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Abstract

Astrocytes engage in local interactions with neurons, synapses, other glial cell types,
and the vasculature through intricate cellular and molecular processes, playing an impor-
tant role in brain information processing, plasticity, cognition, and behavior. This study
advances understanding of local interactions and self-organization of neuron-astrocyte
networks and contributes to the broader investigation of their potential relationship with
global activity regimes and overall brain function. We present six new contributions: (1)
the development of a new model-building framework for neuron-astrocyte networks, (2)
the introduction of connectivity concepts for tripartite neuron-astrocyte interactions in bio-
logical neural networks, (3) the design of a scalable architecture capable of simulating
networks with up to a million cells, (4) a formalized description of neuron-astrocyte mod-
eling that facilitates reproducibility, (5) the integration of experimental data to a greater
extent than existing studies, and (6) simulation results demonstrating how neuron-
astrocyte interactions drive the emergence of synchronization in local neuronal groups.
Specifically, we develop a new technology for representing astrocytes and their inter-
actions with neurons in distributed simulation code for large-scale spiking neuronal net-
works. This includes an astrocyte model with calcium dynamics, an extended neuron
model receiving calcium-dependent signals from astrocytes, and a parallelized connec-
tivity generation scheme for tripartite interactions between pre- and postsynaptic neu-
rons and astrocytes. We verify the efficiency of our reference implementation through
benchmarks varying in computing resources and network sizes. Our in silico experi-
ments reproduce experimental data on astrocytic effects on neuronal synchronization,
demonstrating that astrocytes consistently induce local synchronization in groups of neu-
rons across various connectivity schemes and global activity regimes. By adjusting the
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strength of neuron-astrocyte interactions, we can switch the global activity regime from
asynchronous to network-wide synchronization. This work represents an advancement
in neuron-astrocyte modeling, introducing a novel framework that enables large-scale
simulations of astrocytic influence on neuronal networks.

Author summary

Astrocytes play an important role in regulating synapses, neuronal networks, and
cognitive functions. However, models that include both neurons and astrocytes are
underutilized compared to models with only neurons in theoretical and computational
studies. We address this issue by developing theoretical concepts for representing astro-
cytic connectivity and interactions and provide a reference implementation supporting
distributed parallel computing in the spiking neural network simulator NEST. Using
these capabilities, we show how astrocytes help to synchronize neural networks under
various connection patterns and activity levels. The new technology makes it easier to
include astrocytes in simulations of neural systems, promoting the construction of more
realistic, relevant, and reproducible models.

Introduction

Computational modeling provides methodology and tools to integrate the knowledge about
complex molecular and cellular machinery, cell morphology, and spatial organization of
astrocytic domains with electrophysiological and imaging data from neurons and astrocytes
into models of large-scale neuron-astrocyte circuits. Such circuit-level models can be used to
examine how various molecular and cellular mechanisms affect global dynamical regimes and
fundamental functions of brain circuits such as sensory processing, learning, and memory.
Furthermore, biologically detailed and data-driven models can be used to probe how specific
disease-related dysfunctions on genetic, molecular and cellular levels alter global dynamical
regimes in brain circuits and contribute to brain disorders. Until recently, network model-
ing efforts have focused on networks of neurons connected by bipartite chemical synapses [1],
occasionally including gap junctions as well [2]. Including astrocytes in large network models
creates new challenges for model specification and construction, because they typically form
tripartite synapses involving two neurons and an astrocyte. Similar tripartite connectivity is
also found elsewhere in the brain, e.g., in the triadic circuitry of the lateral geniculate nucleus
[3]. In the spirit of Senk and colleagues [4], we propose here a generic tripartite connection
rule, provide an efficient parallel and generalizable reference implementation and demon-
strate its capabilities by investigating the effect of astrocytic interactions on synchrony in a
neuronal network.

Astrocytes, a prevalent glial cell subtype within the brain, fulfill many roles encompass-
ing the facilitation of synaptic pruning and maturation, regulation of extracellular ionic con-
centrations, and active participation in metabolic processes as well as the maintenance of
the blood-brain barrier functions. In vivo, astrocytes are organized into three-dimensional
spatially separated domains with little overlap between domains [5-11]. Each astrocytic
domain covers tens to hundreds of thousands of synapses in rodents and even up to millions
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of synapses in humans [5,6,9]. Within their domains, astrocytes ramify into complex mor-
phologies containing multiple processes that are positioned close to synapses (see, e.g., [9,11])
and maintain bidirectional interactions with synapses [12]. Astrocytes react to released neu-
rotransmitters, including glutamate and gamma-aminobutyric acid (GABA), by elevating
their intracellular inositol trisphosphate (IP3) and calcium levels [13]. Elevated astrocytic cal-
cium levels have been shown to stimulate the release of gliotransmitters, such as glutamate,
D-serine, and adenosine triphosphate (ATP) via exocytosis [12-15]. The released gliotrans-
mitters can affect neuronal excitability, for example, the release of glutamate has been shown
to induce neuronal extrasynaptic N-methyl-D-aspartate receptor (NMDAR)-mediated slow
inward currents (SICs). SICs were first shown in hippocampal neuron-astrocyte co-cultures
two decades ago [16], but have since been documented in brain slices of hippocampus and
other brain areas as well [17-30], and in humans [31] in addition to rodents.

In the past two decades, the interest in computational modeling of neuron-astrocyte cir-
cuits has been steadily increasing (for review and analysis of models see, e.g., [32-36]). How-
ever, published models consider only small networks compared to the extent of the biological
interaction and are rarely implemented using standard open-access simulation tools or sup-
plemented with code and extensive documentation in public repositories. This hinders reuse
of models and reproduction of the reported results. To address these challenges, we propose
here connectivity concepts for the representation of tripartite neuron-astrocyte interaction in
large-scale models in the spirit of Nordlie and Senk [4,37]. We provide a reference implemen-
tation for the NEST simulator [38,39]. Our work complements astrocytic implementations in
neural network simulators, namely ARACHNE [40] and Brian2 [41,42], by focusing (a) on
high-level specification of tripartite connectivity patterns and (b) on simulations of large neu-
ral networks using distributed parallel computing based on Message Passing Interface (MPI).
We propose efficient data structures and algorithms for network construction and simulation,
combined with domain-specific language constructs supporting the definition of interactions
in large heterogeneous neuron-astrocyte models.

The framework comprises a model for astrocytic calcium dynamics [43,44], a model for
neuron-astrocyte interaction [45], and a method for pairing synapses with astrocytes in
neuron-astrocyte circuits. We extend the concept of a synapse, conventionally composed of a
presynaptic and a postsynaptic component, with an astrocyte element and develop respective
modeling language constructs for tripartite connectivity. The new language constructs allow
researchers to complement probabilistic connection rules for neuron populations with spec-
ifications for connections with a third factor, such as an astrocyte population. In this frame-
work, we implement neuron-astrocyte interactions through glutamatergic signaling and SICs,
based on a previously published model [45] already used in several follow-up studies (e.g.,
[35,46,47]). Due to the long history of modeling slow inward currents and their widespread
use in previous studies, we chose to implement SICs in this framework (see all models using
SICs in [33,35]). We verify the efficiency of the data structures and algorithms through a
series of benchmarks of the reference implementation in NEST by evaluating the computa-
tional load associated with different steps in the simulation while systematically scaling up
computing resources and model size. The benchmarks show that the implementation provides
an efficient tool for large-scale modeling of neuron-astrocyte circuits.

We demonstrate the capability of the new technology to serve as a platform for in silico
experiments on neuron-astrocyte circuits. Recent experimental evidence reveals coordinated
activity of astrocytic and neuronal populations in vitro [48] and in vivo in behaviorally rel-
evant tasks [49-52]. Here, we explore a specific mechanism, the emergence of coordinated
neuronal and astrocytic activity through the release of glutamate from astrocytes, that induces
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SICs in postsynaptic neurons. In the central nervous system, SICs contribute to the synchro-
nization of neurons in close proximity, thereby influencing the coordination of local network
activity [18,19,24,53]. Additionally, large SICs in cortical areas may hold pathophysiological
implications, as they can synchronize neuronal network activity and facilitate the generation
of seizures [22,54], contributing to the pathophysiology of stroke and cerebral edema [30,55].
Moreover, according to very recent findings, SICs are likely to play an important role in age-
dependent physiological and pathological alterations of brain activity in humans, including
synaptic plasticity [56]. Brainstem SICs may serve different functions, as previous research
[27,57] has not identified widespread synchronization of these events among neighboring
neurons.

We note that SICs exhibit slower kinetics than spontaneous or miniature excitatory post-
synaptic currents. The prevailing view is that GluN2B-containing NMDARs drive the genera-
the emergence of coordinated activity in neuron-astrocyte systems.

We construct a spiking neuron-astrocyte network model comparable to a selected experi-
mental study [53,58] and use it to show that astrocytes robustly enhance neuronal synchrony
in silico across diverse network activity regimes and connectivities. We fit the parameters of
an astrocyte model to reproduce frequency and duration of spontaneous calcium transients
reported in the literature [48,59-61]. The first set of in silico experiments distributes neu-
rons across non-overlapping domains, where all neurons in the same domain interact with
the same one astrocyte. When synaptic transmission between neurons is suppressed, astro-
cytes promote synchronized activity among neurons within their respective domains, aligning
with experimental findings. In models where neurons fire at biologically realistic frequen-
cies, astrocytes still induce synchrony within their domains, both in a low-rate asynchronous
network spiking regime and in the presence of network-wide bursts. Switching from low-
rate asynchronous spiking to network-wide bursting is achieved by increasing the strength
of inputs from neurons to astrocytes. The bursting regime induces some degree of synchrony
between the majority of neurons in the model, but the synchrony in the whole network still
remains significantly below the level of synchrony within domains. In the second set of exper-
iments, neurons typically belong to more than one astrocytic domain and interact with more
than one astrocyte. Therefore each neuron can belong to more than one synchronous group.
We show that, in this case as well, the synchronization within domains still exceeds overall
synchronization in the network.

The structure of the present work is as follows. We first provide details of the astrocyte
models and the novel tripartite connectivity concepts including their implementation (Meth-
ods). We then verify the efficiency of our reference implementation, confirming that it can
serve as a platform for the study of large-scale neuron-astrocyte circuits (Results, first subsec-
tion). Finally, we demonstrate how the new capabilities can be used to reproduce and extend
experimental studies (Results, second subsection).

Preliminary results of this study have appeared in abstract form [62,63]. The technology
described in the present article has been released as open source with several major releases
of NEST. The conceptual and algorithmic work is a module in our long-term collaborative
project to provide the technology for neural system simulations [39].

Methods
Model of neuron-astrocyte interaction

The model of neuron-astrocyte interaction we consider in this work has four components:
(a) a Li-Rinzel astrocyte model (astrocyte 1r 1994) with calcium dynamics [43,44],
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and a mechanism that generates a calcium-dependent SIC [45], (b) an extended AdEx neu-
ron model (aeif cond alpha astro) capable of receiving the SIC elicited by astro-
cytes, (c) a sic_connection model for transmitting time-continuous SIC signals effi-
ciently from astrocytes to neurons also in parallel simulations, and (d) a tripartite connec-
tionrule (third factor bernoulli with pool) extending the standard notion of
binary connectivity in neuronal circuits by allowing to establish interactions between triplets
of elements facilitating parallel construction of networks including astrocytes. The biological
mechanisms modeled with this implementation are illustrated in Fig 1.

