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Abstract

Phonons are quantized vibrational excitations of the crystal lattice. These quasiparticles
play a crucial role in understanding many properties of the solid-state system. In this thesis,
phonons in terms of dispersion relations and density of states (DOS) are investigated on
the basis of the Kohn–Sham density functional theory (DFT), the state-of-the-art ab-initio
approach to the electronic structure of specific materials and a proven foundation for the study
of lattice vibrations from first-principles. This work relies on the harmonic approximation,
in which the properties of phonons are directly related to the second order response of the
total energy of the system with respect to the displacement of the atoms in the lattice. Two
complementary approaches are used to calculate this response: The first one is the finite
displacement (FD) approach, that in which the second order of the energy is approximated
as a difference quotient using differences in the forces acting on the atoms. The second one
is the density-functional perturbation theory (DFPT), a variational approach that constructs
the second order response analytically from the first order response of the wave functions
obtained by the self-consistent solution of the Sternheimer equation. In this thesis, I go
beyond the conventional application of DFPT to nonmagnetic systems and the conventional
realization of DFPT in terms of methods representing the electron wave function in a plane
wave (PW) basis and present an implementation in the all-electron full-potential linearized
augmented plane-wave (FLAPW) method. This very accurate method, applicable without
further ado to all nonmagnetic and magnetic chemical elements of the periodic table, comes
with the challenge of an atomic position dependent basis set. I show that the subsequently
arising additional matrix elements, so-called correction terms to calculate the response of
wave function and energy can be determined accurately. One objective of this thesis is to
advance the development of DFPT within the FLAPW method by refining and extending the
existing realisation in the community code FLEUR. I present the general theory that leads to the
existing implementation and, from this starting point, develop correction terms that improve
upon previous results. I extend the framework from the minimum base version towards
spin-polarized magnetic systems and systems with more than one atom per unit cell. From
the viewpoint of software engineering, I demonstrate efficient integration of DFPT into the
existing code, minimizing redundancy and maximizing parallelization options. I benchmark
the improved implementation against FD results calculated with FLEUR in conjunction with the
phonopy package and obtain an excellent agreement. The validation set spans both materials
that were previously established but now show improved results, as well as materials that
were previously inaccessible. I calculate both elemental and rare-earth magnets in different
magnetic configurations to elucidate, how magnetism and the magnetic order impacts the
phonon physics. Finally, I investigate two-dimensional (2D) layered systems and unsupported
monolayers. The latter can be efficiently calculated with the thin-film implementation in
FLEUR, for which I present an extension to the DFPT plugin.
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Kurzzusammenfassung

Phononen sind quantisierte Schwingungsanregungen des Kristallgitters. Diese Quasiteilchen
spielen eine entscheidende Rolle für das Verständnis vieler Eigenschaften des Festkörpers.
In dieser Arbeit werden Phononen im Hinblick auf Dispersionsbeziehungen und Zustands-
dichten auf der Grundlage der Kohn–Sham-Dichtefunktionaltheorie (DFT) untersucht, dem
modernsten ab-initio-Ansatz für die elektronische Struktur spezifischer Materialien und einer
bewährten Grundlage für die Untersuchung von Gitterschwingungen nach ersten Prinzipien
der Quantenmechanik. Diese Arbeit stützt sich auf die harmonische Näherung, bei der die
Eigenschaften von Phononen direkt mit der Reaktion zweiter Ordnung der Gesamtenergie des
Systems in Bezug auf die Verschiebung der Atome im Gitter zusammenhängen. Zur Berech-
nung dieser Reaktion werden zwei komplementäre Ansätze verwendet: Der erste ist der Ansatz
der endlichen Verschiebung (FD), der die Energie zweiter Ordnung als Differenzenquotient
der auf die Atome wirkenden Kräfte annähert. Der zweite Ansatz ist die Dichtefunktional-
Störungstheorie (DFPT), ein Variationsansatz, der die Reaktion zweiter Ordnung analytisch
aus der Reaktion erster Ordnung der Wellenfunktionen konstruiert, die durch die selbstkonsis-
tente Lösung der Sternheimer-Gleichung erhalten wird. In dieser Arbeit gehe ich über die
konventionelle Anwendung der DFPT auf nichtmagnetische Systeme und die Umsetzung in
Form von Methoden, die die Elektronenwellenfunktion in einer ebenen Wellenbasis (PW)
darstellen, hinaus und präsentiere eine Umsetzung in der sogenannten FLAPW-Methode mit
linearisierter, erweiterter ebener Wellenbasis. Diese sehr genaue Methode, die ohne weiteres
auf alle chemischen Elemente des Periodensystems anwendbar ist, bringt die Herausforderung
eines atompositionsabhängigen Basissatzes mit sich. Ich zeige, dass die in der Folge entste-
henden zusätzlichen Matrixelemente zur Berechnung der Reaktion von Wellenfunktion und
Energie auf Änderungen der Atompositionen genau bestimmt werden können. Ein Ziel dieser
Arbeit ist es, die Entwicklung von DFPT innerhalb der FLAPW-Methode voranzutreiben, in-
dem die bestehende Umsetzung im Community-Code FLEUR verfeinert und erweitert wird.
Ich stelle die allgemeine Theorie vor, die zu der bestehenden Implementierung führt, und
entwickle von diesem Ausgangspunkt aus Korrekturterme, die die bisherigen Ergebnisse
verbessern. Ich erweitere den Rahmen von der minimalen Basisversion auf spinpolarisierte
magnetische Systeme und Systeme mit mehr als einem Atom pro Einheitszelle. Aus der
Sicht der Softwareentwicklung demonstriere ich die effiziente Integration von DFPT in den
bestehenden Code, wobei Redundanz minimiert und Parallelisierungsoptionen maximiert
werden. Ich vergleiche die verbesserte Implementierung mit FD-Ergebnissen, die mit FLEUR
in Verbindung mit dem phonopy-Paket berechnet wurden, und erhalte eine hervorragende
Übereinstimmung. Der Validierungssatz umfasst sowohl Materialien, die bereits zuvor etabliert
waren, aber nun verbesserte Ergebnisse zeigen, als auch Materialien, die zuvor unzugänglich
waren. Ich berechne sowohl elementare als auch Seltene-Erden-Magnete in verschiedenen
magnetischen Konfigurationen, um zu klären, die magnetische Ordnung die Phononenphysik
beeinflusst. Schließlich untersuche ich zwei-dimensionale (2D)-Schichtensysteme und fre-
itragende Monoschichten. Letztere können mit der Dünnschicht-Implementierung in FLEUR
effizient berechnet werden, wofür ich eine Erweiterung des DFPT-Plugins vorstelle.
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Chapter 1
Introduction

