001047158 001__ 1047158
001047158 005__ 20260106202633.0
001047158 0247_ $$2doi$$a10.1016/j.msea.2025.148479
001047158 0247_ $$2ISSN$$a0921-5093
001047158 0247_ $$2ISSN$$a1873-4936
001047158 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04115
001047158 037__ $$aFZJ-2025-04115
001047158 082__ $$a530
001047158 1001_ $$0P:(DE-HGF)0$$aOkotete, Eloho$$b0
001047158 245__ $$aEnhanced crack stability in micro scale fracture testing via optimized bridge notches
001047158 260__ $$aAmsterdam$$bElsevier$$c2025
001047158 3367_ $$2DRIVER$$aarticle
001047158 3367_ $$2DataCite$$aOutput Types/Journal article
001047158 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767693864_21762
001047158 3367_ $$2BibTeX$$aARTICLE
001047158 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047158 3367_ $$00$$2EndNote$$aJournal Article
001047158 520__ $$aIn micro cantilever fracture, a bridge notch geometry with material ligaments at the notch ends helps to reduce focused ion beam artefacts near the notch root by arresting initial cracks and promoting fracture from sharp, natural cracks. Thus, it significantly reduces the statistical scatter in fracture toughness, a common but undesirable feature in micro fracture testing. Although this concept has been validated in simulations and experiments, systematic investigations into the optimal geometry remain lacking. In this study, we experimentally examine the influence of bridge width and notch depth on the fracture toughness of micro cantilevers, using single crystalline silicon as a model material. We found that samples with thinner material bridges and deeper notches exhibit crack arrest before failure, while those with thicker bridges do not show crack arrest instead exhibit apparent toughening. Cantilevers with an optimized bridge notch geometry for crack arrest exhibit a KIC of 1.09 ± 0.02 MPa m0.5, which agrees with previously reported fracture toughness for the Si (111) surface. Additionally, discrepancies between the bridge geometry in the experiment and the ideal structure resulted in a mismatch between the predicted and observed notch requirements for crack arrest. Our findings offer practical guidelines for designing bridge notch geometries to promote bridge failure, thus improving statistical analysis in micro fracture.
001047158 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
001047158 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047158 7001_ $$0P:(DE-HGF)0$$aMuslija, Alban$$b1
001047158 7001_ $$0P:(DE-HGF)0$$aHohmann, Judith K.$$b2
001047158 7001_ $$0P:(DE-HGF)0$$aKohl, Manfred$$b3
001047158 7001_ $$0P:(DE-Juel1)164854$$aBrinckmann, Steffen$$b4
001047158 7001_ $$0P:(DE-HGF)0$$aLee, Subin$$b5$$eCorresponding author
001047158 7001_ $$0P:(DE-HGF)0$$aKirchlechner, Christoph$$b6
001047158 773__ $$0PERI:(DE-600)2012154-4$$a10.1016/j.msea.2025.148479$$gVol. 939, p. 148479 -$$p148479 -$$tMaterials science & engineering / A$$v939$$x0921-5093$$y2025
001047158 8564_ $$uhttps://juser.fz-juelich.de/record/1047158/files/1-s2.0-S0921509325007038-main.pdf$$yOpenAccess
001047158 909CO $$ooai:juser.fz-juelich.de:1047158$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001047158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164854$$aForschungszentrum Jülich$$b4$$kFZJ
001047158 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
001047158 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAT SCI ENG A-STRUCT : 2022$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMAT SCI ENG A-STRUCT : 2022$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047158 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001047158 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001047158 920__ $$lyes
001047158 9201_ $$0I:(DE-Juel1)IMD-1-20101013$$kIMD-1$$lWerkstoffstruktur und -eigenschaften$$x0
001047158 980__ $$ajournal
001047158 980__ $$aVDB
001047158 980__ $$aUNRESTRICTED
001047158 980__ $$aI:(DE-Juel1)IMD-1-20101013
001047158 9801_ $$aFullTexts