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Abstract

Bayesian analysis is particularly useful for inferring models and their parameters given
data. This is a common task in metabolic modeling, where models of varying complexity
are used to interpret data. Nested sampling is a class of probabilistic inference algorithms
that are particularly effective for estimating evidence and sampling the parameter posterior
probability distributions. However, the practicality of nested sampling for metabolic net-
work inference has yet to be studied. In this technical report, we explore the amalgamation
of nested sampling, specifically diffusive nested sampling, with reversible jump Markov
chain Monte Carlo. We apply the algorithm to two synthetic problems from the field of
metabolic flux analysis. We present run times and share insights into hyperparameter
choices, providing a useful point of reference for future applications of nested sampling to
metabolic flux problems.

Keywords: metabolic network inference; trans-dimensional diffusive nested sampling;
metabolic flux analysis; reversible jump MCMC; evidence estimation

1. Introduction

Developing a quantitative understanding of the metabolic processes that convert
substrates into useful products is essential for bioprocess development and metabolic
engineering. Metabolic network models have proven to be effective in describing metabolic
processes in a wide range of contexts [1-3]. Although metabolic network models are
mainly based on biochemical knowledge, the process of reconstructing them introduces
uncertainty into the model formulation [4]. Broadly, the following two types of uncertainty
are prevalent:

*  Structural uncertainty—introduced, for example, by gap-filling heuristics or by un-
known regulation mechanisms;

*  Operational uncertainty—for instance, even when “complete” structural knowledge
is available, gene expression levels, enzyme activities and metabolic concentrations
depend on the in vivo conditions applied, which may cause the catalyzed reactions or
whole pathways to operate at different capacities or even in reverse.

The first type of uncertainty, structural uncertainty, results in a variety of metabolic
network models that differ in terms of the number of parameters and, consequently,
dimensionality. Operational uncertainty, on the other hand, corresponds to uncertainty in

Phys. Sci. Forum 2025,12, 5

https://doi.org/10.3390/psf2025012005


https://www.mdpi.com/article/10.3390/psf2025012005?type=check_update&version=1
https://doi.org/10.3390/psf2025012005
https://doi.org/10.3390/psf2025012005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/psf
https://www.mdpi.com
https://orcid.org/0000-0002-5026-1546
https://orcid.org/0000-0001-8501-0694
https://orcid.org/0000-0002-5407-2275
https://doi.org/10.3390/psf2025012005

Phys. Sci. Forum 2025, 12, 5

2 0f 8

the values of the metabolic parameters for each network model. Structural and operational
uncertainty are inherently coupled and must be addressed concurrently. In this setting, we
refer to the process of inferring the implied network structure and its corresponding model
parameters as metabolic network inference .

We use Bayesian statistics to infer the metabolic parameters along with the metabolic
network model. Given the data D, the posterior of the parameters, the metabolic fluxes 6,
is determined using Bayes’ theorem

0| M) - p(D]6, M)

Z(D, M) @

p(6D, M) = 2!

where p(0| M) is the flux prior, p(D|6, M) is the likelihood, and Z(D, M) is the evidence
(or marginal likelihood). All these quantities are defined with respect to the metabolic
network model M. An example network model for Escherichia coli is shown in Figure 1.

Figure 1. Metabolic network model instance for E. coli, adapted from [5]. Metabolic reactions are
visualized by diamonds. Nominal reaction directions are indicated by bold arrows; double-headed
arrows indicate that two flux parameters are associated with the reaction, whereas the remaining
reactions are accompanied by a single flux parameter. The diamonds are color-coded according to the
metabolic pathway.

The evidence Z(D|M) represents the probability of generating observations D from
the metabolic model M, and is, thus, the central quantity for comparing alternative mod-
els [6,7]. The evidence is defined by the integral of the likelihood, weighted by the prior
over the flux parameters

Z(DIM) = [ p(elM) - £(Dlo, M) d8 @

In any realistic case, the integral in Equation (2) needs to be solved numerically.
Because metabolic network models are high-dimensional, computing the model evidence
Z of a metabolic model is computationally challenging and requires probabilistic methods
to alleviate the curse of dimensionality. An additional challenge in calculating Z is when
the posterior is multimodal, which is unknown beforehand. Indeed, multimodal posterior
probability distributions have been observed for metabolic network models [8].
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Nested sampling (NS) is a prominent class of Monte Carlo algorithms for estimating
the model evidence Z and the parameter posterior probability p(68|D, M) [9-11]. The basic
idea behind NS is to transform the evidence integral in Equation (2) into a one-dimensional
integral of the likelihood p(D|6, M) over the enclosed prior mass. To this end, points,
referred to as “particles”, are generated in the parameter space and evolved through
regions of increasing likelihood, thereby exploring regions of decreasing prior mass. The
NS algorithm stops evolving the particles once the contribution of the remaining prior
mass and likelihood to the evidence becomes negligible. Finally, the model evidence Z is
obtained by numerically solving the one-dimensional integral. Several variants of NS have
been developed [12-17] and successfully applied in various contexts.

