001047243 001__ 1047243
001047243 005__ 20251103202054.0
001047243 0247_ $$2doi$$a10.1021/acs.langmuir.5c02797
001047243 0247_ $$2ISSN$$a0743-7463
001047243 0247_ $$2ISSN$$a1520-5827
001047243 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04174
001047243 037__ $$aFZJ-2025-04174
001047243 041__ $$aEnglish
001047243 082__ $$a540
001047243 1001_ $$0P:(DE-Juel1)201210$$aRudani, Binny A.$$b0
001047243 245__ $$aInfluence of α-Helical Content on the Thermodiffusion of Apomyoglobin
001047243 260__ $$aWashington, DC$$bACS Publ.$$c2025
001047243 3367_ $$2DRIVER$$aarticle
001047243 3367_ $$2DataCite$$aOutput Types/Journal article
001047243 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1762156505_16856
001047243 3367_ $$2BibTeX$$aARTICLE
001047243 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047243 3367_ $$00$$2EndNote$$aJournal Article
001047243 520__ $$aApo-myoglobin (Apo-Mb) is an extensively studied model system for investigating protein folding due to its distinct stable native, partially folded molten globule (MG), and {\color{black} unfolded} states at acidic pH. This study examines the impact of structural conformational changes on the thermodiffusive behavior of Apo-Mb using the infrared thermal diffusion forced Rayleigh scattering (TDFRS) technique. The conformational states were modulated by varying pH and buffer conditions, with their structural changes confirmed via circular dichroism (CD) spectroscopy. The $\alpha$-helical content decreased with decreasing pH. The thermodiffusion parameter $\Delta S_{\mathrm{T}}(\Delta T)$, a measure of the temperature sensitivity of the Soret coefficient $S_{\mathrm{T}}$, also showed a decrease, which is typically related to a decreasing hydrophilicity of the solute. Additionally, the buffer composition significantly influenced the thermodiffusive behavior: phosphate buffer promoted Apo-Mb aggregation through electrostatic screening, whereas acetate buffer favored Apo-Mb solubilization. Microsecond-long discrete protonation state constant pH molecular dynamics (CpHMD) simulations support the experimentally observed, pH- and buffer-dependent changes in $\alpha$-helical content and highlight the differences in protein-buffer interactions for phosphate buffer versus acetate buffer. In conclusion, a strong correlation was observed between the thermodiffusion parameter $\Delta S_{\mathrm{T}}(\Delta T)$ and the $\alpha$-helical content, with $\Delta S_{\mathrm{T}}(\Delta T)$ increasing alongside hydrophilicity and $\alpha$-helical content. These findings highlight the role of structural conformation and buffer environment in modulating the thermodiffusive properties of proteins.
001047243 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001047243 536__ $$0G:(DE-HGF)POF4-323$$a323 - Molecular Targets & Therapies (POF4-323)$$cPOF4-323$$fPOF IV$$x1
001047243 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x2
001047243 536__ $$0G:(DE-Juel1)IHRS-BioSoft-20061101$$aIHRS-BioSoft - International Helmholtz Research School of Biophysics and Soft Matter (IHRS-BioSoft-20061101)$$cIHRS-BioSoft-20061101$$x3
001047243 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047243 7001_ $$0P:(DE-Juel1)192553$$aDocter, Steffen$$b1
001047243 7001_ $$0P:(DE-Juel1)187014$$aSchott-Verdugo, Stephan$$b2
001047243 7001_ $$0P:(DE-Juel1)130577$$aBuitenhuis, Johan$$b3
001047243 7001_ $$0P:(DE-Juel1)140278$$aStadler, Andreas M.$$b4$$eCorresponding author
001047243 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b5$$eCorresponding author
001047243 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b6$$eCorresponding author
001047243 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.5c02797$$gp. acs.langmuir.5c02797$$n42$$p28322–28334$$tLangmuir$$v41$$x0743-7463$$y2025
001047243 8564_ $$uhttps://juser.fz-juelich.de/record/1047243/files/Main-arcticle.pdf$$yOpenAccess
001047243 8564_ $$uhttps://juser.fz-juelich.de/record/1047243/files/Supporting%20information.pdf$$yRestricted
001047243 8564_ $$uhttps://juser.fz-juelich.de/record/1047243/files/influence-of-%CE%B1-helical-content-on-the-thermodiffusion-of-apomyoglobin.pdf$$yOpenAccess
001047243 8767_ $$d2025-11-03$$eHybrid-OA$$jPublish and Read
001047243 909CO $$ooai:juser.fz-juelich.de:1047243$$popenaire$$popen_access$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001047243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201210$$aForschungszentrum Jülich$$b0$$kFZJ
001047243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192553$$aForschungszentrum Jülich$$b1$$kFZJ
001047243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187014$$aForschungszentrum Jülich$$b2$$kFZJ
001047243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130577$$aForschungszentrum Jülich$$b3$$kFZJ
001047243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140278$$aForschungszentrum Jülich$$b4$$kFZJ
001047243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b5$$kFZJ
001047243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b6$$kFZJ
001047243 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001047243 9131_ $$0G:(DE-HGF)POF4-323$$1G:(DE-HGF)POF4-320$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lUmweltbedingte und metabolische Erkrankungen$$vMolecular Targets & Therapies$$x1
001047243 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x2
001047243 9141_ $$y2025
001047243 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001047243 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001047243 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001047243 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001047243 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001047243 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001047243 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001047243 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-27
001047243 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
001047243 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
001047243 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001047243 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
001047243 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047243 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-27
001047243 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2022$$d2024-12-27
001047243 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
001047243 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-27$$wger
001047243 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001047243 920__ $$lyes
001047243 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
001047243 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x1
001047243 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
001047243 980__ $$ajournal
001047243 980__ $$aVDB
001047243 980__ $$aUNRESTRICTED
001047243 980__ $$aI:(DE-Juel1)IBG-4-20200403
001047243 980__ $$aI:(DE-Juel1)IBI-4-20200312
001047243 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001047243 980__ $$aAPC
001047243 9801_ $$aAPC
001047243 9801_ $$aFullTexts