Reference implementations of the astrocyte and neuron models as well as the SIC inter-
action were released with NEST 3.6 [64]. A preliminary version of the tripartite connectivity
concepts was provided in NEST 3.7 [65], while the definite version of the tripartite connec-
tivity support discussed here was released with NEST 3.8 [38]. A fourth component solely
for the purpose of benchmarks presented here is a simplified variant of the astrocyte model,
astrocyte surrogate, which is not integrated into the NEST code base but is pro-
vided as an extension module on GitHub [66]. Model documentation and example scripts are

A PRESYNAPTIC B PRESYNAPTIC NEURONS
NEURON

ASTROCYTE

SYNAPSE GIU@D%Z]H N 4 NN LD

U U U U Cah/ ANEN 7 = <«
ANPAR NMDAR ASTROCYTE 1 ASTROCYTE 2 ASTROCYTE 3
NMDAR é/ Glu POSTSYNAPTIC POSTSYNAPTIC
= NEURON 1 NEURON 2

COsic
POSTSYNAPTIC
NEURON
C PRESYNAPTIC NEURONS

Inhibitory neuron

Excitatory neuron

NN SN

«—7 N — =

Astrocyte

POSTSYNAPTIC NEURONS

Fig 1. Illustration of the biological mechanisms captured by the model framework for astrocytes. (A) Feed-forward interaction from
the presynaptic neuron to the postsynaptic neuron: direct synaptic exchange and an indirect pathway through a neighboring astrocyte.
This interaction with an astrocyte is modeled only for the glutamatergic synapses while GABAergic synapses include only interaction
between the two neurons. (B) Interaction scheme between astrocytes and excitatory neurons. An astrocyte receives glutamate from all its
presynaptic contacts and induces slow inward currents (SICs) only in those postsynaptic neurons that form synapses with its presynaptic
contacts. (C) Extension of the interaction scheme in B by inhibitory neurons. Astrocytes are only involved in excitatory-excitatory and
excitatory-inhibitory connections.

https://doi.org/10.1371/journal.pcbi.1013503.9001
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available through Read the Docs. Nordlie tables [37] summarize the model equations in S1
Appendix.

The present work requires a two-step mapping of notation. In the first, the mathematical
notation of a range of studies needs to be unified to interrelate the components of the net-
work models. In the second, the unified notation needs to be mapped to a domain-specific
programming language for expressing the models in executable descriptions. An ontology
of variables and parameters together with their default values is given in S2 Appendix. The
phenomenological models of the present study, based on phenomenological description of
biological mechanisms and the abstractions of the anatomy, require parameter fitting to the
experimental data from the literature. These procedures are detailed in S3 Appendix.

Astrocyte model. We implement an astrocyte model astrocyte 1lr 1994 accord-
ing to the Li-Rinzel reduction [44] of the De Young-Keizer model [43] for intracellular cal-
cium dynamics in nonexcitable cells. The Nadkarni-Jung model extends the Li-Rinzel model
by adding astrocytic input and output mechanisms [45]. Our implementation follows the
published equations [44,45] with further adaptations of inputs and outputs. All parameters
and their default values are given in S2 Appendix. Here, we provide an overview of the model
structure.

Input to the astrocyte induces the production of astrocytic IP3, and the change in IP3 con-
centration ([IP;]) affects the flux of calcium from the endoplasmic reticulum (ER) to the
cytosol through the IP; receptor (IP;R) channel. The cytosolic calcium concentration ([Ca**])
determines the output of the astrocyte, which is a SIC to its target neurons. These mechanisms
are illustrated in Fig 1A. The equations for the astrocytic dynamics are:

d[Ca**](¢)

dt :]channel(t) _]pump(t) +]leak(t) +]noise(t)a (1)

where

Jehannel (£]) = TEReyt * VinsR - M (£) - 13 (£) - Bip, (1) - ([Ca™ Jer(£) - [Ca™*] (1)),
[1P5](t) [Ca**](1)

d}l%tl{(t) = an(t) - (1= hip,r(t)) = Bi(t) - hrp,r(2),
an(t) = kipyr - Kainh - m) Bu(t) = ke, - [Ca**] (1),
g (t) = tea (G T

2 b
K2 sprea *+ [Ca]°(1)

Jieak (t) = TEReyt - VL - ([Caz+]ER(t) - [Caz+](t))-

Jehannels Jieaks and Joump are the three terms determining the flux of calcium between cytosol
and ER. Jchannel is the IP;R-mediated release of calcium from the ER to the cytosol, Joump
refers to the ATP-dependent transport of calcium to the ER via the sarco/ER calcium-ATPase
(SERCA), and Jieak is the leak of calcium between the ER and cytosol. In addition to these
standard terms, we include the term Jyoise () to account for natural fluctuations in calcium
dynamics.

The parameters and variables involved in Eq (1) are as follows. rgg oy is the ratio between
astrocytic ER and cytosol volumes. vip,r is the maximum rate of calcium release via astrocytic
IP3Rs. Kqp,,1 and Kqp, > are the first and second astrocytic IP;R dissociation constants of IP;.
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Kyt and Kgp are the astrocytic IPsR dissociation constants of calcium (for activation and
inhibition, respectively). kp,r is the astrocytic IP3R binding constant for calcium inhibition.
vsErca 1S the maximum rate of calcium transport by astrocytic SERCA pumps. Ki, sgrca is the
half-activation constant of astrocytic SERCA pumps. vy, is the rate constant of calcium leak
from astrocytic ER to cytosol. [Ca?*]gy is the calcium concentration in the ER. m, (t) and
e (t) are steady-state values for two gating variables of IP3Rs. hyp,r (#) is the fraction of IP;Rs
that are not yet inactivated by calcium. o, (#) and 8 () are two rates of the exchange between
activated and inactivated IP;Rs.

The calcium conservation is enforced by calculating the ER calcium concentration accord-
ing to the cytosolic calcium concentration at every simulation time step, similarly to [44,45]:

(o J(t) = L2 [T,
ER,cyt

where [Ca?" ], is the parameter determining the maximal cytosolic calcium concentration,
i.e., the cytosolic calcium concentration given that all the calcium ions are in the cytosol (see
[43] for details). Thus, the total amount of calcium in the astrocyte (cytosol + ER), is kept con-
stant. In our astrocyte model, the cytosolic calcium concentration is forced to stay within the
range between zero and [Ca** ], at each simulation step. Therefore, the given noise Jnoise ()
does not produce negative calcium concentration.

The astrocyte receives presynaptic spike events as excitatory inputs, similarly to previous
studies [40,42], which initiate IP5 production given by

d[IPs](¢) _ [IPs]o - [IP5](¢)
dt Tip,

+ AIP3 * ]syn(t)> (2)

where [IP;], is the baseline value of [IP;], 71p, is the time constant of the exponential decay of
[IP3], Ap, is the parameter determining the increase in [IP3] induced by the input, and Je, (1)
is the sum of all excitatory synaptic inputs (in the form of delta functions) that the astrocyte
receives at time ¢.

The output of the astrocyte is a SIC to its targets. This current is determined by [Ca®*] with
the phenomenological expression [45], given by

Fsic ([Ca™]) = asic - © (log(cscatea(t))) - 0g(cocated (1)), 3)
where

Cscaled(t) = ( [Caz+] (t) - 6SIC) /nM,

O(-) is the Heaviside function, and SIC is generated (Fsic > 0) when the calcium concen-
tration is larger than 8gic + 1 nM. Fsic ([Ca“]) is unitless, and the correct unit (pA) for

the summed astrocyte-induced SIC in a neuron (Isic; see SIC-receiving neuron model)

enters when Fgjc ([Ca”]) is multiplied by the weight of astrocyte-to-neuron connections
(Wastro_to_post) Which has a unit of pA. Note that due to the Heaviside function, Fsic > 0 every-
where and does not diverge to —co for small ¢ycyeq. Our implementation allows the users to
change Bg;¢ in this equation, and specify a factor agc to scale the generated SIC. These imple-
mentation choices add flexibility to Eq (9) in the original publication [45], where the param-
eters Bsic and agjc are fixed. Here, we use the notation with /nM to indicate that ceq is the

dimensionless version of the given concentration in nM.
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SIC-receiving neuron model. Next to a mathematical model of an astrocyte, we pro-
vide a model of single neuron dynamics susceptible to the SICs astrocytes induce in a neu-
ron. For the purpose of the present work, our starting point is the AdEx neuron model with
conductance-based synapses [67,68]. An additional current (Isic) in the differential equa-
tion describing the membrane potential represents the summed input from all connected
astrocytes. The adapted equation of the combined model (aeif cond alpha astro)
reads

av(t
Cm# :f(V(t)) - W(t) +Isyn(t) +ISIC(t): (4)
where C,, is the membrane capacitance, V() is the membrane potential, f(V(t)) defines the
passive properties and the spiking mechanism, W(t) is the adaptation variable, Iy, (t) is the
summed synaptic current to the neuron, and Isic(¢) is the summed SIC induced by all con-
nected astrocytes. f(V(t)) and W(t) follow Eqs (2) and (3) in [67] respectively, and Iy, (t) is
given by

ISYn(t) = —gexc(t) + (V(t) = Eexc) = Ginn(t) - (V(t) = Einn),

where g.x. and g, are the summed excitatory and inhibitory synaptic conductances, and Eey,
and Ejyp, are the excitatory and inhibitory reversal potentials.
When V(¢) reaches the spike detection threshold V., the reset condition is applied:

V(t+) = Vreseta W(t+) = W(t_) + b,

where Vi is the reset value for V after a spike, and b is the spike-triggered adaptation. The
membrane potential V(¢) is then held at the reset value Vi for a refractory period ty.

Fig 1B illustrates a situation where an excitatory neuron receives a SIC from two astrocytes,
while astrocytes receive inputs from several excitatory presynaptic neurons. Fig 1C extends
Fig 1B by adding also inhibitory cells.

SIC connection model. The SIC connection is implemented as a unidirectional inter-
action from an astrocyte to a target neuron. The connection is dependent on two parame-
ters, the weight that defines the strength of interaction and the connection delay. The interac-
tion is continuous and dependent on the state of the source astrocyte, but independent of the
state of the target neuron. This combination of features distinguishes SIC connections from
other cell-to-cell interactions available in NEST, such as synaptic connections or gap junc-
tions. Therefore, simulation codes for neuron-astrocyte networks require specific software
support for the interaction through SIC, and mathematical models of neuronal networks need
to specify this type of interaction if desired. In the present work this interaction is specified as
sic_connection.

Concepts for tripartite connectivity

The recent review of connectivity concepts in the computational neuroscience literature by
Senk et al. [4] concentrates on the connection patterns between two populations of neurons
and presents an ontology. Neuron-astrocyte networks, however, establish a three-party con-
nectivity. This suggests an interdependence in the connections among three network nodes
that goes beyond pairwise probabilities, highlighting innate network motifs in this type of
connectivity. A motif is a common graph-theoretic concept extensively used to describe net-
works with complex connectivity, including neuronal networks [35,69-72].

Details of the anatomical structure of neuron-astrocyte circuits are still a matter of debate
in spite of experimental progress [8-11]. We therefore here develop a flexible approach for
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generating tripartite connectivity. First, our approach supports a wide range of primary
connection rules [4]. Second, we introduce a third-factor connection rule, the third-factor
Bernoulli with pool rule (TBP rule), which in itself supports three alternative statistical
descriptions of the structure of neuron-astrocyte connectivity.