In this technical report, we show how NS can be used to sample the flux parameter
posterior and compute evidence for metabolic network models that differ due to uncer-
tainty in the model formulation. We build upon a combination of flux sampling [18] and
trans-dimensional sampling using reversible jump MCMC (RJMCMC) [19] to evolve the
particles. Importantly, RIMCMC is used to marginalize over metabolic models of different
dimensions that share the same overall network structure. The algorithm has been suc-
cessfully applied to metabolic network models in practice [8,20]. To estimate the model
evidence for models with differing structure, we use trans-dimensional diffusive nested
sampling (TDNS) [21,22]. TDNS is a combination of a trans-dimensional MCMC algorithm,
in our case RIMCMC, and diffusive NS [23]. In contrast to classical NS, where particles
explore the prior constrained by strictly increasing the likelihood levels, diffusive NS allows
particles to “diffuse” back to lower likelihood levels, thereby allowing particles to move
between modes. We compare the outcome of applying TDNS to two synthetic problems
from the field of metabolic flux analysis. Special focus is on the diagnostic plots. We report
TDNS hyperparameters used as reference for future application of TDNS in this field.

2. Materials and Methods
2.1. 13C metabolic Flux Analysis

In 13C metabolic flux analysis (MFA), isotope labeling experiments are performed to
set up an inverse problem with the goal of quantifying the metabolic reaction rates (fluxes)
at steady-state conditions. Network structures consist of a set of biochemical reactions that
are associated with metabolic pathways (cf. Figure 1). Depending on the experimental
conditions, the metabolic reactions operate in the forward direction only, or in the forward
and backward directions simultaneously. Whether the reactions operate in the forward only
or in the forward and backward directions has important implications for the propagation
of isotope labeling through the network structure [24]. Reactions that operate only in
the forward direction have one associated flux parameter, while reactions that operate in
both directions have two flux parameters. Therefore, different model variants emerge that
have to be inferred together with the associated flux parameters. For more details about
metabolic flux modeling and 13C MFA, we refer the interested reader to [25].

2.2. Implementation

To evaluate the likelihood in '3C MFA, we require fast simulation of labeling data,
given a network model and parameter values as input. For this, we use the high-
performance simulator 13CFLUX [26]. Given a network structure, we infer the operation
mode of the reactions using RIMCMC; see [27] for an example from metabolic network in-
ference. To estimate the model evidence while simultaneously inferring the operation mode
of the reactions, we use TDNS, by combining 13CFLUX with the high-performance C++ pack-
ages DNest4 [28] for diffusive NS and HOPS [29] for MCMC sampling in convex-constrained
parameter spaces.
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3. Results
3.1. Problem Statement

To study TDNS, we infer the net flux parameters from two synthetic labeling ex-
periments generated using a realistic network model of E. coli [30], which we call the
data-generating network. We refer to the two synthetic labeling experiments as “Experi-
ment 1”7 and “Experiment 2”, respectively. The data-generating network and experimental
setups are provided in FluxML format [31] in the supplementary materials. Based on
the data-generating network, we create seven additional models by removing or adding
pathways. The data-generating network is defined by a central set of reactions (“C”) and
the two pathways, called “E” and “G”. In addition to “E” and “G”, we consider a third
pathway “M”, giving a set of eight structurally different models. Biologically, “E” is the
Entner-Doudoroff pathway, “G” the glyoxylate shunt, and “M” the methylglyoxal pathway.
For E. coli, “G” has been observed to be active, the activity of “E” depends on the environ-
mental conditions, and “M” is typically inactive [32,33]. We denote the network models by
a letter combination. The data-generating model is denoted “C-E-G”. The network models
have between 6 and 9 net flux parameters and between 0 and 26 uncertain flux parameters
originating from operational model uncertainty.

3.2. TDNS Hyperparameters, Diagnostics and Run Times

The two experiments and eight network structures result in a total of 16 TDNS runs.
We ran the 16 instances of TDNS in parallel on eight CPUs, each with 16 cores and 32 threads.
All runs were started and stopped simultaneously. As recommended by Ashton et al. [10],
we report the estimated evidences, Kullback-Leibler (KL) divergences from prior to poste-
rior, effective sample sizes (ESS), as well as the used CPUs and run time in Figure 2. Note
that ESS is estimated differently in MCMC (autocorrelation) and NS (posterior weights).
In this work, we report the ESS based on the NS estimator. In each case, the uncertainties
for the evidences and KL divergences, estimated using DNest4, were below 0.02%. TDNS
relies on hyperparameters to ensure accurate and efficient computation. Therefore, we
report these hyperparameters in Table 1 to serve as a reference for metabolic network
inference. Finally, we diagnose the 16 TDNS runs by checking the prior mass compression
between subsequent levels, the likelihood levels as a function of enclosed prior mass X,
the Metropolis-Hastings acceptance rates for the MCMC that evolves the particles, and the
posterior weights. Figure 3 shows the results. Based on these diagnostics, we conclude
that it is unlikely that we overlooked parameter regions contributing to the posterior, as
the likelihood levels remain nearly constant when the prior mass is enclosed in gradually
smaller regions.