Phonons are quasiparticles that represent the collective vibrational modes of atoms in a
crystalline material. In simpler terms, they are the elementary units of vibrational energy in
a solid. The basic theory of phonons is well established and has been described in detail in
text books [1, 2]. These vibrational modes play a crucial role in various physical properties of
materials. Firstly, they are related to classical phenomena [1, 3–5]. The electrical and thermal
transport behavior can be attributed to them. The heat-capacity and thermal expansion are
related to the phonon density of states, while the speed of sound in a material is directly
linked to the slope of the dispersion of the acoustic phonon mode close to the 𝛤-point. They
are also linked to the elastic properties of the material and serve as an energy sink for
scattering radiation or neutrons in the material (depending on their energy range). This
gives us options to measure the phonon spectrum e.g. by inelastic neutron scattering [6–
8], X-ray experiments [9–11], infrared [12], and Raman spectroscopy [13]. Aside from
their importance in classical physics, they are involved in a wide range of semi-classical
and quantum phenomena. They are a mediator of effective electron-electron interaction,
hence being a key factor in the emergence of superconductivity [14]. They can couple to
other (quasi-)particles to form new groups of quasiparticles that fuel model-based solid-state
theory [15]. They are also of continuous interest due to their role in engineering acoustic
metamaterials [16, 17], as driving force for charge-density waves [18], for the optimization of
the phonon transport in thermoelectrics [19], and in the context of ferroelectric [20], 2D [21–
23], and magnetic [24] materials. In the latter they contribute to spin-relaxation [25], Gilbert
damping [26] and -equilibration [27], assist magnetization switching by linearly- [28] and
circularly-polarized [29], or chiral phonons [30], influence the temperature dependence of
the magnetocrystalline anisotropy [31], and can be of interest in the fields of orbitronics [32]
and thermal Hall physics [33]. The desire to understand the various physical effects in
different materials and the wealth of potential applications arising from phonons motivates the
development of efficient and powerful numerical methods capable of reliably and accurately
predicting the phononic properties in real materials.

The phonon calculations in this work are based on the ab-initio description of materials by
means of Kohn–Sham density functional theory (DFT) [34–38]. Kohn–Sham DFT is a reliable
and well-established total-energy framework, as evidenced by a huge number of applications
every year, that offers valuable insights into the electronic structure especially of single crystals.
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Considering that the phonon energies are small in comparison to the total energy, Kohn–Sham
DFT can serve as a solid foundation to investigate phonon physics. Assuming a separation
of time scales between the electronic and phononic degrees of freedom, in the harmonic
approximation, the phonon dispersion relation is related to the second order derivative of the
system’s total energy with respect to the atomic positions. This quantity is usually computed
in two ways [39]: by the finite displacement (FD) approach [40–42] or by means of density-
functional perturbation theory (DFPT) [43–47]. The FD approach utilizes atomic forces (i.e.
the first order derivatives of the energy) exerted on the atoms, which are numerically evaluated
for manually displaced atoms using analytical expressions to obtain the second order derivative
numerically as the difference quotient of the forces in the displaced and undisplaced system.
On the other hand, the DFPT provides a fully analytical second derivative of the total energy.
The FD approach is in principle easier to realize, was established earlier, and is widely used to
this day [48], but comes at the cost of computing the forces in supercells of displaced atoms
and of the computational uncertainty of anharmonic terms included. The implementation of
the DFPT framework is much more involved, as the first-order response of the wave function
with respect to the displacement is required, which is typically self-consistently obtained by
the Sternheimer equation. In contrast, there is no need for the construction of supercells
and phonon properties of specific and arbitrary phonon wave vectors can be addressed. Both
methods are complementary, with DFPT gaining increasing attention in recent years.

Our motivation to advance computational methodologies for the description of phonons stems
from the interest in the study of quantum materials and the design of quantum materials for
potential devices in the area of digital, neuromorphic and quantum computing, where electron
topology, associated transport properties, spin-orbit physics, spin-momentum locking and
exotic magnetic textures are pivotal. Particularly, attention is drawn to materials exhibiting
exotic magnetization textures or transition metal dichalcogenides (TMDCs) [30, 49, 50],
known for their intriguing charge-density wave (CDW) ground-states [51]. DFPT offers
insights into mechanisms at play in which phonons couple to other degrees of freedom in such
materials. We mentioned, that comprehending the interplay among electrons and phonons is
pivotal for electrical resistivity, electron equilibration, and superconductivity, but recently this
extends to phonons with spin ensembles or magnons in magnetic materials to understand the
angular momentum transfer into the lattice. A robust and practical numerical framework is
essential for investigating these effects in materials effectively [52].

The computational method of choice in this thesis and the most versatile method available
in general is the DFPT. The implementation has the same complexity as the Kohn–Sham
quantum engine and is challenging. The implementation comes along with many important
decisions, the most important of which is the choice of the basis set for the Kohn–Sham
orbital. Historically, DFPT [44–47] was first implemented in a pseudopotential [53–56]
context employing plane waves (PW) as basis set for electron wave functions. Even today most
phonon studies using DFPT have been performed with norm-conserving pseudopotentials [57–
60], but there are now also studies using ultrasoft pseudopotentials [61–63] and the projector-
augmented wave (PAW) method [64]. The formalism has been expanded over the years to
include both collinear [65–68] and, most recently, also non-collinear magnetism [69]. These
developments were driven primarily by the communities around the ABINIT [57, 70] and
Quantum ESPRESSO codes. Despite these efforts, the overall number of DFPT publications for
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magnetic/spin-polarized systems is rather low1 considering the total number of DFPT papers
and there is still a lot of research to be done both for the PW community and beyond.

In this thesis we describe the implementation of DFPT in an alternative electronic structure
method, an all-electron method. Characteristic to all-electron methods is the 1/r singularity
caused by the atomic nuclei, which requires sophisticated atom centered basis functions to
represent the Kohn–Sham orbitals. The basis functions are numerically exact solutions to this
singular potential, which is often enclosed in a sphere, e.g. the muffin-tin sphere. One of the
most precise implementations of DFT is the all-electron full-potential linearized augmented-
plane-wave (FLAPW) method [71–73]. It treats valence- and core-electrons on an equal
footing and adapts the degree of relativity in the physical description to the actual demands
originating from the energy of the orbitals and the region of space in which the physics has to
be described. With these features the FLAPW method has become the precision gold standard
for electronic structure calculations, employed in community efforts to provide data sets on
different physical quantities as a reference to assess the precision of other approaches [74,
75]. The LAPW basis set used by the FLAPW method to represent the valence electron
orbitals not only allows for this level of precision, but is also highly efficient with respect to
the number of basis functions that are needed. It allows for implementations of the FLAPW
method that enable electronic structure calculations for unit cells consisting of thousands
of atoms [76]. One of the great advantages of the FLAPW method is its applicability of all
nonmagnetic and magnetic elements of the periodic table in structurally and electronically
complex environments without much ado. The drawback of the LAPW basis, however, is that
the implementation of property calculators for atom-position dependent quantities becomes
challenging. In general, publications and codes combining DFPT and all-electron muffin-tin
based electronic structure methods such as the augmented spherical wave (ASW) [77], linear
muffin-tin orbital techniques (LMTO) [78] or Korringa–Kohn–Rostoker (KKR) Green function
method [79] are scarce.