We propose to specify tripartite connectivity as follows. Given source and target neuron
populations, a primary connection rule selects specific source-target neuron pairs and estab-
lishes primary connections between the source and target neuron. For each source-target
pair selected, the third-factor connectivity rule then determines whether and which element
of a third-factor population (astrocytes in our case) to attach to the primary connection.
Attachment means that further connections are created from the primary source neuron to
the third-factor element and from the third-factor element to the primary target neuron. For
the sake of clarity, we will refer the third factor as astrocytes in what follows, but point out
that the rules and their implementation are entirely general: The only requirement on the
elements of the third-factor population is that they can receive the type of output provided
by the primary source neurons and emit output that can be received by the primary target
neurons.

In the TBP rule, the selection of the specific astrocyte to attach to a given source-target
pair is based on pools, i.e., subsets of the astrocyte population. Fig 2 illustrates alternative pool
types and resulting connection patterns. Each neuron in the target population is assigned a
fixed pool of a user-defined pool size Sy,01. We distinguish between two different pool types:
random and block pools. For random pools, the members of the pool are selected at random
from the entire astrocyte population without replacement. Any given astrocyte can be part of
the pools of multiple target neurons and pools assigned to different target neurons typically
share some members as illustrated in Fig 2A. This random pool formation corresponds to the
random fixed in-degree without multapses connection rule as defined by Senk et al. [4], albeit
for potential, not actual connections. For example, in Fig 2A each target neuron could, but
does not necessarily, connect to two astrocytes, but does not necessarily do so.

Block pools map astrocytes to target neurons deterministically in two possible ways. For
pool size S,0,1 = 1, exactly one astrocyte is assigned to each target neuron, while each astrocyte
can connect to multiple target neurons as shown in Fig 2B. In this case, the number of target
neurons must be a multiple of the number of astrocytes. For block pools of size S,001 > 1, each
target neuron selects exactly S,o01 astrocytes; these pools do not overlap. The total population
of astrocytes needs to be S, times larger than the number of target neurons. Fig 2C shows
an example for Sp,01 = 2. As for the random pool, the block pool also defines potential instead
of actual connections.

Note that the TBP rule allows multiple connections between a given astrocyte-target neu-
ron pair. If a target neuron receives input from multiple source neurons, an astrocyte can
be attached to each of those connections and the same astrocyte may be selected for each of
them. Fig 2B provides an example: Target ¢; receives input from sources s; and s; and astro-
cyte a; is attached to both connections, resulting in two connections from a; to t3; Fig 2C
shows another example. In both cases, a neuron interacts with the same astrocyte at multiple
synapses, as commonly observed in nature [73]. For further details on connection probabili-
ties, see S3 Appendix.

The examples in Fig 2 show that the TBP rule alone can give rise to a wide range of tripar-
tite connection patterns, in particular as the TBP rule can be combined with various binary
connection rules for the primary connections. We therefore restrict ourselves to exploring the
consequences of this rule in the remainder of this work.
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A Random pool B Block pool C Block pool
Spool =2 Spool =1 Spool =2

Pool and
connections
of to

Pool and
connections
of t1

All
connections
created

Fig 2. Examples of concept of tripartite neuron-astrocyte connectivity. Green arrows between source (s squares) and target (¢; squares) neurons indi-

cate synapses. In the tripartite concept, a synapse can be attached to an astrocyte (a;) with a certain probability, e.g., t; and , in (A) have both attached

and unattached synapses. Black and magenta arrows indicate astrocyte attachment (i.e., neuron-to-astrocyte and astrocyte-to-neuron connections) of the
synapses. Colored squares on top of astrocyte symbols indicate which astrocyte pool(s) they belong to, but do not determine actual connections. (A) Random
pools. Each target neuron interacts with up to S,00] randomly selected astrocytes. (B) Block pools with Sy, = 1. Each target neuron interacts with up to one
astrocyte. The number of target neurons is a multiple of the number of astrocytes. (C) Block pools with S,o01 > 1. Each target neuron interacts with up to
Spool astrocytes. The number of astrocytes is Spqo) times the number of target neurons. so, s1, ... : source (presynaptic) neurons; o, t1, ... : target (postsynaptic)
neurons; do, ai, ... : astrocytes. From (A) to (C), top two rows show the astrocyte pools and connections associated with the first two target neurons. The
bottom row shows the total connectivity of an example instance. The diagram and notation follow [4].

https://doi.org/10.1371/journal.pchi.1013503.9002

Efficient parallel instantiation of a tripartite connection rule

Efficient parallel instantiation of network connectivity from rules, as needed for large-scale
network simulations, benefits from simulation software that explicitly implements high-
level rules in low-level code to optimally exploit parallelism. While some neuronal network
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simulation software provides such support for pairwise connectivity [4], there has been little
support for tripartite connection patterns. We show here how such support can be integrated
into parallel instantiation of high-level connection rules in the NEST simulator.

Our approach has the following requirements: (i) a primary connection rule specifying
connections between source and target neurons; (ii) a third-factor connection rule specifying
if and how to attach a third-factor element to a given primary connection; (iii) the third-factor
element attaches to a primary connection by forming two additional connections, one from
the primary source to the third-factor element and another from the third-factor element to
the target. Beyond this, our approach is entirely general.

To achieve memory- and time-efficient representation and creation of connectivity, NEST
generates and stores connectivity on the target (postsynaptic) side, i.e., on the virtual process
(VP) managing the target neuron of a connection [74,75]. VPs can be mapped arbitrarily to
OpenMP threads and MPI processes [76]. Creating and storing connections on the VP of the
connection target causes complications when creating tripartite connectivity, since the third-
factor element (astrocyte) selected may be managed by a different VP than the primary target.
We solve this as follows: The VP managing the target neuron first applies the primary connec-
tion rule to decide which primary connection to create next. For the selected source-target
pair, it then invokes the third-factor connection rule to decide whether to create a third-factor
connection, and if so, which third-factor element to attach to the primary connection. The
VP then creates a “third out” connection from the third-factor element to the primary target
immediately. It further stores the element IDs of the primary source and the selected third-
factor element in a buffer local to the VP. Once all primary and “third out” connections have
been created, the VPs exchange the buffered primary-source-third-factor pairs and each VP
then creates the “third in” connections from the selected primary sources to the third-factor
elements it manages. This approach allows for a flexible combination of primary and third-
factor connection rules and preserves the scaling properties of the primary connection rule.
The algorithm adds an overhead for tripartite connectivity that is linear in the number of
primary connections and incurs only a single round of interprocess communication for the
exchange of the primary-source-third-factor pairs. Implementation details are described in
S4 Appendix.

We would like to point out that the approach as described is not restricted to the TBP
rule: it applies to any tripartite connection rule fulfilling the mild requirements mentioned
above. Indeed, while we so far only support the TBP rule as part of our reference implemen-
tation in the NEST simulator, users could add new third-factor rules without modifying
existing NEST source code by implementing a corresponding C++ class in a NEST extension
module.

Fig 3 illustrates how tripartite connectivity can be created in practice in NEST 3.8 and later.
A key feature of our approach is that the specification of the primary and the third-factor con-
nectivity are independent of each other. To create tripartite connectivity with a different pri-
mary rule, one just needs to specify the desired rule and its parameters as the conn_spec
parameter. The third factor conn_ spec parameter must at present always select the
TBP rule, as no other rules are available yet, but the details of the rule, i.e. attachment proba-
bility, pool type, and pool size, can be varied by the user. The synapse specifications through
parameter syn_specs are in turn entirely independent of the connectivity specifications
and also of each other. The only requirement on the synapse models specified is that they
are compatible with the neurons and third-factor elements to be connected. New rules for
third-factor connectivity fit seamlessly into this specification scheme: The user only needs to
provide the name of the new rule and its parameters in the third factor conn spec
parameter.
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astrocytes = nest.Create(
"astrocyte_lr_1994", 100, {"Ca_tot": 2.0, "IP3_0": 0.161})

neurons = nest.Create(
"aeif_cond_alpha_astro", 100, {"E_L": -70.6, "V_th": -50.41})

nest.TripartiteConnect (
neurons, neurons, astrocytes,

conn_spec={"rule": "pairwise_bermnoulli", "p": 0.1},
third_factor_conn_spec={
"rule": "third_factor_bernoulli_with_pool",
"p": 0.5,
"pool_size": 10,
"pool_type": "random"},
syn_specs={
"primary": {"synapse_model", "tsodyks_synapse", "weight": 0.7}
"third_in": {"synapse_model", "tsodyks_synapse", "weight": 0.3}
"third_out": {"synapse_model", "sic_connection", "weight": 1.0}})

Fig 3. Example of tripartite connectivity in NEST. The executable description specifies a network of 100 astrocytes and
100 neurons and tripartite connectivity. The conn_spec parameter specifies the primary connection rule, here pairwise
Bernoulli connectivity with 10% connection probability. The third factor conn spec parameter specifies the

rule for attaching third-factor elements, in this case the TBP rule with 50% probability to attach an astrocyte to a given
primary connection. The astrocyte to be attached will be drawn with equal probability from a random pool of 10 astrocytes.
Each target neuron has its own, random but fixed astrocyte pool to choose from. The syn_specs parameter specifies the
properties of the actual synapses to be created.

https://doi.org/10.1371/journal.pcbi.1013503.g003

Benchmark methods

We evaluate the performance of our NEST reference implementation for astrocytes by sim-
ulating neuron-astrocyte network models using the beNNch framework for reproducible
benchmarks of neuronal network simulations [77]. The metrics for performance is the wall-
clock time (Ty.n) spent on network creation, network connection, and state propagation.
Network creation and network connection capture the time spent on creating and connect-
ing cells and recording devices, respectively. State propagation captures the time required to
advance the dynamical state of the network by the requested span of model time [77]. Net-
work creation time in our benchmarks is always so short (< 50 ms) that we do not include it
in the results for the sake of conciseness.

Three design goals guide the choice of network model used for benchmarks: It should
be indicative of performance for large-scale models, it needs to be scalable to arbitrary net-
work size with minimal changes in firing rates, and it should capture an average to worst case
scenario. In accordance with widely established practice, we choose a ratio of excitatory to
inhibitory neuron numbers of 4:1 [78,79] and equal numbers of neurons and astrocytes (see,
e.g., [80] referring to astrocyte-to-neuron ratios of 1:3 to 1.4:1 in the mammalian cortex).
Sparse random connectivity with average in-degrees held constant ensures comparable firing
rates independent of network size (but see [81]). Unless otherwise specified, the primary con-
nectivity follows the pairwise Bernoulli rule [4]. The TBP rule with random pools adds astro-
cytic connections with fixed probability to all excitatory connections. Excitatory Poisson spike
trains with fixed firing rate provide an external drive for neurons. Parameters for the astrocyte
model are based on [43-45], who investigate models with a rather high level of excitability.
These astrocyte parameter values are also the default values in NEST 3.8. Overall, we consider
this network configuration to represent a high but realistic computational load for large-scale
neuron-astrocyte models. The model structure is described in detail in S1 Appendix, Table A,
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and parameters are given in Table B. To assess the effect of different network dynamics on
simulation runtime, we use two model variants which only differ in delay and synaptic time
constant for inhibitory connections (see S1 Appendix, Table B): Default parameter values give
rise to sparse spiking activity (“Sparse” model), while modified parameter values lead to syn-
chronous activity (“Synchronous” model). Fig 4 shows the dynamics of the two benchmark
models.

