] Hossain MS, Jahid A, Ziaul Islam K, Alsharif MH, Rahman MF. Multi-Objective 
optimum design of hybrid renewable energy system for sustainable energy supply 
to a green cellular networks. Sustainability 2020;12:3536. https://doi.org/ 
10.3390/su12093536.

[68] Supciller AA, Toprak F. Selection of wind turbines with multi-criteria decision 
making techniques involving neutrosophic numbers: a case from Turkey. Energy 
2020;207:118237. https://doi.org/10.1016/j.energy.2020.118237.

[69] Abdussami MR, Adham MI, Gabbar HA. Modeling and performance analysis of 
nuclear-renewable micro hybrid energy system based on different coupling 
methods. Energy Rep 2020;6:189–206. https://doi.org/10.1016/j. 
egyr.2020.08.043.

[70] Dalla Longa F, Detz R, Van Der Zwaan B. Integrated assessment projections for the 
impact of innovation on CCS deployment in Europe. Int J Greenh Gas Control 
2020;103:103133. https://doi.org/10.1016/j.ijggc.2020.103133.

[71] Sheeba Percis E, Nalini A, Jenish TN, Jayarajan J, Bhuvaneswari S, Rama ST. 
Design of a self-sustained hybrid renewable energy microgrid for rural 
electrification of dry lands. Int J Energy Res 2021;45:8316–26. https://doi.org/ 
10.1002/er.6520.

[72] Ghiasirad H, Asgari N, Khoshbakhti Saray R, Mirmasoumi S. Thermoeconomic 
assessment of a geothermal based combined cooling, heating, and power system, 
integrated with a humidification-dehumidification desalination unit and an 
absorption heat transformer. Energy Convers Manag 2021;235:113969. https:// 
doi.org/10.1016/j.enconman.2021.113969.

[73] Dadak A, Mehrpooya M, Kasaeian A. Design and development of an innovative 
integrated structure for the production and storage of energy and hydrogen 
utilizing renewable energy. Sustain Energy Technol Assess 2021;45:101123. 
https://doi.org/10.1016/j.seta.2021.101123.

[74] Temiz M, Dincer I. Design and analysis of nuclear and solar-based energy, food, 
fuel, and water production system for an indigenous community. J Clean Prod 
2021;314:127890. https://doi.org/10.1016/j.jclepro.2021.127890.

[75] Zhao Z, Yang J, Chung CY, Yang W, He X, Chen M. Performance enhancement of 
pumped storage units for system frequency support based on a novel small signal 
model. Energy 2021;234:121207. https://doi.org/10.1016/j. 
energy.2021.121207.

[76] Franke K, Sensfuß F, Bernath C, Lux B. Carbon-neutral energy systems and the 
importance of flexibility options: a case study in China. Comput Ind Eng 2021; 
162:107712. https://doi.org/10.1016/j.cie.2021.107712.

[77] Liu B, Zhou B, Yang D, Li G, Cao J, Bu S, et al. Optimal planning of hybrid 
renewable energy system considering virtual energy storage of desalination plant 
based on mixed-integer NSGA-III. Desalination 2022;521:115382. https://doi. 
org/10.1016/j.desal.2021.115382.

[78] Temiz M, Dincer I. A unique bifacial PV and hydrogen-based cleaner energy 
system with heat recovery for data centers. Appl Therm Eng 2022;206:118102. 
https://doi.org/10.1016/j.applthermaleng.2022.118102.

[79] Li M, Middelhoff E, Ximenes FA, Carney C, Madden B, Florin N, et al. Scenario 
modelling of biomass usage in the Australian electricity grid. Resour Conserv 
Recycl 2022;180:106198. https://doi.org/10.1016/j.resconrec.2022.106198.

[80] Zhang C, Xia J, Guo X, Huang C, Lin P, Zhang X. Multi-optimal design and 
dispatch for a grid-connected solar photovoltaic-based multigeneration energy 
system through economic, energy and environmental assessment. Sol Energy 
2022;243:393–409. https://doi.org/10.1016/j.solener.2022.08.016.

[81] Yakub AO, Same NN, Owolabi AB, Nsafon BEK, Suh D, Huh J-S. Optimizing the 
performance of hybrid renewable energy systems to accelerate a sustainable 
energy transition in Nigeria: a case study of a rural healthcare centre in Kano. 