In this thesis we take on the well-acknowledged challenge of calculating phonons with the
FLAPW method. The application of the FD method in combination with FLAPW requires very
accurate forces [80] achieved by correction terms [81] that have been published to make
the FD method successfully applicable. There were several initiatives to implement the DFPT
method in the context of FLAPW [82–89]. Recently, we brought it to an implementation in
the established FLAPW framework FLEUR [90, 91]. The implementation is on a roadmap to
a full coverage of general quantum materials. These are recent developments that lead to a
full theoretical framework taking all basis and surface corrections into account [92], from
which a working implementation as a plugin for the FLEUR code was developed [93] and
published [94]. This first milestone was implemented in the juPhon software package. It
contained many conceptional features and correction terms induced by the basis, but was
very restrictive in that it only allowed nonmagnetic, monatomic materials to be calculated
with Slater’s 𝑋𝛼 functional [95] and was tailored to a legacy version (v26) of FLEUR that is
out of date. Furthermore, the plugin was a separately compiled program that recycled and
rewrote a lot of FLEUR routines, which lead to a lot of redundant code that was very hard to
maintain. As such, one of the main focal points of this work is the improved reintroduction
of the plugin’s functionality into the currently supported version of FLEUR, which is e.g. able
1 A quick search on WebOfScience gives us 1822 hits for ”density-functional perturbation theory” or ”DFPT” or

”density functional perturbation theory”, but only 235 if we add ”magnetism” or ”magnetic” or ”spin”. This
amounts to around 13% of the full set.
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to resolve numerically induced kinks in the phonon dispersion relation that were visible in
the first results [93], in a programming concept that allows a significant extension of the
methodology to a broad spectrum of phonon properties and materials.

In the vein of these efforts, magnetic and polyatomic materials were made available for the first
time in [94] and are used in this thesis to study materials with different magnetic orders and
dimensionality, e.g. 2D materials. As mentioned before, the phonon physics in these materials
are of high current interest and exactly those two classes are strong suites of FLEUR. The
description of 2D materials is based on early implementations of the FLAPW formalism for thin
films, i.e.materials with an in-plane crystal periodicity, but perfectly embedded in semi-infinite
vacua normal to the film. Among the magnetic materials, our code is also well-equipped to
deal with elements that have large open shells like the lanthanides. As methods that work
with plane waves often have trouble describing such elements [75], an investigation of Eu and
Gd and the like lends itself well to DFPT in FLEUR.

The general structure of this work is as follows: In chapter 2 the general theory of electronic
structure methods with a focus on DFT is presented. From this the theory of phonons is
developed for the case of the periodic lattice in chapter 3. Chapter 4 then applies the more
general ideas to the specifics of the FLAPW method, which concludes the purely theoretical
section. Chapter 5 deals with the specifics of the implementation in the FLEUR code, which is
tested and validated in chapter 6 for several materials. Chapter 7 contains convergence studies
with respect to different parameters that are relevant to the calculation of phonons both by FD
and DFPT. Chapter 8 deals with the phononic properties of elemental and rare-earth magnets
with special focus on the differences in behavior for ferro- and antiferromagnets to give a first
glimpse of the interplay of magnetism and phonons. Finally, chapter 9 gives an overview of
recent 2D calculations both of films embedded in a 3D lattice, i.e. a bulk calculation with
large interlayer distances in the out-of-plane direction, and of an extension of the FLAPW
DFPT method to thin film systems with true 2D periodicity. A conclusion and an outlook on
developments and potential research planned for the future is given in chapter 10.
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Chapter 2
Electronic Structure

2.1 The Many-Body System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Kohn–Sham Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Exchange-Correlation Functionals . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 State Occupation in Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Self Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Spin-Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Extensions to and Generalizations of DFT . . . . . . . . . . . . . . . . . . . . . 15

The Necessity of
Numerical
Approximations

Molecules and solid state systems are collections of many atoms, which in turn are made up
of an atomic nucleus and a number of electrons. Calculating the properties of such a system
constitutes a many-body problem. In principle, the formalism that describes the physics of
such quantum mechanical objects has been well established since the early 20th century. For
non-relativistic systems, the Schrödinger equation is able to accurately describe phenomena
on the atomic scale. For example, the eigenstates and -energies of the hydrogen atom can
be determined fully analytically by fixing the proton at the origin and describing the single
electron as the only moving part (two-body problem). This property already breaks down
for the Helium atom, where the interaction of the two electrons requires numerical methods
(three-body problem). This train of thought continues and becomes less and less feasible for
systems of many nuclei and electrons. Even when numerical methods are applied, the sheer
information density of the quantum mechanical system is not containable in a realistic amount
of data storage. A basic model calculation highlights this point. A single sodium atom, with
one nucleus and 11 electrons, described by a wave function in three-dimensional real-space,
contains 33 degrees of freedom, i.e. 33 coordinates for the real-space wave function. To
describe this atom on a coarse real-space grid of only 10 mesh points in each spatial direction
already amounts to 1033 wave function values, that when stored as double precision real
numbers (8B of storage) will consume 109YB of disk space. Walter Kohn described such
behavior in his Nobel prize lecture [36] as an ”exponential wall” that the computational
capacity will quickly run into.
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Paul Dirac Even before the advent of digital computers and the related understanding of the necessary
storage volumes, Paul Dirac accurately described the fundamental problem of many-body
quantum physics as early as 1929 [96].

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems without
too much computation.

Since then, a plethora of such numerical approximations and a vast amount of models have
been established to encapsulate the emergent phenomena of big groups of atoms.

Density
Functional

Theory

One such method is density functional theory (DFT), based on the seminal work of Hohenberg
and Kohn [34]. A practical method was developed from this by Kohn and Sham [35], creating
what we know today as Kohn–Sham (KS) DFT. The following chapter describes the suite of
approximations that is used to go from the full many-body Hamiltonian to a set of equations
that can easily be handled by modern computers.

2.1 The Many-Body System

As mentioned before, the properties of a quantum-mechanical system are fully contained in
its wave function and governed by the (time-dependent) Schrödinger equation

ℋ|𝛹⟩ = 𝑖∂𝑡|𝛹⟩. (2.1)

In the study of electronic structure, the time dependence is often separated from the spatial
one and the equation constitutes an eigenvalue problem for a ground-state wave function with
energy 𝐸. For a system of 𝑁ion atomic nuclei with charges 𝑍𝛾 located at 𝝉𝛾, 𝛾 = 1, ..., 𝑁ion,
and 𝑍𝛾 corresponding electrons (𝑁el in total) with coordinates 𝒓𝑖, the Hamiltonian

ℋ = 𝑇el + 𝑇ion + 𝑈el-el + 𝑈el-ion + 𝑈ion-ion (2.2)

contains the kinetic energy 𝑇 of each of these particles as well as their mutual electrostatic
attraction or repulsion 𝑈. In practice, we are more interested in the electrons’ behavior than
in that of the ions. Utilizing the fact, that the ions are several orders of magnitude heavier
than the electrons, we can normalize the Hamiltonian by the electron mass 𝑚𝑒 and drop the
ionic kinetic energy term. The atomic positions hence take the form of external parameters
to the Schrödinger equation and constitute an external potential for the electrons to move
in. This is known as the Born–Oppenheimer approximation [97]. Written in atomic units
(𝑒 = 𝑚𝑒 = ~ = 1/(4𝜋𝜀0) = 1), the corresponding Hamiltonian reads