In order to measure the cost of integrating complex astrocyte dynamics given by Eqs (1)-
(3) on the run time of a simulation, we define an astrocyte surrogate modelina
NEST extension module [66]. The surrogate model is a copy of the astrocyte 1r 1994
model, however it neither includes astrocytic dynamics nor processes incoming spikes. It only
emits a continuous, user-configurable and constant SIC to its targets. Therefore, it serves as a
surrogate that gives the same type of output as the astrocyte but costs minimum computing
resources. We create a benchmark model called “Surrogate” that has the same parameters as
the “Sparse” model but replaces astrocyte 1r 1994 withastrocyte surrogate.
We compare the benchmark results of the “Surrogate” model with the “Sparse” model in
order to reveal the cost for the calculation of astrocytic dynamics in the network. In the “Sur-
rogate” model, the pre-defined SIC output of astrocyte surrogate is set to such value
that the overall neuronal firing rate is close to the “Sparse” model.

The second set of benchmarks compares the performance across four connectivity rules:
pairwise Bernoulli, fixed in-degree, fixed out-degree, and fixed total number; for details on
these rules see [4]. We choose the parameters for these rules so that the expected number of
primary connections in the network is the same as for pairwise Bernoulli connectivity in the
“Sparse” model; synapse parameters are unchanged.

The third set of benchmarks compares the performance for different astrocytic pool sizes,
i.e., upper bounds for the number of astrocytes that each neuron can receive input from.

The models used in this set of benchmarks are versions of the “Sparse” model with S, =
10, 100, 1,000, 10,000.

The fourth set of benchmarks test the performance when the cell number is further scaled
up to one million. In this set of benchmarks, we use the fixed in-degree rule for primary con-
nectivity and use pool sizes of 10 and 1,000.

As in [77], we perform strong and weak-scaling benchmarks for the described models.
Strong scaling shows how fast a solution can be achieved if increasingly more resources are
invested, whereas weak scaling shows how time to solution changes if resources are increased
proportional to problem size, i.e., scale of the model. If the simulation performance is per-
fect, the time to solution should decrease proportionally to the amount of resources invested
in strong scaling, and should remain approximately the same in weak scaling, due to the dis-
tribution of workload. In this sense, in our study the strong-scaling benchmarks measure the
simulation time of a model while up-scaling the number of compute nodes, and the weak-
scaling benchmarks measure the simulation time while the model size is up-scaled propor-
tionally to the number of compute nodes. The performance can thus be evaluated by the sim-
ulation time measured at different scales. In weak scaling, in order to keep the same level of
model activity, the cell number is scaled but the expected number of connections per cell is
not, i.e., the expected number of primary (neuron-to-neuron) and third-factor (neuron-to-
astrocyte and astrocyte-to-neuron) connections per cell is preserved.

Use case: Constructing neuron-astrocyte network model based on the
experimental literature

As a concrete scientific use case for the technology presented here, we create a model mim-
icking experimental work by Pirttimaki et al. [48] in slice. We use the same network structure
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Fig 4. Dynamics of the “Sparse” and “Synchronous” models used for benchmarks. (A) Raster plot of neuronal firings. (B) Neuronal firing rate. (C) Astro-
cytic [IP3] and [Ca**]. (D) Astrocytic SIC input (Is;c) per neuron. Shaded areas: standard deviations across cells. The left column shows a simulation with the
“Sparse” model, where the mean neuronal firing rate is 4.74 spikes/s and the mean pairwise spike count correlation of sampled neurons is 0.014. The right col-
umn shows a simulation with the “Synchronous” model, where the mean neuronal firing rate is 12.0 spikes/s and the mean pairwise spike count correlation
of sampled neurons is 0.072. Data from ¢ = 1 to t = 11 s of the simulation are used for the calculation of firing rate and correlation. For the specifications of
the models, see Tables A and B in S1 Appendix. The examples shown here are for scale one, i.e., 20,000 cells in total (neurons and astrocytes). The data shown
are (A) the first 100 neurons, (B) all neurons, and (C,D) 100 randomly sampled neurons or astrocytes. Firing rates were averaged over all 10,000 neurons and
correlations computed across 100 neurons with 10 ms bin width.

https://doi.org/10.1371/journal.pcbi.1013503.9004
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as for the benchmarks (see S1 Appendix, Table A), but with modified parameters given in S1
Appendix, Table C. While some model parameters are fixed, others are fitted to experimen-
tal data as described below. Specifically, our use case consists of 500 neurons and 100 astro-
cytes; the neuron to astrocyte ratio is consistent with experimental preparation used in [48],
brain slices from rats at P10-P16 and P19-P21. Pairwise Bernoulli and TBP rules, respectively,
are used to establish primary and third-factor connections. TBP rule was used with either
block or random pool in different versions of the model; the selected astrocyte-to-neuron
ratio allows for both pool types. Flexibility of these rules, illustrated in Fig 2, supports anal-
ysis of the role of complex neuron-to-astrocyte connectivity, hypothesized in [48]. Poisson
trains with fixed rate provide external drives for neurons and astrocytes. Gaussian noise is
applied to neurons and astrocytes in the form of electrical current and calcium fluctuation,
respectively, as sources of variation in dynamics. S3 Appendix contains additional details of
the model construction procedure and supplementary results.

Experimental data from the literature. We first collect experimental measures of sponta-
neous calcium activity in astrocytes [17,48,59-61] as well as neuronal spiking activity under
several experimental conditions and in different brain regions [82,83]. These experimental
measures are compiled in S3 Appendix. They are used to fit some of the model parameters,
and to guide selection of other parameters.

Fitting astrocyte parameters. Astrocyte parameters are selected by simulating Eqgs (1)
and (2) for 10° parameter sets and evaluating the resulting dynamics. Astrocyte dynamics are
driven by Poisson inputs through IP;Rs (through Ji, in Eq (2)). The 10° evaluated parame-
ter sets differ in frequency of the Poisson events (Apyiss 4 ), the intensity with which they affect
IP3Rs (App, ), the total calcium concentration in terms of the cytosolic volume ([Ca®*]ior)s the
steady state value for IP; ([IP3]y), and the time constant that determines the speed of con-
vergence towards the steady state (tp,). These five parameters are randomly sampled from
the predefined intervals (see S3 Appendix) while other parameters are kept constant at NEST
default values. From the initial 10> parameter sets we select those models that exhibit cal-
cium transients with the experimentally plausible period, duration, and peak values (see Table
A in S3 Appendix). Finally, we test sensitivity by varying each optimized parameter in each
model for +1%, +5% and +10% and testing if the results remain close to experimental when
running the model for 5 different seeds of the random number generator. To create an astro-
cyte population, five fitted parameters are randomly sampled from a Gaussian distribution.
Mean, variance, and cutoff values of the Gaussian distribution are based on conclusions from
sensitivity analysis. The selected parameter sets are described in Table C of S1 Appendix.

Selecting neuron model parameters. Neurons are represented by the AdEx model [68,84]
as implemented in the NEST simulator. Excitatory and inhibitory neurons are respectively
adapted from initial bursting and regular spiking neurons from Table 1 in [68]. The parame-
ters are selected in such a way to ensure that the neurons respond to a SIC-mimicking current
with a burst of spikes that fit the experimental data (details described in S3 Appendix; based
on the SIC as illustrated in Fig 5 in [48]). The parameters of inhibitory neurons are further
selected to produce a higher firing rate than the excitatory neurons, which is consistent with
the literature (see Table B in S3 Appendix). Sensitivity to parameter change is tested by per-
turbing Vieset and b, two parameters that strongly affect spiking regime of AdEx neurons. To
generate neuronal population, b and V.. are drawn from Gaussian distribution with mean,
variance, and cutoff values determined through sensitivity testing. The selected neuronal
parameters are listed in Table C of S1 Appendix.

Selecting parameters of the neuronal network. We first select parameters that determine
activity of the neuronal part only, the synaptic weights Wexc, Winn and rates of Poisson inputs
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to neurons Apqis E> Apoiss,1- 1he selected parameters ensure low-frequency asynchronous activ-
ity regime for the neuronal part of the model such that spiking frequency of excitatory and
inhibitory cells falls within the experimentally plausible range of values (see values from the
literature compiled in Table B of S3 Appendix). The neuronal spiking rates are set to a lower
end of the biologically plausible intervals to accommodate for the additional increase in the
spiking rate due to SIC inputs. The following parameter values are used in simulations unless
otherwise stated: Apgiss,p = 2700 spikes/s, Apyiss = 2500 spikes/s, Wexc = 5 nS, and wy,p =5 nS.
The Poisson rate is equal for all neurons of the same type, the synaptic weights are identi-

cal for all synapses of the same type. Synaptic weights and delays are supplied to the TBP
connection rule in NEST as part of the primary synapse specification, cf. Fig 3.

Strength of neuron-astrocyte interactions, selection of wprc_to_astro ad Wastro_to_post- We
first determine the values for Wyre (o_astro Sufficient to induce astrocytic calcium transients in
the absence of Poisson input to astrocytes (Apoiss,a = 0) and in the absence of astrocyte feed-
back to neurons (Wastro_to_post = 0). Similarly, we determine the values for wastro_to_post sufficient
to induce SIC in the postsynaptic neurons in the absence of other (noise or synaptic) inputs.
Next, we tune both parameters together to find the correct activity regime for each of the
models shown in Results and S3 Appendix. In order to maintain dynamical regime of astro-
cytes in the presence of synaptic inputs, the rate of the astrocytic Poisson input is decreased
to 70% of its value obtained from fitting single astrocytes. Weights and delays for the neuron-
to-astrocyte connections are supplied to the TBP connection rule in NEST as part of the
third in synapse specification, while weights for the astrocyte-to-neuron connection are
supplied via the third out synapse specification.

Probability of interaction between a synapse and an astrocyte. In order to test synchro-
nization in neuronal groups resulting from neuron-astrocyte interaction, it is crucial to con-
trol the number of postsynaptic neurons interacting with the same astrocyte, and the num-
ber of astrocytes sending SIC to the same neuron. With our network parameters, these con-
nected cell numbers per astrocyte or neuron are fixed across individuals if the block pool type
is used, due to the nature of the block pool connectivity. In the random pool type, the number

of postsynaptic neurons per astrocyte depends on pnird_if primary and differs between astrocytes
(see Figs B and C in S3 Appendix). The number of astrocytes that send SIC to the same neu-
ron has an upper limit defined by S,001, but it is also determined by pinird_if primary- Thus, for
block pools, the choice of pihird_if primary is less important and we set it to be the same as the
primary connection probability pyrimary between pairs of neurons. However, for random pools
the selected values for pinird_if primary have to be much smaller in order to support both asyn-
chronous activity and network bursting. A smaller probability of connection leads to fewer
individual tripartite synapses which has to be compensated by an increase of Wpre_to_astro and
Wastro_to_post- P00l type and size and the probability of connecting to an astrocyte are passed to
the TBP connection rule as part of the third factor conn_spec specification.

