001047197 001__ 1047197 001047197 005__ 20251023202110.0 001047197 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04146 001047197 037__ $$aFZJ-2025-04146 001047197 041__ $$aEnglish 001047197 1001_ $$0P:(DE-Juel1)204256$$aDietz Romero, Pau$$b0$$eCorresponding author$$ufzj 001047197 1112_ $$aNano Conference 2025$$cDortmund$$d2025-09-30 - 2025-10-01$$wGermany 001047197 245__ $$aAutomated Co-Design of Qubits and Cryogenic Electronics 001047197 260__ $$c2025 001047197 3367_ $$033$$2EndNote$$aConference Paper 001047197 3367_ $$2BibTeX$$aINPROCEEDINGS 001047197 3367_ $$2DRIVER$$aconferenceObject 001047197 3367_ $$2ORCID$$aCONFERENCE_POSTER 001047197 3367_ $$2DataCite$$aOutput Types/Conference Poster 001047197 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1761202714_18974$$xExhibition 001047197 520__ $$aIntegrating cryogenic integrated circuits with qubits is a promising way to scale quantum computers. Signals created and detected in close proximity to the qubits inside the cryostat reduce wiring bottlenecks and signal distortion. This approach also minimizes the footprint and cost while enabling modular quantum processors. However, IC design requires significant development effort and is prone to errors. It relies heavily on accurate simulations to explore the design space and validate circuit designs. Additionally, cryostats offer limited cooling and space capabilities, which strictly restrict the power consumption and size of electronic designs. To overcome these challenges, we introduce a co-design framework [1] that directly connects the signals from tailored electronics to qubit performance, as shown in Fig. 1. Within our framework, the integrated circuits are represented at three abstraction levels: as an ideal arbitrary signal source, as a behavioral model, and as a transistor-level SPICE model. Our framework allows for the conception, design, and optimization of cryogenic electronics with awareness of power consumption and qubit performance. As a use case, we optimized two circuits for shuttling signal generation for spin qubits as required in [2] and illustrated in Figure 2. The qubit metric used is the orbital splitting of the shuttled electron, which indicates how robust the spin state is against disturbances. We optimized the electronic parameters to reduce the power consumption of the two cryogenic signal generation circuits while maintaining the minimum required orbital splitting. Based on the results of our circuit design simulations, we propose replacing the room-temperature electronics used for spin qubit shuttling with tailored integrated electronics.1. P. Dietz Romero, C. Toprak, L. Duipmans, S. van Waasen and L. Geck, SMACD (2025) 2. M. Künne, A. Willmes, M. Oberländer, C. Gorjaew, J. Teske, H. Bhardwaj, M. Beer, E. Kammerloher, R. Otten, I. Seidel, R. Xue, L. Schreiber and H. Bluhm, Nature Communications (2024) 001047197 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0 001047197 7001_ $$0P:(DE-Juel1)199845$$aToprak, Caner$$b1$$ufzj 001047197 7001_ $$0P:(DE-Juel1)186966$$aDuipmans, Lammert$$b2$$ufzj 001047197 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b3$$ufzj 001047197 7001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b4$$ufzj 001047197 8564_ $$uhttps://juser.fz-juelich.de/record/1047197/files/Nanoconference%20Dietz%20Romero%20Poster.pdf$$yOpenAccess 001047197 909CO $$ooai:juser.fz-juelich.de:1047197$$popenaire$$popen_access$$pVDB$$pdriver 001047197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204256$$aForschungszentrum Jülich$$b0$$kFZJ 001047197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199845$$aForschungszentrum Jülich$$b1$$kFZJ 001047197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186966$$aForschungszentrum Jülich$$b2$$kFZJ 001047197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b3$$kFZJ 001047197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b4$$kFZJ 001047197 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 001047197 9141_ $$y2025 001047197 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001047197 920__ $$lno 001047197 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x0 001047197 980__ $$aposter 001047197 980__ $$aVDB 001047197 980__ $$aUNRESTRICTED 001047197 980__ $$aI:(DE-Juel1)PGI-4-20110106 001047197 9801_ $$aFullTexts