ℋBO[{𝝉}] = − 1
2

𝑁el

∑
𝑖

∇2
𝑖

⏟⏟⏟⏟⏟
𝑇el

+ 1
2

𝑁el

∑
𝑖,𝑖′

𝑖≠𝑖′

1
|𝒓𝑖 − 𝒓𝑖′|

⏟⏟⏟⏟⏟⏟⏟
𝑈el-el

− ∑
𝑖,𝛾

𝑍𝛾

|𝒓𝑖 − 𝝉𝛾|⏟⏟⏟⏟⏟
𝑈el-ion

+ 1
2

𝑁ion

∑
𝛾,𝛾′

𝛾≠𝛾′

𝑍𝛾𝑍𝛾′

|𝝉𝛾 − 𝝉𝛾′|
⏟⏟⏟⏟⏟⏟⏟

𝑈ion-ion

, (2.3)
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where we introduced the short-hand notation {𝝉} ≔ {𝝉𝛾}𝛾=1,...,𝑁ion
. The problem is now cast

into a purely electronic form. The computational effort, however, remains large, as there are
at least as many electrons as ions and the electrons interact with each other through 𝑈el-el.
Aside from it, the Hamiltonian could easily be reduced to a set of 𝑁el separate problems by
writing the many-body wave function in a product ansatz, but to arrive at such a form in spite
of interacting electrons requires further approximations. One valid ansatz is the Hartree–
Fock method [98]. The many-body wave function is expressed as a Slater determinant of
single-particle ones, ensuring the antisymmetry required by the Pauli exclusion principle
for fermions [99]. The exact form of the orbitals is determined by the minimization of the
system’s energy. Several refinements of this formalism exist [100–102], which commonly scale
unfavorably with system size. We want to focus instead on a different approach altogether,
that moves away from the many-body wave function as the central object of study.

2.2 Kohn–Sham Density Functional Theory
The Theorem of
Hohenberg and
Kohn

The essence of DFT is the reduction of the complex many-body problem to an energy mini-
mization with respect to the electronic density, making the energy a functional of the latter.
The theoretical groundwork for this was laid in 1964 by Hohenberg and Kohn [34] and is
summarized in the following two statements:

i) The external potential 𝑉ext(𝒓) specifying the atomic configuration of a system
is a unique functional of the electronic ground-state density 𝑛(0)(𝒓) of this
system, apart from a constant shift in the potential. The same is true for the
ground-state energy 𝐸[𝑛(0)] and all other properties.

ii) The ground-state density minimizes the total-energy functional among all
densities that reproduce the same number of electrons 𝑁el, i.e. ,

𝐸[𝑛] > 𝐸[𝑛(0)] ∀𝑛(𝒓) ≠ 𝑛(0)(𝒓), 𝑁el = ∫ 𝑛(𝒓)d𝒓 = ∫ 𝑛(0)(𝒓)d𝒓. (2.4)

Practically speaking, the first statement tells us, that the many-body wave function is too
complex of an object, if one is only concerned with the ground-state of the system, as the
electron density contains all necessary information. Furthermore, the external potential is
fully described by said ground-state density, constituting a loop of dependencies between the
central quantities in quantum mechanics and DFT:

𝛹 (0) 𝑛(0)

𝑉extℋ

Hohenberg–KohnSchrödinger equation

Figure 2.1: Sketch of the interdependent quantities after Hohenberg and Kohn.
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The second statement gives us a way to construct the ground-state density: It is exactly the
density, for which the total-energy functional takes on the minimal value. This density is
unique.

The Kohn–Sham
Formalism

At this point, we achieved the goal of reducing the data storage necessary: The electron density
is a physical quantity that depends on only one coordinate, i.e. three degrees of freedom. This
is vastly less data intensive than the initial problem, but poses the question, how the kinetic
energies of the electrons and their electrostatic interactions can be expressed in terms of the
ground-state density. For this, Kohn and Sham proposed setting up an auxiliary system of
non-interacting electrons in an effective potential, that obeys a single-particle Schrödinger
equation

(−1
2

∇2 + 𝑉eff(𝒓)) 𝜓𝜈(𝒓) = 𝜀𝜈𝜓𝜈(𝒓), (2.5)

and correctly reproduces the density

𝑛(𝒓) = ∑
𝜈

̃𝑓𝜈|𝜓𝜈(𝒓)|2. (2.6)

when summed over all bands 𝜈, weighted with an occupation number ̃𝑓𝜈. Along with these
definitions, the Born-Oppenheimer energy that corresponds to the Hamiltonian needs to be
adjusted. Replacing the original kinetic energy of the electrons with a non-interacting (n-i)
one, introducing an integral (with the ground-state density) for the electron-electron and
electron-ion interaction, and writing everything as a functional of the ground-state density,
we find

𝐸BO[𝑛, {𝝉}] = 𝑇el,n-i[𝑛] + 1
2

∫ ∫
𝑛(𝒓)𝑛(𝒓′)
|𝒓 − 𝒓′|

d𝒓′d𝒓 − ∑
𝛾

∫
𝑍𝛾𝑛(𝒓)
|𝒓 − 𝝉𝛾|

d𝒓 + 𝐸xc + 𝐸ii, (2.7)

where we defined the ”exchange-correlation” (xc) energy

𝐸xc[𝑛] ≔ 𝑇el[𝑛] − 𝑇el,n-i[𝑛] +𝑈el-el[𝑛] − 1
2

∫ ∫
𝑛(𝒓)𝑛(𝒓′)
|𝒓 − 𝒓′|

d𝒓′d𝒓 (2.8)

+𝑈el-ion[𝑛] + ∑
𝛾

∫
𝑍𝛾𝑛(𝒓)
|𝒓 − 𝝉𝛾|

d𝒓

= ∫ 𝑛(𝒓)𝜀𝑥𝑐[𝑛](𝒓)d𝒓 (2.9)

as the difference between the initial form and the non-interacting one and changed the
notation of the ion-ion interaction from the potential term 𝑈ion-ion to the symbol 𝐸ii to highlight
that it is a contribution to the total energy of the system. In doing so, we collect all terms
whose dependency on the density is not known analytically into one quantity, that can be
expressed as an integral over the density and an (as of yet undetermined) exchange-correlation
energy density 𝜀𝑥𝑐[𝑛](𝒓). In practice, an analytical approximation for this has to be made and
several classes of such have been investigated. A short overview of the most prominent ones
will be the topic of section 2.3. The effective potential in equation (2.5) is further specified as
consisting of three parts,

𝑉eff[𝑛, {𝝉}](𝒓) = 𝑉ext[{𝝉}](𝒓) + 𝑉H(𝒓) + 𝑉xc[𝑛](𝒓), (2.10)
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and is again a functional of the atomic positions and the density, due to the external and xc
part. We omit the notation of these dependencies in the following. The external and Hartree
components are often grouped into the Coulomb potential 𝑉C. This is due to the singular
nature of the ionic term, that is compensated for by the electronic charge. The individual parts
of the potential are consistent with the reformulation of the energy functional and calculated
as

𝑉ext(𝒓) = − ∑
𝛾

𝑍𝛾

|𝒓 − 𝝉𝛾|
= ∑

𝛾
𝑉 𝛾
ext(𝒓), (2.11a)

𝑉H(𝒓) = ∫
𝑛(𝒓′)

|𝒓 − 𝒓′|
d𝒓′, (2.11b)

𝑉xc(𝒓) =
𝛿𝐸xc[𝑛]
𝛿𝑛(𝒓)

= 𝜀xc[𝑛](𝒓) + 𝑛(𝒓)
𝛿𝜀xc[𝑛](𝒓)

𝛿𝑛(𝒓)
. (2.11c)

With these definitions, KS-DFT now forms a self-consistent problem, as the effective potential
determines the KS eigenstates (2.5), the KS eigenstates determine the density (2.6), and
the density determines the effective potential (2.10). This problem is iteratively solved by
repeating the interdependent calculation steps until the density is sufficiently converged.
Further detail on the procedure is provided in section 2.5.