L. Wijesinghe et al.                                                                                                                                                                                                                             Sustainable Energy Technologies and Assessments 83 (2025) 104561 

16 

https://doi.org/10.1016/j.jenvman.2018.03.017
https://doi.org/10.3390/en12091692
https://doi.org/10.1016/j.renene.2018.07.099
https://doi.org/10.1016/j.renene.2018.07.099
https://doi.org/10.1038/s41560-020-0558-0
https://doi.org/10.1063/5.0012711
https://doi.org/10.1063/5.0012711
https://doi.org/10.1038/s41560-020-00758-6
https://doi.org/10.1038/s41560-020-00758-6
https://doi.org/10.1016/j.adapen.2021.100053
https://doi.org/10.1016/j.adapen.2021.100053
https://doi.org/10.1371/journal.pone.0259876
https://doi.org/10.1371/journal.pone.0259876
https://doi.org/10.1016/j.apenergy.2021.118376
https://doi.org/10.1016/j.apenergy.2021.118376
https://doi.org/10.1016/j.renene.2022.01.112
https://doi.org/10.1016/j.renene.2022.01.112
https://doi.org/10.1016/j.energy.2022.124471
https://doi.org/10.1016/j.energy.2022.124471
https://doi.org/10.1016/j.est.2022.105563
https://doi.org/10.1016/j.est.2022.105563
https://doi.org/10.1016/j.applthermaleng.2022.119270
https://doi.org/10.1016/j.energy.2022.125597
https://doi.org/10.1016/j.energy.2022.125597
https://doi.org/10.3390/en16041918
https://doi.org/10.3390/en16041918
https://doi.org/10.1016/j.adapen.2023.100134
https://doi.org/10.1016/j.adapen.2023.100134
https://doi.org/10.1016/j.jhydrol.2023.129589
https://doi.org/10.1016/j.jhydrol.2023.129589
https://doi.org/10.1016/j.energy.2023.127644
https://doi.org/10.1016/j.energy.2023.127644
https://doi.org/10.1016/j.rser.2023.113494
https://doi.org/10.1016/j.apenergy.2015.02.051
https://doi.org/10.1063/1.4955112
https://doi.org/10.1016/j.energy.2016.09.080
https://doi.org/10.1016/j.energy.2016.09.080
https://doi.org/10.1016/j.apenergy.2016.04.029
https://doi.org/10.1016/j.apenergy.2016.04.029
https://doi.org/10.1016/j.apenergy.2017.03.105
https://doi.org/10.1016/j.apenergy.2017.03.105
https://doi.org/10.1016/j.est.2017.04.003
https://doi.org/10.1016/j.est.2017.04.003
https://doi.org/10.1016/j.enconman.2018.09.063
https://doi.org/10.1016/j.enconman.2018.09.063
https://doi.org/10.30955/gnj.002978
https://doi.org/10.3390/en12152855
https://doi.org/10.1016/j.energy.2019.05.092
https://doi.org/10.1016/j.energy.2019.05.092
https://doi.org/10.1016/j.jclepro.2019.06.028
https://doi.org/10.1016/j.jclepro.2019.06.028
https://doi.org/10.3390/su12052047
https://doi.org/10.3390/en13061380
https://doi.org/10.3390/en13061380
https://doi.org/10.3390/su12093536
https://doi.org/10.3390/su12093536
https://doi.org/10.1016/j.energy.2020.118237
https://doi.org/10.1016/j.egyr.2020.08.043
https://doi.org/10.1016/j.egyr.2020.08.043
https://doi.org/10.1016/j.ijggc.2020.103133
https://doi.org/10.1002/er.6520
https://doi.org/10.1002/er.6520
https://doi.org/10.1016/j.enconman.2021.113969
https://doi.org/10.1016/j.enconman.2021.113969
https://doi.org/10.1016/j.seta.2021.101123
https://doi.org/10.1016/j.jclepro.2021.127890
https://doi.org/10.1016/j.energy.2021.121207
https://doi.org/10.1016/j.energy.2021.121207
https://doi.org/10.1016/j.cie.2021.107712
https://doi.org/10.1016/j.desal.2021.115382
https://doi.org/10.1016/j.desal.2021.115382
https://doi.org/10.1016/j.applthermaleng.2022.118102
https://doi.org/10.1016/j.resconrec.2022.106198
https://doi.org/10.1016/j.solener.2022.08.016


Energy Strategy Rev 2022;43:100906. https://doi.org/10.1016/j. 
esr.2022.100906.

[82] Ghasempour R, Ghanbari Motlagh S, Montazeri M, Shirmohammadi R. 
Deployment a hybrid renewable energy system for enhancing power generation 
and reducing water evaporation of a dam. Energy Rep 2022;8:10272–89. https:// 
doi.org/10.1016/j.egyr.2022.07.177.

[83] Wang D, Dahan F, Chaturvedi R, Fahad Almojil S, Ibrahim Almohana A, Fahmi 
Alali A, et al. Qasim Ahmed Alyousuf, Thermodynamic performance optimization 
and environmental analysis of a solid oxide fuel cell powered with biomass 
energy and excess hydrogen injection. Int J Hydrog Energy 2024;51:1142–55. 
https://doi.org/10.1016/j.ijhydene.2022.12.264.

