001     1047233
005     20251023202111.0
037 _ _ |a FZJ-2025-04167
100 1 _ |a Stunault, A.
|b 0
111 2 _ |a JCNS Workshop 2025, Trends and Perspectives in Neutron Scattering. Quantum Materials: Theory and Experiments
|c Evangelische Akademie Tutzing
|d 2025-10-07 - 2025-10-09
|w Germany
245 _ _ |a Magnetic and Transport Properties of Mn3X (X = Ge, Sn) WeylSemimetal
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1761203607_20917
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Topological quantum materials have attracted enormous attention since their discovery due to theobserved anomalous transport properties, which originate from the non-zero Berry curvature. Mn3Xcompounds show interesting physical properties like Anomalous Hall Effect (AHE), Planar Hall effect(PHE), chiral magnetic effect, and non-local transport properties due to non-vanishing Berryflux emerging from the Weyl points [1]. It is widely believed that the magnetic structure and Weylproperties are intimately connected.Nevertheless, the interpretation of negative longitudinal magnetoresistance (LMR), AHE, and PHEin Mn₃X compounds—particularly their connection to the chiral magnetic effect—remains a subjectof ongoing debate. This presentation provides a concise overview of current insights into these phenomena,with a focus on experimental observations in Mn₃Sn and Mn₃Ge using neutron diffractionand complementary physical property measurement systems.References:[1] S. Nakatsuji, N. Kiyohara and T. Higo, Nature (London) 527, 212 (2015) .[2] Y. Song, Y. Hao, and S. Wang, Phys. Rev. B 101, 144422 (2020)[3] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W.Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, Sci. Adv. 2, e1501870 (2016)[4] N. Kumar, S. N. Guin, C. Felser, and C. Shekhar, Phys. Rev. B 98, 041103(R) (2018)
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Perßon, J.
|0 P:(DE-Juel1)130884
|b 1
|u fzj
700 1 _ |a Schmalzl, K.
|0 P:(DE-Juel1)130943
|b 2
|u fzj
700 1 _ |a Meven, M.
|b 3
700 1 _ |a Dutta, Rajesh
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nandi, S.
|b 5
700 1 _ |a Jana, S.
|0 P:(DE-Juel1)178022
|b 6
700 1 _ |a RAI, V.
|0 P:(DE-Juel1)178021
|b 7
700 1 _ |a Schmidt, W.
|0 P:(DE-Juel1)130944
|b 8
|u fzj
909 C O |o oai:juser.fz-juelich.de:1047233
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130943
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130944
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21