The Kohn–Sham
Total Energy

Along with the density, the total energy of the KS system is determined in each iteration. By
multiplying equation (2.5) from the left with ̃𝑓𝜈𝜓∗

𝜈(𝒓), integrating, and summing over all states
𝜈, the resulting terms can be rearranged to replace the non-interacting kinetic energy by the
KS eigenenergies and an integral of the effective potential. This is done to avoid the numerical
differentiation of the wave functions in favor of reusing terms that are already present in the
calculation, reducing the computational effort while increasing the numerical stability. We
find:

𝑇el,n-i[𝑛] = ∑
𝜈

̃𝑓𝜈𝜀𝜈 − ∫ 𝑛(𝒓)𝑉eff(𝒓)d𝒓. (2.12)

This form can be inserted into equation (2.7) to arrive at the KS total energy, that can then be
expressed in terms of quantities from the self-consistency loop as

𝐸tot = ∑
𝜈

̃𝑓𝜈𝜀𝜈 + ∫ 𝑛(𝒓) [−𝑉eff(𝒓) + 1
2

𝑉H(𝒓) + 𝑉ext(𝒓) + 𝜀xc[𝑛](𝒓)] d𝒓 + 𝐸ii. (2.13)

This is the energy form that needs to be minimized, which is exactly the case for the ground-
state density 𝑛(0)(𝒓), as the KS system is variational with respect to it.

2.3 Exchange-Correlation Functionals

The Lack of a
Closed Form

The exchange-correlation functional is of central importance in DFT, as it allows us to perform
accurate predictions with the method. There is no closed analytical form known for this term,
but in comparison to the other ingredients its energy contribution is relatively small. We can
therefore already obtain very good predictions with simple approximations to 𝜀xc and a wide
range of possible approximations has been explored. The following section serves to highlight
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the very basic local density approximation (LDA) used in this work, while giving short nods to
the most popular classes of more sophisticated functionals.

Local Density
Approximation

A basic approximation to the exchange-correlation energy density, that exceeds Hartree-Fock
or Mean-Field approaches where the electrons are mostly independent, is the LDA. It was
established by Kohn and Sham as the first actual realization of the DFT formalism [35] and is
based on the model of the homogeneous electron gas (HEG). There, the exchange-correlation
energy density only depends on the averaged density of the electrons in a finite volume
𝑛HEG = 𝑁el/𝑉. The basic statement of the LDA is, that this density can now vary in space
again and yields

𝜀LDA𝑥𝑐 [𝑛](𝒓) = 𝜀HEG
𝑥𝑐 (𝑛(𝒓)). (2.14)

Parametrizations The exchange energy [103] in LDA takes a closed analytical form (𝜀x = −3/4(3𝑛/𝜋)1/3),
while the form of the correlation functional is determined in terms of a model for which the
parameters are determined e.g. by quantum Monte Carlo simulations [104]. This leads to a
range of slightly different parametrizations, such as that of Ceperley and Alder [105], which
was based on quantum Monte Carlo simulations for several intermediate values between the
limits. Among other notable variants [95, 106–108], this thesis employs the parametrization
of Vosko, Wilk and Nusair [109].

Impact and
Generalizations

While this approximation is, in a sense, simplistic, it has been used to resounding success
in the description of many materials. It also serves as the foundation of more sophisticated
methods, as they still have to be able to reproduce the HEG when a homogeneous density is
inserted. Such methods include the generalized gradient approximation (GGA) [110–113],
where the gradient of the density enters as a second variational parameter and takes the form

𝜀GGA𝑥𝑐 [𝑛](𝒓) = 𝜀𝑥𝑐(𝑛(𝒓), 𝛁𝑛(𝒓)). (2.15)

Beyond that, the approximations grow more and more accurate, but also more costly. For
example, they can include the kinetic energy density of the system or the Laplacian of the
density (metaGGA [114–118]) or the exact exchange formalism [119–123] that leads to
hybrid functionals. A good overview of the possible approximations was given by Perdew
and Schmidt [124]. The successive improvement of these approximations was likened to the
rungs on a ladder towards the ultimate goal of ”chemical accuracy”. The scope of this work is
confined to LDA functionals, with the possibility of future extensions.

2.4 State Occupation in Metals

Fractional
Occupation

Numbers

The boundary condition of each DFT calculation is the conservation of the total electronic
charge. This translates to the requirement, that the sum of occupied states has to reflect the
electron number

𝑁el = ∑
𝜈

̃𝑓𝜈 (2.16)

accurately. The states can either be occupied or unoccupied, leading to a description of
the occupation numbers ̃𝑓𝜈 by a step function 𝛩(𝑥), that is 1 for values 𝑥 ≥ 0 and vanishes
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otherwise. The parameter 𝑥 depends on the energy of the state in relation to the Fermi energy
𝐸F, which equals the energy of the highest occupied state. This yields

𝑁el = ∑
𝜈

2𝛩(𝑥)|𝑥=𝜀𝜈−𝐸F
, (2.17)

where the factor 2 accounts for spin-degeneracy and is dropped for spin-polarized calculations.
The Fermi energy is determined iteratively, so that a set of { ̃𝑓𝜈} fulfilling the condition (2.16)
is found, ensuring charge neutrality of the system. In semiconductors and insulators the
occupied and unoccupied bands are well separated by the band gap, with the Fermi energy
at its lower end. In metals, however, bands can cross the Fermi energy and the point of this
crossing is sensible to the exact system setup. Moreover, the clean distinction between the
occupied and unoccupied states becomes numerically difficult. To account for this, a smearing
temperature 𝑇 is introduced, that transforms the step function into a smooth approximation

𝛩(𝑥)|𝑥=𝜀𝜈−𝐸F
⟶ Θ̃(𝑥)|𝑥=(𝜀𝜈−𝐸F)/(𝑘B𝑇 ). (2.18)

The exact form of this approximation can vary. The Fermi energy determination is adjusted
accordingly to find a set of fractionally occupied states to satisfy the condition (2.16).

Energy
Contribution

Weinert and Davenport noted, that with such a fractional occupation number, the total energy
is no longer variational to first order [125]. This can be a hindrance in the calculation of
forces and likewise in the perturbation formalism presented. To remedy this, they introduce
an electronic entropy term to the total energy, that depends on the state occupations and the
temperature:

𝐸tot → 𝐸tot − 𝑇 𝑆 (2.19)

It is noted to be identical in form to the free energy, and was referred to as ̃𝐸 ⟶ 𝐸0 in
the seminal paper. It will keep being referred to as 𝐸tot in this work instead. The form of 𝑆
depends on the smearing function that is chosen. In this work, it is restricted to the Fermi-Dirac
function. The smearing and entropy thus read

Θ̃(𝑥) = 1
e𝑥 + 1

, 𝑆 = −𝑘B ∑
𝜈

[ ̃𝑓𝜈 ln ( ̃𝑓𝜈) + (𝑓𝜈 − ̃𝑓𝜈) ln (𝑓𝜈 − ̃𝑓𝜈)] . (2.20)

2.5 Self Consistency

The
Self-Consistency
Workflow

With the established self-consistency problem of the effective potential and electron density,
and the basic considerations above, we can formulate a general workflow for an actual DFT
implementation. We start with an adequate initial guess for the electronic density, iterate the
self-consistent field (SCF) loop until the density difference between the input and output of
an iteration is sufficiently close to 0, and take the resulting final density as our ground-state
density 𝑛(0), that minimizes the energy functional.

