001     1047243
005     20251103202054.0
024 7 _ |a 10.1021/acs.langmuir.5c02797
|2 doi
024 7 _ |a 0743-7463
|2 ISSN
024 7 _ |a 1520-5827
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04174
|2 datacite_doi
037 _ _ |a FZJ-2025-04174
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Rudani, Binny A.
|0 P:(DE-Juel1)201210
|b 0
245 _ _ |a Influence of α-Helical Content on the Thermodiffusion of Apomyoglobin
260 _ _ |a Washington, DC
|c 2025
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762156505_16856
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Apo-myoglobin (Apo-Mb) is an extensively studied model system for investigating protein folding due to its distinct stable native, partially folded molten globule (MG), and {\color{black} unfolded} states at acidic pH. This study examines the impact of structural conformational changes on the thermodiffusive behavior of Apo-Mb using the infrared thermal diffusion forced Rayleigh scattering (TDFRS) technique. The conformational states were modulated by varying pH and buffer conditions, with their structural changes confirmed via circular dichroism (CD) spectroscopy. The $\alpha$-helical content decreased with decreasing pH. The thermodiffusion parameter $\Delta S_{\mathrm{T}}(\Delta T)$, a measure of the temperature sensitivity of the Soret coefficient $S_{\mathrm{T}}$, also showed a decrease, which is typically related to a decreasing hydrophilicity of the solute. Additionally, the buffer composition significantly influenced the thermodiffusive behavior: phosphate buffer promoted Apo-Mb aggregation through electrostatic screening, whereas acetate buffer favored Apo-Mb solubilization. Microsecond-long discrete protonation state constant pH molecular dynamics (CpHMD) simulations support the experimentally observed, pH- and buffer-dependent changes in $\alpha$-helical content and highlight the differences in protein-buffer interactions for phosphate buffer versus acetate buffer. In conclusion, a strong correlation was observed between the thermodiffusion parameter $\Delta S_{\mathrm{T}}(\Delta T)$ and the $\alpha$-helical content, with $\Delta S_{\mathrm{T}}(\Delta T)$ increasing alongside hydrophilicity and $\alpha$-helical content. These findings highlight the role of structural conformation and buffer environment in modulating the thermodiffusive properties of proteins.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
536 _ _ |a 323 - Molecular Targets & Therapies (POF4-323)
|0 G:(DE-HGF)POF4-323
|c POF4-323
|f POF IV
|x 1
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 2
536 _ _ |a IHRS-BioSoft - International Helmholtz Research School of Biophysics and Soft Matter (IHRS-BioSoft-20061101)
|0 G:(DE-Juel1)IHRS-BioSoft-20061101
|c IHRS-BioSoft-20061101
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Docter, Steffen
|0 P:(DE-Juel1)192553
|b 1
700 1 _ |a Schott-Verdugo, Stephan
|0 P:(DE-Juel1)187014
|b 2
700 1 _ |a Buitenhuis, Johan
|0 P:(DE-Juel1)130577
|b 3
700 1 _ |a Stadler, Andreas M.
|0 P:(DE-Juel1)140278
|b 4
|e Corresponding author
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 5
|e Corresponding author
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.langmuir.5c02797
|g p. acs.langmuir.5c02797
|0 PERI:(DE-600)2005937-1
|n 42
|p 28322–28334
|t Langmuir
|v 41
|y 2025
|x 0743-7463
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1047243/files/Main-arcticle.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/1047243/files/Supporting%20information.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1047243/files/influence-of-%CE%B1-helical-content-on-the-thermodiffusion-of-apomyoglobin.pdf
909 C O |o oai:juser.fz-juelich.de:1047243
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201210
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192553
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130577
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)140278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172663
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Umweltbedingte und metabolische Erkrankungen
|1 G:(DE-HGF)POF4-320
|0 G:(DE-HGF)POF4-323
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Molecular Targets & Therapies
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 2
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANGMUIR : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21