[84] Hai T, El-Shafay AS, Alizadeh A, Dhahad HA, Chauhan BS, Almojil SF, et al. 
Comparison analysis of hydrogen addition into both anode and afterburner of fuel 
cell incorporated with hybrid renewable energy driven SOFC: an application of 
techno-environmental horizon and multi-objective optimization. Int J Hydrog 
Energy 2024;51:1195–207. https://doi.org/10.1016/j.ijhydene.2023.02.016.

[85] Liu K, Xu Z, Gao F, Wu J, Guan X. Coordination optimization of hydrogen-based 
multi-energy system with multiple storages for industrial park. IET Gener Transm 
Distrib 2023;17:1190–203. https://doi.org/10.1049/gtd2.12726.

[86] Ardahan University, Department of Electrical Engineering, 75002. Ardahan, 
Turkey., H.H. Coban, Assessment of Hybrid Renewable Energy System in 
Beledweyne city Somalia, Technical and Economical Analysis, J Eng Res 2022. 
https://doi.org/10.36909/jer.16481.

[87] Abdussami MR, Ahmed A, Hasan Sakib T. A novel approach for optimal energy 
resources mixing in nuclear-renewable microgrids using probabilistic energy 
modelling method. Energy Convers Manag 2023;282:116862. https://doi.org/ 
10.1016/j.enconman.2023.116862.

[88] Awad M, Mahmoud MM, Elbarbary ZMS, Mohamed Ali L, Fahmy SN, Omar AI. 
Design and analysis of photovoltaic/wind operations at MPPT for hydrogen 
production using a PEM electrolyzer: Towards innovations in green technology. 
PLoS One 2023;18:e0287772. https://doi.org/10.1371/journal.pone.0287772.

[89] Wang Y, Song M, Jia M, Li B, Fei H, Zhang Y, et al. Multi-objective 
distributionally robust optimization for hydrogen-involved total renewable 
energy CCHP planning under source-load uncertainties. Appl Energy 2023;342: 
121212. https://doi.org/10.1016/j.apenergy.2023.121212.

[90] Chang L, Wu Z, Ghadimi N. A new biomass-based hybrid energy system 
integrated with a flue gas condensation process and energy storage option: an 
effort to mitigate environmental hazards. Process Saf Environ Prot 2023;177: 
959–75. https://doi.org/10.1016/j.psep.2023.07.045.

[91] Moussavi S, Barutha P, Dvorak B. Environmental life cycle assessment of a novel 
offshore wind energy design project: a United States based case study. Renew 
Sustain Energy Rev 2023;185:113643. https://doi.org/10.1016/j. 
rser.2023.113643.

[92] Servert J, San Miguel G, Lopez D. Hybrid Solar biomass plants for power 
generation. Glob Nest J 2011;13:266–75.

[93] Sasse J-P, Trutnevyte E. Regional impacts of electricity system transition in 
Central Europe until 2035. Nat Commun 2020;11:4972. https://doi.org/ 
10.1038/s41467-020-18812-y.

[94] Li FGN, Trutnevyte E. Investment appraisal of cost-optimal and near-optimal 
pathways for the UK electricity sector transition to 2050. Appl Energy 2017;189: 
89–109. https://doi.org/10.1016/j.apenergy.2016.12.047.

[95] Ghanadan R, Koomey JG. Using energy scenarios to explore alternative energy 
pathways in California. Energy Policy 2005;33:1117–42. https://doi.org/ 
10.1016/j.enpol.2003.11.011.

[96] Mallah S, Bansal NK. Renewable energy for sustainable electrical energy system 
in India. Energy Policy 2010;38:3933–42. https://doi.org/10.1016/j. 
enpol.2010.03.017.

[97] Mathiesen BV, Lund H, Karlsson K. 100% Renewable energy systems, climate 
mitigation and economic growth. Appl Energy 2011;88:488–501. https://doi. 
org/10.1016/j.apenergy.2010.03.001.

[98] Wetterlund E, Leduc S, Dotzauer E, Kindermann G. Optimal localisation of biofuel 
production on a European scale. Energy 2012;41:462–72. https://doi.org/ 
10.1016/j.energy.2012.02.051.

[99] Calvert K, Mabee W. More solar farms or more bioenergy crops? Mapping and 
assessing potential land-use conflicts among renewable energy technologies in 
eastern Ontario, Canada. Appl Geogr 2015;56:209–21. https://doi.org/10.1016/ 
j.apgeog.2014.11.028.

[100] Zhou X, Huang G, Zhu H, Chen J, Xu J. Chance-constrained two-stage fractional 
optimization for planning regional energy systems in British Columbia, Canada. 
Appl Energy 2015;154:663–77. https://doi.org/10.1016/j. 
apenergy.2015.05.013.
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