Charge Density
Mixing and Loop
Structure

To talk about the notion of ”convergence”, we need to quantify the difference between the
density input and output of an iteration. It is straight-forwardly expressed as an appropriate
𝐿2-norm of the density that enters an SCF loop iteration and the new density that is generated
from it:

dist (𝑛out
𝑚 , 𝑛in

𝑚) = ∥ 𝑛out
𝑚 − 𝑛in

𝑚 ∥ = √ 1
𝑉

∫
𝑉

(𝑛out
𝑚 − 𝑛in

𝑚)2 d𝒓. (2.21)
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We call this measure the distance between the input and output density. The exact form
is determined by the setup of the system and the method used. Furthermore, the input
density 𝑛in

𝑚+1 for the next iteration is determined by the choice of the mixing scheme. This
can be written as a function 𝑛in

𝑚+1 = 𝑓(𝑛out
𝑚 , {𝑛in

𝑚}, 𝛼mix). It is usually dependent on a mixing
parameter 𝛼mix, but the details vary. The cycle of calculation steps is repeated until the distance
falls below a preset threshold 𝜀SCF, that will be referred to as the convergence parameter of
the SCF loop. The resulting SCF scheme is shown in figure 2.2.

Generate starting density 𝑛in
1 (𝒓)

Generate 𝑉eff(𝒓)

Set up ℋ

Solve Schrödinger equation

Synthesize { ̃𝑓𝜈}, 𝐸F

Synthesize 𝑛out
𝑚 (𝒓)dist < 𝜀SCF?

Mix 𝑛in
𝑚+1 = 𝑓(𝑛out

𝑚 , {𝑛in
𝑚}, 𝛼mix)

Ground-state density 𝑛(0)(𝒓) found

Yes

No

Figure 2.2: Sketch of the principle workflow in a non-specific DFT calculation. The red frame
highlights the self-consistent field loop. Considering the 𝑚-th iteration, from an input
density 𝑛in

𝑚, the effective potential 𝑉eff is generated and used to set up the Hamiltonian
ℋ. The Schrödinger equation constituted by it is solved to get a set of eigenenergies
{𝜀𝜈} and wave functions {𝜓𝜈}. The eigenenergies are used to determine the occupation
numbers { ̃𝑓𝜈} and the Fermi energy 𝐸F. The wave functions and occupation numbers
are used to construct the output electron density 𝑛out

𝑚 . The input and output density of
an iteration are compared by a distance function to determine, whether the calculation
is converged. The loop is repeated as long as this is not the case.

Mixing Schemes In general, the mixing function can be separated into the input density and a functional ℱ of
the density, that converges to 0 as the density is converged. The function can be written as

𝑓(𝑛out
𝑚 , 𝑛in

𝑚, 𝛼mix) = 𝑛in
𝑚 + 𝛼mixℱlin[𝑛out

𝑚 , 𝑛in
𝑚]. (2.22)
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The goal of the self-consistency procedure is to find the fixed point of this function. In the
linear mixing scheme [126], the function

𝑓(𝑛out
𝑚 , 𝑛in

𝑚, 𝛼mix) = 𝛼mix𝑛out
𝑚 + (1 − 𝛼mix)𝑛in

𝑚 = 𝑛in
𝑚 + 𝛼mixℱlin[𝑛out

𝑚 , 𝑛in
𝑚] (2.23)

is very simple and depends only on the input and output density of the latest iteration. This
method of mixing is (for suitably small mixing parameters) both very stable and very slow, as
its convergence between iterations is bounded upwards by a constant. Other mixing schemes
converge a lot more rapidly and have a bigger convergence radius. They do so by replacing
the linear mixing functional ℱlin by more elaborate terms. The resulting fixed point equation
can be quite complicated, which is why the functional is usually linearized with respect to the
input density. The linearization leads to Newton–Raphson methods, where consequently the
inverse Jacobian 𝒥 of the function needs to be taken into account. Their convergence behavior
is quadratic instead of linear. This leads to a general form

𝑓(𝑛out
𝑚 , 𝑛in

𝑚, 𝛼mix) = 𝑛in
𝑚 − 𝒥 −1[𝑛in

𝑚]ℱ[𝑛in
𝑚], 𝒥[𝑛in

𝑚] ≔
∂ℱ[𝑛(𝒓)]
∂𝑛(𝒓′)

|𝑛in
𝑚

. (2.24)

The computational cost of the Jacobian setup and inversion is unwieldy in practice, so Quasi-
Newton methods have been developed, that approximate the differential form of the Jacobian
by a difference quotient of ℱ and 𝑛. The ramifications of dealing with this numerical construc-
tion lead to different methods, such as Broyden’s approach [127, 128] or the related Anderson
mixing scheme [129] which is used in this work. Due to the iterative nature of determining
the Jacobian, Quasi-Newton methods involve the construction and usage of a mixing history.
A comprehensive overview of different mixing methods and classes is given in [130].

2.6 Spin-Density Functional Theory

Spin-PolarizationWhen the limitation of spin-degenerate electrons is lifted and magnetism comes into play, we
transition from DFT to spin-density functional theory (SDFT) [106]. In it, the wave functions
becomes a two-component spinor of spin-up and -down components

𝜓𝜈(𝒓) ⟶ 𝝍𝜈(𝒓) = (𝜓𝜈↑(𝒓)
𝜓𝜈↓(𝒓)) . (2.25)

The total density and magnetization are written as a vector product over both spin-channels.
In a general, non-collinear description this leads to a three-dimensional magnetization density
vector, that incorporates the vector of Pauli matrices 𝜎 in its construction. They can be
expressed as

𝑛(𝒓) = ∑
𝜈

̃𝑓𝜈𝝍†
𝜈 ⋅ 𝝍𝜈, 𝒎(𝒓) = ∑

𝜈

̃𝑓𝜈𝝍†
𝜈 ⋅ 𝜎 ⋅ 𝝍𝜈. (2.26)

It is important to distinguish here between the two-dimensional spinors, the three-dimensional
vector 𝒎, and the three-dimensional vector of two-dimensional Pauli matrices 𝜎. In principle,
the KS formalism can now be set up for a non-collinear system, under the condition, that
appropriate xc functionals for the magnetization density can be formulated. This proves
difficult in practice.

