001     1047179
005     20251208202114.0
024 7 _ |a 10.1002/cmtd.202500087
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04136
|2 datacite_doi
037 _ _ |a FZJ-2025-04136
082 _ _ |a 540
100 1 _ |a Adeleh, Sara
|0 P:(DE-Juel1)199027
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Synthesis of Micro 14C-Labeled Polylactide forEnvironmental Assessment Analysis
260 _ _ |a Weinheim (Germany)
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764571015_17190
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polylactide (PLA), a biobased, biodegradable polyester derived from lactic acid, is recognized as an alternative to conventional plastics due to properties such as mechanical strength and compostability. Despite widespread use in applications from medical devices to packaging, PLA degradation in the environment, particularly its breakdown into microplastics, raises concerns. Conventional analytical methods are inadequate for quantifying PLA degradation in environments. To address this, radio tracking techniques using carbon-14 have emerged as a reliable method for PLA decomposition studies. The first step is producing labeled polymers from suitable monomers. Ring-opening polymerization (ROP) of lactide is widely used for synthesizing PLA, but this approach faces challenges due to the limited availability and high cost of 14C-labeled precursors. We report the first use of a biocompatible zinc bisguanidine catalyst for the synthesis of 14C-lactide from 14C-lactic acid, enabling the production of 14C-PLA. The process involves dehydration and oligomer formation, followed by catalytic depolymerization to yield 14C-lactide, which is polymerized through ROP. Lactide production was optimized by comparing the toxic industrial catalyst tin(II) octanoate [Sn(Oct)2] with our catalyst, the latter ultimately used for 14C-lactide and 14C-PLA production. The resulting micro-14C-labeled PLA can be used to quantify degradation, assess environmental impact.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Becker, Tabea
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Herres-Pawlis, Sonja
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Bol, Roland
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Drewes, Birte
|0 P:(DE-Juel1)131817
|b 4
|u fzj
700 1 _ |a Pütz, Thomas
|0 P:(DE-Juel1)129523
|b 5
|u fzj
773 _ _ |a 10.1002/cmtd.202500087
|g p. e202500087
|0 PERI:(DE-600)2972304-8
|n 12
|p e202500087
|t Chemistry methods
|v 5
|y 2025
|x 2628-9725
856 4 _ |u https://juser.fz-juelich.de/record/1047179/files/Chemistry%20Methods%20-%202025%20-%20Adeleh%20-%20Synthesis%20of%20Micro%2014C%E2%80%90Labeled%20Polylactide%20for%20Environmental%20Assessment%20Analysis-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047179
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)199027
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131817
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129523
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-16
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21