Hardware and software configurations for simulations

For the assessment of performance, the study characterizes an implementation of the astro-
cyte framework on the basis of NEST 3.8 on 128-core compute nodes of the supercomputer
JURECA [85] at Jiilich Research Centre (Rocky Linux 8, AMD EPYC 7742). Each compute
node hosts two MPI processes and each benchmark consists of a total of nine simulations
composed of three repetitions of three different seeds. The simulations reproducing experi-
mental data employ NEST 3.8 on a personal computer (Debian Linux subsystem under Win-
dows 10, Intel Core i7-8650U) and fit the astrocyte parameters to the values from the liter-
ature with NEST 3.6 running on 48-core compute nodes of a cluster (Debian 11, Intel Xeon
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E5-2680v3) at Jillich Research Centre. All simulations use the Runge-Kutta-Fehlberg-45 adap-
tive step size method, bounded from above by the overall simulation time grid of 0.01, 0.1, or
0.2 ms model time.

Data analysis

Mean neuronal firing rate. The mean neuronal firing rates of the network models used in this
study are calculated with spike counts during the sampled window of the simulations:

2N

N- At )

f =
where x; is the spike count of neuron i during the sampled window, N is the number of neu-
rons, and At is the duration of the sampled window.

Pairwise spike count correlation as a measure of synchrony. Pairwise spike count corre-
lation is used as a measure of overall similarity of spike trains in two neurons, reflecting their
underlying synchrony. For the benchmark and the model based on the experimental litera-
ture, the same approach is used for the calculation of correlation coefficient, i.e., Pearson’s r,
but different approaches are used for binning spikes due to different model activities. For the
benchmark models (Fig 4), spike counts in 10 ms non-overlapping bins are obtained from
t=1to t =11 s of the simulation for all sampled neurons (N = 100), and pairwise spike count
correlation is then calculated as:

= cov(xi(k),xj(k)) ) ©)

Oxi(k) * Ox;(k)

where x;(k), xj(k) are spike counts of the ith and jth sampled neurons in the kth bin.
cov(xi(k),x;(k)) and oy, (x) and o (x) are the covariance and standard deviations of x;(k) and
xj(k). The mean correlation 7 across all neuron pairs is then calculated as:
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For the model based on experimental literature, spike trains of a neuron are binned using
a sliding window of length 2 s which is shifted for 4 ms in each step. Binned spike trains for
two neurons, x;(t) and x;(t), are used to compute the correlation coefficient given by Eq (6).
Distribution of correlation coefficients is shown in Figs 9-12D.

Single-neuron burst detection. To test the impact of neuron-astrocyte interaction, we
evaluate SIC-induced single-neuron bursts. A neuron burst can appear between SIC onset
and 2 s (for excitatory neurons) or 400 ms (for inhibitory neurons) after the SIC offset.
Spikes belong to the same burst if they are closer in time than 2 s for excitatory or 400 ms for
inhibitory neurons. Details of neuron burst detection are given in S3 Appendix. Parameters
of the burst detection algorithm are listed in Table C of SI Appendix. From detected bursts
we record burst onset, duration, frequency of bursts, and number of spikes per burst for each
neuron. Burst onsets are used to evaluate SIC-induced synchronization in pairs of neurons,
the results are reported in Figs 9-12.

Detection of astrocyte transients. Calcium transients are detected when calcium lev-
els cross the same threshold used to trigger SIC current. Noise in calcium recordings might
induce multiple threshold crossings around the transient onset and offset times. This is
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accounted for by merging crossings that are too close in time, as described in detailed tran-
sient detection algorithm in S3 Appendix. The algorithm parameters are also listed in Table C
of S1 Appendix. Transient duration is measured as the interval between its onset and offset,
while frequency is computed as the total number of transients divided by the span of time
simulated. The latter we call model time Tp,qe to contrast it from the wall-clock time Ty
required by a computer to carry out the simulation [77]. Frequency and duration of calcium
transients for all astrocytes in the model are shown in Figs 9-12A.

Distance of burst onsets as a measure of synchrony. Synchrony in pairs of spiking neu-
rons is evaluated as a distance between their burst onsets in successive SIC-induced bursts.
The metric is inspired by synchrony detection adopted in [48], and it also reflects phase syn-
chrony in coupled spiking neurons. The metric is implemented as a Python function and
supplied with the rest of the code.

Results

Benchmark results confirm efficiency of the implemented NEST support
for astrocytes

In order to evaluate the performance of the implemented models and functions, we run
benchmarks with neuron-astrocyte network models as described in Methods. Following the
previous approach [77], we use NEST and beNNch to measure the time spent on network cre-
ation, network connection, and state propagation. The state propagation consists of multiple
phases, labeled as follows: “Update” is the time needed to advance the dynamical states of all
cells and devices. “Spike CCD” and “SIC GD” is the time required to exchange of information
in parallel computing: “Spike CCD” is the time for collocation, communication, and delivery
of spikes, and “SIC GD” the time for gathering and delivery of the SIC events. “Other” stands
for the part of time that cannot be attributed to the three specific phases.

Fig 5 shows network connection and state update times for the first set of benchmarks; cre-
ating the neurons always takes less than 50 ms and this time is therefore not shown. In the
strong-scaling benchmarks, the network connection time reaches a minimum for three com-
pute nodes and then increases, while the state propagation time always decreases with the
scale. In the weak-scaling benchmarks, both network connection time and state propagation
time increase with the scale, except for the “Update” phase which advances the dynamical
states in individual cells and hence can be highly parallelized. All models spend less than 1 s
on network construction (creation + connection), and the real-time factor (Tan/ Tmodel) for
state propagation is always less than three.

Consistent with Fig 4, the “Synchronous” model always produces many more spikes than
the “Sparse” model. Nevertheless, this only slightly affects the simulation time. The mean neu-
ronal firing rate of the “Synchronous” model is more than twice that of the “Sparse” model
(4.76 versus 11.95 spikes/s for 20,000 cells; mean of nine simulations). However, in both
strong and weak-scaling benchmarks, the state propagation times are similar, with a differ-
ence of 7.0% to 8.6% compared to the “Sparse” model (Fig 5). This limited effect of higher fir-
ing rate on state propagation time reflects the small differences in each of the phases (Fig 5).
This shows a good efficiency in the communication and processing of spikes between and
within the cells, and the fact that sic_connections send continuous SIC signals regard-
less of the level of model activity.

The “Surrogate” model has a similar mean neuronal firing rate as the “Sparse” model
(4.64 versus 4.76 spikes/s for 20,000 cells) but spends less time on state propagation, which
is mainly due to the shorter “Update” phase (Fig 5). Since astrocyte surrogate
does not have astrocytic dynamics and sends predefined SICs instead, in the “Surrogate”
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https://doi.org/10.1371/journal.pcbi.1013503.g005

model the time spent on the “Update” phase is mostly for the update of states in the neu-
rons. The “Sparse” model spends 80.9% to 112.1% more time on “Update”, compared to the
“Surrogate” model (Fig 5). This difference approximately represents the additional com-
putational demands in the “Update” phase due to the astrocytic dynamics. On the other
hand, since the connectivity function does not distinguish astrocyte 1r 1994 and
astrocyte surrogate, the network connection time of the “Surrogate” model are

similar to the “Sparse” model.
The benchmark results with four primary (neuron-to-neuron) connectivity rules are

shown in Fig 6. The four models have a similar performance in all aspects, except that the

fixed out-degree rule shows a longer network connection time than the other three because

it cannot be parallelized. Note that the “Bernoulli” model is the same as the “Sparse” model

in Fig 5, where the pairwise Bernoulli rule is used for the primary connections, and the other
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three models have the same expected numbers of primary and third-factor connections as the
“Bernoulli” model.

Weak-scaling benchmark results for different astrocyte pool sizes are shown in Fig 7.
While network connection time is only mildly affected by pool size, pool sizes of 100 and
larger lead to increased state propagation times compared to pool size 10. For four compute
nodes and a pool size of 100, the increase is 61.5%, for a pool size of 10,000 it is 65.6%. This
increase is driven by increased spike and SIC communication times as well as an increased
“Other” time (Fig 7, second row). This difference in scaling behavior appears to be due to dif-
ferent communication requirements. If the astrocyte pool size is well below the average num-
ber of incoming astrocytic connections per target neuron (astrocytic in-degree, 400 in our
models), the number of target neurons to which any astrocyte connects is close to the pool
size; for large pools, on the other hand, it is determined by the astrocytic in-degree. In partic-
ular, for a pool size of 10, each astrocyte connects to 10 target neurons on average. In this case
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and when using four compute nodes with eight MPI processes in total, Isjc needs to be trans-
mitted to all MPI processes only for fewer than 10% of all astrocytes. For a pool size of 100
and larger, on the other hand, I5ic from all astrocytes must be communicated to all MPI pro-
cesses, requiring higher bandwidths. The data for a pool size of 10 are the same as the “Sparse”
model in Fig 5.

To demonstrate the performance of our approach for very large network models, we repeat
the benchmarks for tenfold larger networks, i.e., for 200,000 instead of 20,000 cells per com-
pute node. The largest network simulated has one million cells in total. Fig 8 shows weak scal-
ing behavior as network size and compute resources grow by a factor of 40: While network
connection time increases by a factor of 6.8, it remains much shorter than simulation time
(6.2 5 vs. 293 s for S0 = 10 on 5 compute nodes, 10 s simulated time) and is thus unprob-
lematic in practice. For small pools (S,o01 = 10), state propagation (simulation) time increases
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only by a factor of 1.8, i.e, scaling is good if not perfect. Furthermore, the real-time factor is
about ten times larger than for the smaller models, which indicates that the simulation algo-
rithm scales linearly in the number of cells per compute core. For larger pools (Spe01 = 1,000),
simulation times increases markedly for more than two compute nodes (factor 3.2 from ; to 5
nodes) in the same way and for the same reasons as for the smaller networks.

Use case: Astrocytes promote neuronal synchronization in silico through
neuron-astrocyte interaction

In this use case, we demonstrate how the newly developed NEST support for astrocytes can
complement a selected experimental study described in [48,53]. Recording from rat corti-
cal, hippocampal, and thalamic slices, the authors of [48,53] provided evidence for synaptic
glutamate release, astrocyte activation, SIC generation mediated by extrasynaptic NMDARs,
and subsequent slow calcium responses in neurons. They demonstrate that SICs induce syn-
chrony in groups of neurons and hypothesize that this synchronization results from neuron-
astrocyte interactions. In what follows, we explore synchrony in the computational model of
neuron-astrocyte network.