2.6 Spin-Density Functional Theory 13



Collinear
Magnetism

For a wide range of magnetic systems, such as (anti-)ferromagnets, a collinear description
of the spin-polarized system suffices. It captures the physics well while lending itself better
to the already established DFT formalism, as the construction of xc functionals with spin-up
and spin-down densities is straightforward. It was initially established by Barth and Hedin in
the form of the local spin-density approximation (LSDA) [106] and has since been extended
to more elaborate classes of functionals as well. The calculatory effort roughly doubles with
respect to a non spin-polarized run, because the KS equations need to be solved for both
spin-channels separately, as they are decoupled, which gives us

(−1
2

∇2 + 𝑉eff,𝜎(𝒓)) 𝜓𝜈𝜎(𝒓) = 𝜀𝜈𝜎𝜓𝜈𝜎(𝒓). (2.27)

This also defines the independent spin-densities, that are calculated with a spin-dependent
occupation factor. It is akin to the factors in equations (2.16)/(2.17) and the subsequent
considerations, except for the omission of the spin-degeneracy factor of 2. We find for the
spin-dependent density

𝑛(𝒓) = ∑
𝜈𝜎

̃𝑓𝜈𝜎|𝜓𝜈𝜎(𝒓)|2 ≡ ∑
𝜎

𝑛𝜎(𝒓). (2.28)

The construction of the spin-dependent effective potential also deviates from the initial
formulation. While the Coulomb potential construction remains the same, as only the total
density enters, the xc part is spin-polarized. This is expressed as a functional derivative of the
xc energy with respect to only the density of one spin-channel. The effective potential is

𝑉eff(𝒓) = 𝑉C(𝒓) + 𝑉xc,𝜎(𝒓), (2.29)

with the xc part

𝑉xc,𝜎(𝒓) =
𝛿𝐸xc[𝑛↑, 𝑛↓]

𝛿𝑛𝜎(𝒓)
= 𝜀xc[𝑛↑, 𝑛↓](𝒓) + 𝑛𝜎(𝒓)

𝛿𝜀xc[𝑛↑, 𝑛↓](𝒓)
𝛿𝑛𝜎(𝒓)

. (2.30)

Lastly, the energy and entropy terms need to be modified to account for the spin-polarized
effective potential, eigenenergies and occupation numbers. The generalization is straight-
forward and yields

𝐸tot = ∑
𝜈𝜎

̃𝑓𝜈𝜎𝜀𝜈𝜎 − ∑
𝜎

∫𝑛𝜎(𝒓)𝑉eff,𝜎(𝒓)d𝒓 − 𝑇 𝑆

+ ∫𝑛(𝒓) [1
2

𝑉H(𝒓) + 𝑉ext(𝒓) + 𝜀xc[𝑛↑, 𝑛↓](𝒓)] d𝒓 + 𝐸ii, (2.31)

𝑆 = −𝑘B ∑
𝜈𝜎

[ ̃𝑓𝜈𝜎 ln ( ̃𝑓𝜈𝜎) + (𝑓𝜈𝜎 − ̃𝑓𝜈𝜎) ln (𝑓𝜈𝜎 − ̃𝑓𝜈𝜎)] . (2.32)

As the SCF calculations for both spin-channels are analogous to each other and decoupled, the
spin index will be omitted for the rest of this work. We will also limit ourselves to this collinear
restriction for the calculations involved and leave the extension to non-collinear magnetism as
a future task.
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2.7 Extensions to and Generalizations of DFT

The broad applicability and success of DFT led to a large group of extensions to the original
theory. Furthermore, there are many reformulations and generalizations applying the KS
formalism to entirely different classes of problems in electronic structure. We already tackled
the extension from spin-degenerate to spin-polarized systems and will give a brief overview of
some extensions and variations that have been investigated.

Extensions to the
Existing
Formalism

To describe the electronic structure of complex magnetic systems, the collinear formulation
becomes insufficient. The additional formalism needed to deal with non-collinear (NOCO)
magnetism [131] is straight-forward for most of the theory, but there are two main points that
need extra attention. On the one hand, the two spin-channels are no longer independent from
each other, but coupled in the KS equation, that now replaces the spin-polarized potential
by a 2 × 2 potential matrix and the spin-polarized wave function by a spinor. This greatly
increases the computational effort. On the other hand, the need of a functional defined in
terms of the magnetization density arises. As mentioned before, this proves difficult, and a
frequently used method to bypass these fully non-collinear functionals is the formulation by
Kubler et al. [132], that uses localized rotations of the magnetization density to a collinear
frame and reuses the collinear formalism for the xc potential. The spin-polarized potentials
are then rotated back into the global frame to gain a three-dimensional xc magnetic field.
Another spin-dependent effect is spin-orbit coupling (SOC), that becomes relevant for heavy
elements like bismuth and lead. This can be either directly included to the KS equation
and will give a contribution to the Hamiltonian matrix (first variation SOC) or treated as a
perturbation to the established KS system (2nd variation SOC) [133, 134]. The first method
introduces off-diagonal elements to the Hamiltonian in the space of spinors and is thus best
described in a fully non-collinear setup to begin with. Finally, a well-established method to deal
with strongly-correlated systems is DFT+U [135]. It captures the orbital dependence of the
Coulomb and exchange interactions by modeling them with a parameter 𝑈 akin to a Hubbard
model [136]. This can be used to improve the description of Mott insulators and rare-earth
metal compounds both in their ground-state properties, as well as excited-state phenomena.
Finally, we want to once again highlight the possibility of using more elaborate functional
classes, as discussed in section 2.3, especially with respect to the implementation of hybrid
functionals that mix the exact Hartree–Fock exchange with conventional DFT functionals.

Various DFT
generalizations

Without much detail, we want to mention that modifications to the KS-DFT formalism can
lead to exciting new frameworks and highlight some of them. Most closely related to the topic
of this thesis is superconducting density-functional theory (SCDFT) [137–140], that is related
to the electron-phonon interaction that can also be calculated by DFPT. Other theories include,
but are not limited to:

• Reduced density-matrix functional theory (RDMFT) based on the work of Gilbert [141]

• Current-density functional theory (CDFT) [142], that tries to include magnetism even
more holistically than NOCO, by constructing a full vector potential 𝑨eff alongside the
scalar potential

• Constrained density-functional theory (cDFT) [143], that builds on the established
formalism while extending it to the lowest states compatible with arbitrary constraints
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• Time-dependent density-functional theory (TDDFT) [144], where the time-dependence
of the states is not dropped but instead properly evaluated

A neat overview is also given in [36]. However, none of these generalizations come into play
in this work, hence we finish this brief overview as is.
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Phonons from Electronic Structure Methods
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The Central
Phonon
Quantities

In the introduction, the many applications of phonons in solid state physics were highlighted.
The multitude of related quantities is, at the lowest level, connected to the phonon dispersion
and the phononic density of states. In the following chapter, the general workflow to gain
knowledge about both from an electronic structure method is laid out without the specifics
that stem from the choice of a basis set.

3.1 The Periodic Lattice

Crystals and the
Bloch Theorem

Up to this point, our description of the solid-state system was very unspecific. Applying the
theory to enable actual calculations requires a set of boundary conditions that set the stage for
the development of electronic structure software. The first of these conditions is our restriction
to the description of periodic crystals, i.e. solid-state systems with a defined pattern of atoms
at specific positions, that is periodically repeated in space. We call this template of atoms
the unit cell and the resulting system the lattice. The lattice vectors that translate between
different copies of the unit cell are integer multiples of the so-called primitive vectors. The
vectors form a three-dimensional matrix, referred to as the Bravais matrix

𝐴 = (𝒂1, 𝒂2, 𝒂3) . (3.1)

In the DFT formalism, where the atoms constitute the external potential, this can be expressed
by a translation symmetry with respect to the lattice vectors 𝑹 = ∑3

𝑖=1 𝑛𝑖𝒂𝑖 with 𝑛𝑖 ∈ ℤ:

𝑉ext(𝒓 + 𝑹) = 𝑉ext(𝒓). (3.2)
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For such a system it can be shown, that the Hamiltonian commutes with the translation operator
of the lattice vectors. This inadvertently leads to a fixed behavior of the corresponding wave
functions under translation, namely the wave functions at two points in space linked by a
lattice vector are related by a phase