Table 1. TDNS hyperparameters for Experiments 1 and 2. See [28] for an in-depth description
and explanation of the parameters. We manually tuned the maximum number of levels and new
level intervals using exploratory runs. The diffusive NS parameters A and 8 were set according to
the advice in [28]. The RIMCMC parameters were the step size of the parameter space proposals,
the probability of proposing a new model instead of a parameter space proposal (model jump ratio),
and the probability of switching a flux parameter on or off.

Max Number of New Level . Model Jump Param. Switch
Exp. Levels Interval AP Step Size Ratio Prob.
120 50,000 10 100 0.025 0.5 0.1
2 150 50,000 10 100 0.025 0.5 0.1
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Figure 2. For each model variant, we show the (A) model evidences, (B) Kullback-Leiber (KL)
divergences from prior to posterior, and (C) effective sample size (ESS) as defined for NS. In contrast
to classical NS, computing the uncertainty for the model evidences and KL divergences in diffusive
NS is not straightforward [10,28]. We estimated the uncertainties for the model evidences and KL
divergences by resampling the level compression 100 times, as implemented in DNest4. The relative
uncertainties for the evidences and KL divergences estimated by DNest4 were below 0.02%.
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Figure 3. Diagnostic plots for TDNS applied to Experiment 1 and Experiment 2. (A) The compres-
sion is defined as the logarithmic difference in enclosed prior mass X between adjacent likelihood
levels. The target-compression was set to the Euler number e. Especially towards the higher levels,
the compression was often low with respect to the target-compression, meaning that levels were
created too closely. Low compression indicates computational overhead. (B) The created likelihood
levels as a function of the enclosed prior mass X. We plot the log likelihood on a log-scale to highlight
the difference in levels between both experiments. (C) Metropolis-Hastings (MH) acceptance rate of
the MCMC proposals that evolve the particles. Towards higher levels, the acceptance rate declines,
because it becomes harder and harder to generate proposals within the prior regions enclosed by
higher and higher likelihood levels. If the acceptance rate reaches 0 before the bulk of the posterior is
found, TDNS is stuck. Interestingly, for all runs of Experiment 2, there is a bulge in the decline of the
acceptance rate. (D) In the plot of the posterior weights over the enclosed prior mass X, the posterior
weights tend to 0 as X decreases, indicating that the bulk of the posterior mass was found for both
experiments and all models.
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3.3. Metabolic Network Inference Results

The model and parameter inferences for Experiments 1 and 2 are shown in Figure 4.
Notably, the data-generating model “C-E-G” was not assigned a high probability in either
experiment. Experiment 1 did not assign a high probability to any specific model. In con-
trast, Experiment 2 classified the “C-G” model as the most likely one, and the alternative
models that contain pathway “G” together accounted for 90.08% of the evidence. Therefore,
Experiment 2 identified pathway “G” with high certainty. The failure of Experiment 1 to
find “G” was due to the uninformative input substrate, which resulted in measurements
that were uninformative with respect to the presence of “G”. By contrast, pathway “E” was
not detected at all and accounted for only around 6.7% of the evidence. It is not surprising
that the experiments failed to find all pathways, as it has been demonstrated for E. coli that
even the combination of several '3C MFA datasets is often insufficient to accurately resolve
all net fluxes and pathways [30]. Independently of the detected pathways, the marginal
posteriors for the central net fluxes (i.e., the fluxes belonging to “C”) show substantial
posterior overlap across network structures. In other words, although specific pathways
were difficult to infer from the data, the central net fluxes were recovered.
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Figure 4. Relative model evidences for each pathway combination and inferences for net fluxes that
are shared between all metabolic network structures. The net fluxes are given relative to the input
flux of 100 mmol/gCWD/h. Strikingly, the different network models agreed well on the central
fluxes for Experiment 2.

4. Discussion

In this technical report, we compared the outcomes of applying TDNS to two synthetic
experiments from the field of 3C MFA. The synthetic experiments reflect a common
challenge of real-word '*C MFA, namely that the data are insufficient to fully resolve the
underlying metabolic network structure. Nevertheless, the central fluxes were recovered.

TDNS has several hyperparameters that influence computational performance and
the reliability of evidence estimates and posterior samples. For example, hyperparameter
tuning includes setting an appropriate maximum number of levels to avoid creating compu-
tationally costly levels that do not contribute significantly to the posterior. Exploratory runs
of TDNS were performed beforehand to find suitable hyperparameters. Moreover, Brewer
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and Foreman-Mackey [28] argue that skipping step size tuning and using heavy-tailed
proposal moves for evolving particles is often more robust and simpler than adjusting the
proposal moves. In our application, we found that tuning the step size of the proposals
was required to maintain non-zero acceptance rates at higher likelihood levels. Therefore,
we report our hyperparameters and diagnostics for future reference, especially as prob-
lems with similar KL divergences are expected to require similar computational effort [34].
In summary, improved hyperparameter tuning has the potential to make TDNS more
efficient and robust for applications within and beyond the field of '*C MFA.
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