First, we reproduce the duration and frequency of spontaneous calcium transients in astro-
cytes reported in experimental studies. The frequency of SIC occurrences (and calcium tran-
sients that induce it) is estimated to be 1.26 + 0.2 SIC/min in the slices pre-exposed to gluta-
mate and 0.07 +0.01 SIC/min in control [48]. Other studies, that examine calcium dynamics
in astrocytes but do not consider SIC, report frequency of calcium transients to be 1.2 tran-
sients/min [59], 4 transients/min [61], and 0.5 transients/min [60]. Duration of calcium tran-
sients is found to be between 1-20 s [61] and 9-18 s [60]. These values collected from exper-
imental studies are systematically listed in S3 Appendix. We fit a model of an isolated astro-
cyte, and specifically the parameters [Ca®* Jior, [IP3 ]o, Arp,, and T1p, as well as the rate of the
input Poisson noise Apoiss o to reproduce these values (see Methods and S3 Appendix). The
selected rate of the Poisson noise, together with other parameters, ensures that astrocytes
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exhibit biologically plausible dynamics of calcium transients. In addition, Gaussian noise is
added to the calcium equation of each astrocyte to model random fluctuations typically seen
in calcium traces. Noise sources are stationary and independent for each cell to guarantee
uncorrelated astrocyte activity in the absence of interaction with neurons. Thus any emer-
gent synchrony in the model results from neuron-astrocyte interactions. Finally, the results of
this study do not depend on specific astrocyte or noise parameters. Any model that can repro-
duce the same spontaneous calcium dynamics in astrocytes could lead to the same results. All
model parameters are listed in Table C of S1 Appendix and also in a JSON file supplied with
the code for model implementation. The obtained model generates transients with frequency
of about 0.5-1.5 per minute and duration of between 1-5 s as shown in Fig 9A.
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Fig 9. Reproducing experiment with TTX blocking - neurons do not spike without SIC input and all synaptic weights are set to zero except Wastro_to_post- (A) Top:

Spontaneous calcium transients in ten randomly selected astrocytes. Bottom: Frequency and duration of calcium transients across all astrocytes in the model. (B) Top:
Raster plot showing activity of all excitatory (blue) and inhibitory (red) neurons in the model. Bottom left: Spiking frequency for excitatory (Exc.) and inhibitory (Inh.)
neurons. Bottom right: Single neuron burst frequency, duration and number of spikes per burst. Bursts are evoked solely by SIC inputs in this simulation. (C) Single
astrocyte (middle panel) is depicted together with its 5 postsynaptic neurons (bottom panel, blue voltage traces - excitatory neurons, red traces - inhibitory neurons)
and all of its (excitatory) presynaptic neurons (top panel). Synchronization induced by calcium transients and resulting SIC can be seen in voltage traces of postsynaptic
neurons. (D) Top: Neuronal synchrony is evaluated as a difference in onsets of successive burst events. Bottom: Synchrony evaluated as pairwise correlation between
binned spike trains.

https://doi.org/10.1371/journal.pcbi.1013503.g009
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Next, we focus on the experiment from [48] in which extracellular glutamate was increased
through pre-exposure to glutamate while neuronal spiking was pharmacologically blocked
by TTX. We construct a population of Ny = 100 astrocytes, Ng = 400 excitatory, and Ny = 100
inhibitory neurons. Astrocytes have only Poisson input mimicking the processing of extra-
cellular glutamate, while neurons receive weak Gaussian noise and cannot spike without
SIC input from astrocytes to the postsynaptic neuron. In response to a SIC input, neurons
develop a short burst containing normally 2-4 (but up to 14) spikes and lasting for about
1 s. In this model system, this burst is interpreted as a correlate of a slow calcium response
measured in [48], rather than a sequence of spikes (which cannot occur in experiments with
slices exposed to TTX). Neurons are randomly connected with probability pprimary = 0.2, how-
ever the synaptic weights are set to zero to account for the blocking of spiking via TTX. The
neuron-astrocyte interaction is structured by block pools of size one, meaning that a neu-
ron can receive SIC from only one astrocyte. This choice of parameters results in 100 non-
overlapping neuronal groups, each consisting of 4 excitatory and 1 inhibitory neuron that can
receive SIC from the same astrocyte. Fig 9C illustrates calcium activity of a single astrocyte
(middle sub-panel) induced by Poisson input. Activity of presynaptic neurons is shown as a
raster plot (top sub-panel). However due to synaptic weights set to 0, this activity does not
affect astrocytes. Synchronization induced by SIC input between an astrocyte and five neu-
rons interacting with this astrocyte is illustrated in the bottom of Fig 9C. Fig 9D demonstrates
increased synchrony in groups of neurons connected to the same astrocyte compared to the
overall level of synchronization between neurons in the model. Synchrony is evaluated in two
ways, either as a distance between onset of successive single-neuron bursts in pairs of neu-
rons (upper panel) or as pairwise correlation (lower panel), for details see Methods and S3
Appendix. Bursts are well aligned in neurons that interact with the same astrocyte (distribu-
tion is collapsed to values very close to zero). Correlation coefficients are very small in general
due to sparse activity in the model. Synchronization evaluated between neurons that receive
inputs from the same astrocyte is significantly higher compared to synchronization evaluated
across all pairs of neurons in the model (Kolmogorov-Smirnov test, p < 0.0001 for comparison
of burst onset times, p < 0.0001 for comparison of pairwise correlations, notice a number of
correlation coefficients distributed between 0.2-0.8; values after Bonferroni correction done
for all tests in this section and all related tests in S3 Appendix).

The same result is reproduced in a model with spiking neurons and nonzero synaptic
weights (Fig 10). The network has low-frequency asynchronous activity, where excitatory
neurons spike at a frequency of about 0.1 spikes/s while inhibitory neurons spike at a fre-
quency of about 2 spikes/s. Single-cell bursts resulting from SIC inputs are visible in the raster
plots of (sparser) excitatory activity in Fig 10B. Same as before, Fig 10C illustrates synchro-
nization between an astrocyte and its postsynaptic neurons at each astrocytic calcium tran-
sient. The presynaptic activity, shown by the top sub-panel, contributes to astrocyte inputs
in this case. Fig 10D shows increased synchronization (both measured as distance between
burst onsets, and as pairwise correlation) between neurons connected to the same astrocyte
(Kolmogorov-Smirnov test, p <0.0001 for burst onset times, and p < 0.0001 for pairwise corre-
lation; values after Bonferroni correction). Reproducibility of this result is confirmed by run-
ning the same simulation for different seed of the random number generator and obtaining
similar results (see Fig D in S3 Appendix).

Increasing the overall input to an astrocyte by increasing the weight wyre o_astro from
0.2 to 0.31 results in emergence of network-wide bursts lasting on average 5 s, as shown in
Fig 11. Although the global synchronization increases in this activity regime, synchronization
between neurons interacting with the same astrocyte still exceeds synchronization computed
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Fig 10. Synchronization in neuron-astrocyte networks with block pools and asynchronous activity regime. (A) Top: Spontaneous calcium transients in ten ran-
domly selected astrocytes. Bottom: Frequency and duration of calcium transients across all astrocytes in the model. (B) Top: Raster plot showing activity of all excitatory
(blue) and inhibitory (red) neurons in the model. Bottom left: Spiking frequency for excitatory (Exc.) and inhibitory (Inh.) neurons. Bottom right: Single neuron burst
frequency, duration and number of spikes per burst. (C) Single astrocyte (middle panel) with its five postsynaptic neurons (bottom panel) and all presynaptic neu-

rons (raster plot, top panel). (D) Top: Neuronal synchrony is evaluated as a difference in onsets of successive burst events. Bottom: Synchrony evaluated as pairwise
correlation between binned spike trains.

https://doi.org/10.1371/journal.pcbi.1013503.g010

for all pairs of neurons in the model (Kolmogorov-Smirnov test, p < 0.0001 for burst onset
times, p < 0.0001 for pairwise correlation; values after Bonferroni correction).

So far, neurons form well separated groups, each group receiving inputs from only one
astrocyte. The experimental study inspiring this model [48] shows that neurons can belong
to more than one synchronized group and hypothesizes that structure of neuron-astrocyte
interactions might create such groups. Using the support for the TBP connection rule imple-
mented in NEST as part of this work, we construct a network model with tripartite con-
nectivity using randomized astrocyte pools and evaluate the model dynamics as shown in
Fig 12. The maximal number of astrocytes is determined by the model parameter S;,1, which
is set to 5 here. The connectivity depends on two probabilities, the probability to establish
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Fig 11. Synchronization in neuron-astrocyte networks with block pools and global network bursting activity. (A) Top: Spontaneous calcium transients in ten ran-
domly selected astrocytes. Bottom: Frequency and duration of calcium transients for all astrocytes in the model. (B) Top: Raster plot showing activity of all excitatory
(blue) and inhibitory (red) neurons in the model. Bottom left: Spiking frequency for excitatory (Exc.) and inhibitory (Inh.) neurons. Bottom right: Single neuron burst
frequency, duration and number of spikes per burst. (C) Single astrocyte (middle panel), its five postsynaptic neurons (bottom panel) and its presynaptic neurons (top
panel) all follow global synchronous activity. (D) Top: Neuronal synchrony is evaluated as a difference in onsets of successive burst events. Bottom: Synchrony evaluated

as pairwise correlation between binned spike trains.

https://doi.org/10.1371/journal.pcbi.1013503.g011

a neuron-neuron synapse, Pprimary Set to 0.2 here, and a probability to connect that synapse
with an astrocyte, Pinird_if primary St to 0.03 here (but see the same result reproduced with a
bigger probability value, piird_if primary = 0.05, in Fig E of S3 Appendix). The exact number of
neuron and astrocyte inputs in this model is shown in Fig B of S3 Appendix. Due to overlap
of astrocytic domains, synchronization within neuronal groups is established faster and it is
easier to reach global bursting regime. Still, asynchronous low-frequency spiking regime is
achievable also in this model, and the synchronization between neurons receiving SIC from
the same astrocyte remains higher than the overall synchronization in the neuronal network
(Kolmogorov-Smirnov test, p <0.0001 for comparison of burst onsets, p < 0.0001 for compar-
ison of pairwise correlations; values after Bonferroni correction). Increased synchronization
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Fig 12. Synchronization in neuron-astrocyte networks with random pools and global low-frequency asynchronous activity. (A) Top: Astrocytic calcium transients
in ten randomly selected astrocytes. Bottom: Frequency and duration of astrocytic calcium transients for all astrocytes in the model. (B) Top: Raster plot showing activity
of all excitatory (blue) and inhibitory (red) neurons in the model. Bottom left: Spiking frequency for excitatory (Exc.) and inhibitory (Inh.) neurons in the model. Bottom
right: Single neuron burst frequency, duration and number of spikes per burst. (C) Single astrocyte (middle panel) with its presynaptic neuronal inputs (raster plot, top
panel) and its postsynaptic neurons (voltage traces, bottom panel). This connectivity type allows more output neurons per astrocyte and bigger variability in number and
type (excitatory vs inhibitory) of neurons per astrocyte compared to the block-type connectivity. (D) Top: Neuronal synchrony is evaluated as a difference in onsets of
successive burst events. Bottom: Synchrony evaluated as pairwise correlation between binned spike trains.

https://doi.org/10.1371/journal.pcbi.1013503.9012

between neurons interacting with the same astrocyte holds in the model with random pools
which exhibits network bursting regime, as shown in Fig F of S3 Appendix. Similarly as
before, network bursting regime is achieved by increasing the amount of glutamatergic inputs
to astrocytes, i.e. by increasing the weight coefficient Wpyre to_astro from 1 to 1.5.

In order to support the here presented results, we provide several additional tests in
S3 Appendix. Synaptic delay impacts the speed of neuron-neuron and neuron-astrocyte
exchange and can affect the global activity regime. The simulations shown in Fig 10 (block
pools, asynchronous network activity) and in Fig F of S3 Appendix (random pools, network
bursting) are repeated for a synaptic delay ten times smaller (0.1 ms vs 1 ms) in Figs G and H
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of S3 Appendix, respectively. The simulations confirm robustness of our results against change
in synaptic delay. We also verify that the results presented here indeed show the steady state
of the system. The simulations in Fig 11 and in Fig F of S3 Appendix are repeated for much
longer Tiodel in Figs I and J of S3 Appendix, respectively. The models are first simulated for
15 min, and then for additional 5 min (as opposed to 20 s and 5 min used in other figures).
Analysis is done for the last 5 min of simulations and the results confirm previous findings.
Finally, we test the impact of numerical integration method in three models (block pools and
asynchronous, block pools and bursting, random pools and asynchronous) by changing the
maximal integration step from the default 0.1 ms to 0.01 ms and 0.2 ms, and repeating the
simulations. We confirm robustness of results with respect to perturbation of this parameter,
which is illustrated by three examples in Figs K-M of S3 Appendix.

In summary, we show the emergence of synchronization in small groups of neurons as a
result of SIC inputs arriving from the shared astrocyte partner. Our i silico results support
the findings and test hypotheses set in [48,53]. Furthermore, the results suggest an important
role of astrocytes in shaping the global neural activity states through local neuron-astrocyte
interactions.

Discussion

In this study, we introduce conceptual advances in modeling and simulating neuron-astrocyte
circuits. Our novel connectivity framework allows flexible integration of astrocytic influ-

ence while ensuring scalability for very large-scale simulations. We validate its efficiency
through benchmarking with models containing up to one million cells and provide a formal-
ized description of neuron-astrocyte interactions. A key contribution is our exploration of
how astrocytes promote self-organization of brain circuits by contributing to the emergence
of local synchrony in neuronal groups, moving beyond previous studies focused on global
network effects [35,52,86,87]. By incorporating structured connectivity and experimentally
grounded hypotheses, our study offers new insights into the role of astrocytes in network
dynamics.

The novel theoretical connectivity concepts and technology described here provide the
foundation for a comprehensive and efficient modeling and simulation platform for neural
systems composed of both neuronal and non-neuronal cells. We present a general concept
for specifying tripartite connectivity in terms of primary and third-factor connection rules
and provide a reference implementation suitable for large-scale distributed simulation. Fol-
lowing this concept, interactions with third factors such as astrocytes can now be attached to
neuronal networks based on a wide range of connectivity rules [4].

Advances in theoretical frameworks and simulation technology

We introduce a schema for the declarative specification of tripartite connectivity and pro-
vide a parallelized reference implementation to instantiate this connectivity in NEST. Our
approach is based on the tripartite synapse hypothesis [13,88] and the experimental obser-
vation that astrocytes form spatial domains with little overlap [5-10]. Following the tri-
partite synapse hypothesis, our tripartite connectivity rule requires that third-factor cells
such as astrocytes are attached to pairs of pre- and post-synaptic neurons by co-occurring
presynaptic-astrocyte and astrocyte-postsynaptic connections. Spatial domains of limited
overlap are represented as astrocyte pools in our rule (see Concepts for tripartite connectiv-
ity). We support random and tiled (blockwise) pools of flexible size. We thus enable biologi-
cally grounded studies of tripartite interactions with a parameterized variability in connectiv-
ity as illustrated by our use case (see Use case for the technology). Future studies can set more
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plausible constraints as more detailed experimental data from specific brain regions becomes
available.

For astrocytes, we describe a well-known Li-Rinzel model of calcium dynamics [44], based
on an earlier model for IP; kinetics and calcium exchange between ER and cytosol [43]. In
our implementation, the astrocyte can be represented either as a single-compartment cell
or by several disconnected compartments. This description of astrocytes is compatible with
point-neuron models typically used in large-scale simulations of brain circuits. A point-
neuron model that we consider is the standard AdEx spiking neuron [67,68,84] extended to
receive currents induced by astrocyte activity. It should be noted that astrocytes in vivo have
complex, highly compartmentalized morphology with non-trivial interaction between com-
partments. Multi-compartmental astrocytes can be integrated with multi-compartmental neu-
rons into detailed mechanistic models of brain circuits; this relevant approach is, however,
outside the scope of this study and the NEST simulator. Like other studies, we implement the
astrocyte model with several constraints such as assumptions about the fixed total calcium
in ER and cytosol, and the fixed ER to cytosol volume ratio. Additionally, we allow random
calcium flux across membranes by adding a noise input to the calcium equation in Eq (1).
Relaxing these model constraints and implementing additional astrocyte models can be con-
sidered in future extensions of this work. A model that represents more realistic aspects of
astrocyte biology can potentially account for some of the variability typically seen in calcium
recordings.

Astrocyte-to—neuron interaction in our implementation follows a model first proposed
by Nadkarni and Jung in 2003 [45] and later frequently used in a number of computational
studies [33,35]. This interaction assumes that astrocytes induce slow inward currents (SICs)
[45,48] to proximal postsynaptic neurons in response to the presynaptic release of glutamate.
The presynaptic release of glutamate evokes a neuron-to-astrocyte signal, which is modeled
as a constant instantaneous increment in IP; concentration. This approximation is compu-
tationally efficient and consistent with large-scale spiking neural models even though it does
not capture the complexity of involved biological mechanisms. More detailed models of IP;
concentration or accounting for volume transmission similar to Magloire et al. [52] can be
integrated into this framework at a later stage.

The technology for simulating continuously coupled equations in a distributed computing
setting as required for large-scale neuronal systems is available [2]. This enables, for example,
the inclusion of gap junctions in a network model. However, due to our phenomenological
description of the SIC mechanism, the full waveform relaxation framework is not required.
The assumption of a finite delay in the interaction enables the use of the same optimization as
for the spiking interaction: communication is only required in intervals of the minimal delay
in the system [74]. An approach based on the molecular mechanisms of systems biology could
unify the interaction types including spikes, gap junctions, and SIC currents, but for the price
of higher computational costs.

The astrocyte and neuron models of the present study reflect common choices across the
literature [32,35], and also correspond to the models that are available in common simulation
tools [40,42,86,89]. As such, our choice addresses the needs of the community and facilitates
model development across existing tools. We further support this goal by providing a system-
atic comparison of variable and parameter names used in the literature, in this article, and
in the user-level documentation of our reference implementation (see S2 Appendix). Repro-
ducibility and model development are further enhanced by a systematic description of model
dynamics and model parameters in a tabular format in S1 Appendix [37]. We adapt the for-
mat originally developed for neuronal networks to include astrocytes and neuron-astrocyte
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interactions. We believe that this formalism should become standard for systematic and rig-
orous description of neuron-astrocyte models in the literature.

While here we opt for well-known models from the literature for demonstration, the
framework for astrocyte modeling can be extended to other experimentally confirmed mech-
anisms including more complex models for astrocytic calcium dynamics, neuron-astrocyte
interaction through other neurotransmitters (e.g. GABA), the release of other molecules
including D-serine and ATP, and further mechanisms. Furthermore, the impact of non-
stationary extracellular neurotransmitter concentrations can be accounted for in future ver-
sions of the framework as proposed in [52]. In this study, we consider only the basic AdEx
neuron model as, for example, available in the NEST simulation code, but other point neuron
models can be similarly generalized to receive astrocyte inputs. Connecting cells according to
their explicitly specified spatial location is another potential future development that would
benefit from more comprehensive morphometric data and future neuroanatomical studies.

Benchmarking the technology

The benchmark results demonstrate the efficiency of our reference implementation when
using parallel computing resources. The strong-scaling benchmark examines the simula-

tion performance with fixed model size and up-scaled computing resources. Parallelization
decreases network connection time and state propagation time. The weak-scaling benchmark
examines the performance with coupled up-scaling of model size and computing resources.
In the weak scaling the time spent for phases of the simulation that require communications
between parallel processes (i.e., network connection, “Spike CCD”, “SIC GD”) increases with
the scale. Nevertheless, both the strong and weak scaling benchmarks show a good perfor-
mance in network construction time and state propagation time. With one compute node, the
real-time factor for state propagation is close to two in all tested benchmark models. The real-
time factor is further reduced by strong scaling, and in weak scaling it remains below three
for most of the tested benchmark models (Figs 5, 6) and below five in benchmarks with large
astrocyte pool size (Fig 7).

In the first set of benchmarks, three models are used to evaluate how overall model activ-
ity and astrocytic dynamics affect simulation performance (Fig 5). Parameters of the “Sparse”
and “Synchronous” models are chosen to yield sparse and synchronous neuronal activity,
respectively. Even though the difference in neuronal activity is large, the overall simulation
times of the “Sparse” and “Synchronous” models are similar, suggesting that the performance
is only slightly affected by the level of activity in the tested models. In the “Surrogate” model,
the astrocytes are replaced by surrogate cells, which do not have astrocytic dynamics but send
predefined SIC currents to their target neurons. The comparison between the “Sparse” and
“Surrogate” models exposes the additional amount of time spent on astrocytic dynamics. The
result suggests that, in a network model where the number of astrocytes equals the number of
neurons, the astrocytes are equally expensive as the neurons (Fig 5).

The second set of benchmarks shows that models with different primary (neuron-to-
neuron) connectivity rules have very similar performance in general, except for the non-
parallelizable fixed out-degree rule (Fig 6). The third set of benchmarks shows the effects of
astrocyte pool size per neuron, i.e., the number of astrocytes that each neuron can receive
inputs from. The benchmark data suggest that large astrocyte pool size increases the work-
load in communications for spikes and SIC currents (Fig 7). The fourth set of benchmarks
tests very large model sizes and shows that the performance is preserved with sizes up to one
million cells (Fig 8).
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Opverall, the benchmark results show good scaling performance and limited effects of
model activity or network-level parameters on the performance. This suggests that our tech-
nology is capable of simulating diverse large-scale neuron-astrocyte network models.

Use case for the technology

As a use case, we reproduce and extend the selected experimental findings [48] by imple-
menting, fitting to the available data from the literature, and simulating a set of computa-
tional models of neuron-astrocyte networks. The study by Pirttimaki et al. [48] focuses on
the biophysical origin of SIC current and its impact on neuronal activity. The phenomenon
is observed in spontaneously active circuits and in circuits where spontaneous activity is
enhanced by extracellular glutamate. The study demonstrates how astrocytes support syn-
chronization in neuronal groups, possibly in neurons interacting with the same astrocyte, in
cortical, hippocampal, and thalamic slices [53,58]. We construct a computational model that
closely approximates the experimental setup of [48], conduct equivalent in silico experiments,
and demonstrate that astrocytes promote synchronization in neuronal groups across various
connectivity schemes and under different global activity regimes.

To reproduce realistic spontaneous activity in astrocytes, we conduct an extensive survey
of experimental evidence from the literature, summarized in S3 Appendix, and fit a model
for a single astrocyte. Spontaneous calcium activity has been observed (using confocal micro-
scopes) in astrocytes in hippocampal slices, in soma, processes, and microdomain areas in
wild-type mice [59]. Typical spontaneous calcium event statistics calculated from somatic
areas of astrocytes reveal a frequency of about 1.2 transients per minute per region of inter-
est (ROI), an amplitude of about 3 dF/F, and a duration of about 3-10 s although shorter and
longer spontaneous calcium events can occur as well [59]. Similar values have been reported
in [61] when using organotypic slices prepared from mice hippocampus and imaged by con-
focal microscopy. 0.17 transients per minute, with an average duration of about 10 s, have
been shown in astrocytes using hippocampal slices [90]. Another study reveals that the over-
all pattern of calcium transients within astrocytes are similar between hippocampal astrocytes
in brain slices and cortical astrocytes in vivo for wild type and IPsR27/~ mice, implying that
the measured calcium transients are not the consequence of the method employed to study
them [59]. The exact statistics of calcium transients may vary depending on the brain area
and developmental age [91], but not all studies report differences with age [90]. In vivo, spon-
taneous transients have had a frequency of 0.4 transients per minute per ROI in the soma
and 0.64 transients per minute per ROI in the processes [92]. The amplitude of the transients
varies from 0.1 dF/F in soma to about 0.35 dF/F in processes, and the average duration of the
transients is about 10 s in both soma and processes [92]. Finally, Pirttimaki et al. [48] do not
measure calcium dynamics directly, but the reported frequency of SIC currents is about 1.26
SIC/min and their duration is about 900 ms on average.

In our simulations, calcium transients appear with a frequency of about 0.1-1.5 transients
per minute, with an average of 0.5 transients per minute in the asynchronous regime and
1.5 transients per minute in the bursting regime. These transients last for about 1-10 s and
increase from the baseline level below the concentration of 0.1 uM to at most 0.7 uM. All
these values correspond well to the ranges seen across the experimental literature. However,
the experimental values vary greatly across studies, experimental preparations, types of cal-
cium transients, and astrocyte domains (soma vs processes). Systematic quantification of this
diversity is lacking, and its functional role is unclear. Data-driven computational modeling
of astrocytes would greatly benefit from systematic recordings of calcium transients and col-
lecting sufficiently big and well-documented benchmark data sets. Better categorization of
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calcium transients, their dynamic properties, and functional roles is necessary. Finally, under-
standing calcium dynamics across astrocyte compartments is critical not only for advanc-

ing computational models of single astrocytes and neuron-astrocyte networks, but also for
understanding the role of astrocytes in brain systems in general.

We conduct an extensive parameter search to establish an astrocyte model that reproduces
experimentally observed spontaneous calcium dynamics. This way we (1) ensure the correct
dynamics of a single astrocyte, (2) decouple the parameter choice for the astrocyte and neu-
ronal part of the model, and (3) constrain the parameter space of the entire network model.
With this approach, we ensure that astrocytes do not synchronize in the absence of neuronal
activity; this assumption allows to focus on the selected mechanism of neuron-astrocyte inter-
action. Therefore, all subsequent conclusions about astrocytes’ role in neuronal synchro-
nization depend solely on the properties of calcium dynamics. Thus, any astrocyte model or
model parameterization that reproduces the same calcium dynamics would support the same
conclusions about the astrocytes’ role in neuronal synchrony.

The obtained optimal astrocyte model does not exhibit oscillatory dynamics, as this regime
tends to produce too frequent and unrealistically regular calcium transients. Instead, in the
best models, calcium transients are evoked by a low-frequency Poisson noise and converge
to the steady state without transients in the absence of noise inputs. Reproducing frequency,
duration, and reasonable peak amplitudes of spontaneous calcium transients requires a low
frequency of the input noise (about 4 spikes/s), relatively small time constant for IP3 (z1p, is
about 1 s) and somewhat large IP; increment at each synaptic event (App, is about 0.05 pM).
Simulations with active synaptic transmission require a reduction of the frequency of the
input noise to about 70% of the fitted value to maintain similar levels of astrocyte inputs in
the presence of synaptic glutamate processing. These fitted values likely reflect a rather sim-
plified model of the IP; receptor that increases instantaneously at each synaptic event and
decreases exponentially between events. A model with richer dynamics for both astrocytic IP;
and calcium might be able to reproduce realistic spontaneous dynamics for a wider range of
physiologically realistic model parameters.

We select the well-known depolarizing slow inward currents (SICs) as the primary focus
for implementing neuron-astrocyte interactions in large-scale neuronal network simula-
tions. SIC currents occur in many different brain regions, including the hippocampus [16,18-
21,23,30,93], the thalamus [17], various areas of the cerebral cortex [28,29], the olfactory bulb
[23], the nucleus accumbens [24], and the spinal cord [25,26]. SIC currents are observed in
both physiological and pathological conditions, using various preparations such as cell cul-
tures and brain slices in vitro. The activation of SIC currents occurs primarily through the
calcium-dependent release of glutamate from astrocytes, the mechanism, which we select to
model and further study. The calcium-dependent release of glutamate from astrocytes has
long been controversial (see e.g., [94,95]). In 2023, however, it was convincingly shown that
specialized astrocytes indeed mediate gliotransmission in the central nervous system and
have molecular machinery to release glutamate in a calcium-dependent manner [12]. Alter-
native mechanisms such as glutamate release via ion channels may also exist to activate SIC
currents [96]. The molecular mechanisms underlying SIC current activation and their func-
tional roles in vivo remain an important area for future research. Possible activation pathways
may include diverse astrocytic calcium signaling processes or interactions with specific recep-
tor subtypes, all of which require further investigation. Interestingly, SIC currents have been
observed in both mice and humans, but their significance appears to diminish with aging
in humans (no or relatively little SIC currents were found in over 70-year-old humans) [56].
Overall, the functional roles of SIC currents in the brain are not fully understood, highlighting
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the importance of developing computational brain models to better comprehend the role and
function of SIC currents in the brain.

The computational model developed and analyzed in this study, a network model of spon-
taneous neuronal and astrocyte activity, focuses on a specific SIC-related function reported in
the experimental literature [48,53]. The use case model supports the emergence of synchro-
nized spiking patterns in groups of neurons that interact with the same astrocyte. Our study
confirms the result using two metrics, the first based on the timing of successive SIC-induced
bursts and the second based on standard pairwise correlation, and reproduces it in networks
with two different interaction schemes, and under two global spiking activity regimes. The
first confirmation comes from models with sparse, asynchronous network activity regimes,
where each neuron receives inputs from only one astrocyte. However, the result also holds
in models where neurons receive inputs from several astrocytes, and in both asynchronous
regimes (see Fig 12) and under network bursting (see Fig F in S3 Appendix). Switching from
the asynchronous regime to network bursting is achieved by increasing the efficiency of inter-
action from neurons to astrocytes, which produces network bursts at the same frequency as
astrocytic calcium transients, around 0.1-1.5 bursts/min. Global network bursting increases
synchronization between all neuronal pairs in the model (e.g. see Figs 10D and 11D) which
can mask the local SIC-induced synchrony in groups of neurons. However, under the given
frequency of network bursting, the effect of SIC-induced synchrony is still evident. Further
increase of the network bursting frequency increases global neuronal synchronization and
ultimately masks the effect of SIC current. Additionally, in this study, we consider a relatively
small model, a network of 500 neurons and 100 astrocytes. Studying the role of this and sim-
ilar mechanisms in realistic-size networks requires an efficient computational platform to
tune the model to the desired global activity regime and simulate it for a long enough time
to observe relatively slow (when compared to neuronal activity) changes in astrocyte dynam-
ics. Our technology enables the future exploration of this and other similar mechanisms in
realistic-size models.

The functional role of SIC-mediated synchronicity and astrocytic calcium signaling
remains unclear, but it might be relevant in all functions that require coherent activation
of neuronal groups, such as plasticity or memory retrieval. We here focus on one specific
mechanism, but synchronization in brain circuits might arise also through other astrocyte-
dependent mechanisms and through the release of both glutamate and GABA, as shown in
vivo in a sequence of studies [49,50,52]. Astrocytic release of neurotransmitters dynamically
changes the extracellular composition of molecular species which modulates brain circuits
and can induce changes in activity regimes [49], contribute to pathological states [50,52] and
pathological behavior as shown in [50]. The diversity of mechanisms through which astro-
cytes and their calcium signaling contribute to the activity of brain circuits and understanding
their interplay in in vitro and in vivo further highlights the need for efficient simulation tools
that can integrate diverse mechanisms into models of brain circuits.

While astrocyte-dependent synchronization is central to our simulation use case, astrocyte
physiology is a rapidly evolving field, uncovering the complex and context-dependent roles
of astrocytes and their calcium signaling in neural function and behavior [97-100]. Intra-
cellular calcium signaling in astrocytes can lead to diverse physiological outcomes, such as
brain state changes [49], sensory-evoked neuronal network activity [51], and modulation of
synaptic transmission and plasticity [101]. Astrocytes can be activated by various substances
through membrane mechanisms, triggering the calcium-dependent release of gliotransmitters
such as glutamate, ATP, and D-serine [12,13]. This release can enhance or suppress synap-
tic activity, transmission, and plasticity, depending on the context, brain area, biological sex,
and receptor involvement [101-104]. Some effects likely occur through distinct intracellular
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signaling pathways following calcium activation, though a major challenge in experimental
research has been the lack of astrocyte-specific pharmacological tools. Nevertheless, it is now
clear that astrocyte signal integration involves complex, yet identifiable intracellular path-
ways and receptor systems that regulate their role in neural circuit function [99,105]. The
novel theoretical methodologies for modeling tripartite connectivity and the scalable com-
putational simulation tools, both developed in our study, will help address this challenging
goal.

Reproducibility and future considerations

The traceability of model implementations is crucial, necessitating open accessibility, such

as including codes in model databases and clarifying the evolutionary path from previously
published models. To maintain the principles of FAIR (Findable, Accessible, Interoperable,
and Reusable) data, the use of standardized simulation tools and data-analysis and sensitivity-
analysis methodologies are necessary for all computational fields [106]. Advancing model
development workflows and expanding neuroinformatics tools for astrocytes are crucial in
enhancing reproducibility, standardization, and sharing of astrocyte models. To facilitate
comprehensive specification, we recommend employing a predefined format for describing
model components and interaction schemes. In this regard, formats proposed for specifying
neuronal networks [37] and connectivity schemes between neurons [4] can be expanded to
accommodate neuron-astrocyte networks. All aspects of models, including network struc-
ture, cell count, interaction dynamics, and all the equations, initial and parameter values,
must be explicitly disclosed as suggested recently [35]. The description of interaction schemes
should seamlessly intertwine with model equations, ensuring that the reconstruction of these
schemes is achievable solely through the equations [35].

Properly documenting model parameters is equally important. Expanding the level of bio-
logical details in a model, adding new components such as astrocyte-related mechanisms,
or increasing the model size inevitably leads to a larger and more complex parameter space.
Exhaustive evaluation of the entire parameter space becomes challenging already for relatively
small models. On the other hand, fitting the parameters to the experimental data often suffers
from the lack of data as well as from the presence of strong nonlinearities in models which
result in complex, non-convex, multi-objective optimization tasks. Consequently, new studies
often reuse the existing models and previously reported parameters, and they depend on the
accurate and systematic description of models and parameters.

All these advancements are crucial for expediting model development, adding greater bio-
logical knowledge into data-driven models, and integrating astrocytic mechanisms into large-
scale, realistic models of brain systems. Our reference implementation for neuron-astrocyte
networks helps to catalyze the development of neuron-astrocyte network models by pro-
viding fast simulation times and a reliable model implementation via tripartite connectivity
generation, not present in other similar simulation tools.

Computational models and tools in brain research have become crucial in advancing our
understanding of brain functions, dysfunctions, and diseases [107]. These allow researchers
to simulate and analyze complex neural processes, providing valuable insights into the func-
tioning of the brain and helping to solve the mysteries of neurological phenomena. They
enable the exploration of various scenarios and aid in deciphering the underlying mecha-
nisms of both normal brain function and aberrations leading to disorders. In addition, they
facilitate the development of hypotheses and the testing of theories, offering possibilities for
breakthroughs in neuroscience research.
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