𝜓(𝒓 + 𝑹) = ei𝒌⋅𝑹𝜓(𝒓). (3.3)

This is a direct consequence of the Bloch theorem [145], that states the wave functions for
a periodic lattice are separable into a product of lattice-periodic functions 𝑢(𝒓) and a plane
wave with a wave vector 𝒌. It is referred to as the crystal momentum. Furthermore, due to
the translation symmetry in reciprocal space, we can limit any calculation to momenta 𝒌 in
the first Brillouin zone (BZ) of the crystal. It is defined in terms of reciprocal lattice vectors
𝑮 = ∑3

𝑖=1 𝑛𝑖𝒃𝑖 with 𝑛𝑖 ∈ ℤ. As the scalar product of an arbitrary lattice vector and reciprocal
lattice vector 𝑮 is equal to 2𝜋, the full information is contained in a reciprocal unit cell with
extent 𝑛𝑖 ∈ (−0.5, 0.5]. The resulting Bloch functions take on the specific form

𝜓𝒌𝜈(𝒓) = ei𝒌⋅𝒓𝑢𝒌𝜈(𝒓), (3.4)

with

𝑢𝒌𝜈(𝒓 + 𝑹) = 𝑢𝒌𝜈(𝒓). (3.5)

Consequently, the different crystal momenta constitute a second index to the already state-
dependent wave functions of the system. This carries on to many different quantities in the
system, e.g. the occupation numbers

̃𝑓𝜈 ⟶ ̃𝑓𝒌𝜈 (3.6)

previously discussed in section 2.4. We use the tilde in above the symbol to differentiate
between the weight of a particular k-point 𝑓𝒌 and the potentially fractional occupation number.
While the index 𝜈 previously contained all information about a specific state, it now refers to
many states at different k-point. Those states form a band across the BZ, which is why it is
also referred to as the band index in electronic structure methods.

3.2 Phonons in the Harmonic Approximation

Energy
Landscape of the

Solid-State
System

The appearance of a phonon in a solid state system corresponds to a vibrational excitation in
its energy landscape. That means the initial system, that assumes minimal energy in a relaxed
ground state, will be perturbed and the energy will be shifted to a higher value. This can be
expressed as a small, but finite displacement of the atoms from their equilibrium positions.
We express this perturbation as a set of displacements {𝒘} = {𝒘𝛼𝑹}𝛼𝑹=1,...,𝑁ion𝑁u.c.

affecting
each of the 𝑁ion atoms 𝛼 in each of the 𝑁u.c. ⟶ ∞ unit cells 𝑹. We use the fact, that (i)
differentiating the energy by these displacements directly corresponds to differentiating by
the atomic positions and (ii) the first order vanishes, since the system is in a relaxed state and
no forces act on the atoms. We can then write the perturbed energy

𝐸tot = 𝐸(0)
tot +�

��𝐸(1)
tot + 1

2
𝐸(2)

tot + ...

= 𝐸(0)
tot + 1

2
∑

𝛽𝑹′𝑗,𝛼𝑹𝑖
𝑤𝛽𝑹′𝑗𝛷𝛽𝑹′𝑗,𝛼𝑹𝑖𝑤𝛼𝑹𝑖 + ... (3.7)
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as a Taylor series in the displacements. In this, we implicitly define the force constant
matrix 𝛷 as the Hessian of the total energy with respect to the set of displacements. The
subscripts 𝑖, 𝑗 indicate the Cartesian directions of the displacement vectors (leading to a size
of 3𝑁ion𝑁u.c. × 3𝑁ion𝑁u.c.) and its matrix elements can be written as

𝛷𝛽𝑹′𝑗,𝛼𝑹𝑖 ≔
∂2𝐸tot

∂𝑤𝛽𝑹′𝑗∂𝑤𝛼𝑹𝑖
|{𝒘}=𝟎 =

∂2𝐸tot

∂𝜏𝛽𝑹′𝑗∂𝜏𝛼𝑹𝑖
. (3.8)

The force constant matrix (and its Fourier transform) are of central importance in the descrip-
tion of phonon physics, which will be highlighted in the next subsection.

Phononic
Eigenvalue
Problem

We are interested in the response of the lattice to a vibrational perturbation. If we cut of the
energy after the second order, the perturbation gives us a quadratic energy dependence in
the atomic displacements. This is called the harmonic approximation and naturally leads to a
harmonic oscillator as the differential equation that governs the movement of the atoms. The
equation for the time evolution of a specific displacement reads

𝑀̃𝛽
∂2

∂𝑡2 𝑤𝛽𝑹′𝑗(𝑡) = − ∑
𝛼𝑹𝑖

𝛷𝛽𝑹′𝑗,𝛼𝑹𝑖𝑤𝛼𝑹𝑖(𝑡), (3.9)

with 𝑀̃𝛽, the ionic mass expressed in multiples of the electron mass 𝑚𝑒. If we assume a
perturbation, that differs between cells only by a phase factor, this leads to a plane wave
Ansatz

𝑤𝛽𝑹′𝑗(𝑡) = 1

√𝑀̃𝛽

𝑄𝛽𝑗,𝒒ei(𝒒⋅(𝝉𝛽+𝑹′)−𝜔𝒒𝑡) + c.c. . (3.10)

with a complex polarization vector 𝑸𝛽,𝒒. We identify this as a monochromatic phonon, i.e. a
plane wave with a single wave vector 𝒒, that determines both the oscillation amplitude and
propagation direction. The perturbation affects each atom in the lattice and the quantity of
interest is the oscillation frequency 𝜔𝒒 with respect to the wave vector, i.e. the phonon dispersion
relation. For this we only need to look at the positive conjugate part and can eliminate the
time dependence from the equation. Additionally using the translation symmetry of the lattice
for shifts by a lattice vector (𝛷𝛽𝑹′𝑗,𝛼𝑹𝑖 = 𝛷𝛽(𝑹′−𝑹)𝑗,𝛼𝟎𝑖) we can derive:

√𝑀̃𝛽(−𝜔2
𝒒)𝑄𝛽𝑗,𝒒ei𝒒⋅(𝝉𝛽+𝑹′) = − ∑

𝛼𝑹𝑖
𝛷𝛽𝑹′𝑗,𝛼𝑹𝑖

1

√𝑀̃𝛼

𝑄𝛼𝑖,𝒒ei𝒒⋅(𝝉𝛼+𝑹)

⇔ (−𝜔2
𝒒)𝑄𝛽𝑗,𝒒 = − ∑

𝛼𝑹𝑖
ei𝒒⋅(𝝉𝛼−𝝉𝛽)𝛷𝛽(𝑹′−𝑹)𝑗,𝛼𝟎𝑖

1

√𝑀̃𝛽𝑀̃𝛼

𝑄𝛼𝑖,𝒒e−i𝒒⋅(𝑹′−𝑹)

⇔ 𝜔2
𝒒𝑄𝛽𝑗,𝒒 = ∑

𝛼𝑹″𝑖
ei𝒒⋅(𝝉𝛼−𝝉𝛽)𝛷𝛽𝑹″𝑗,𝛼𝟎𝑖

1

√𝑀̃𝛽𝑀̃𝛼

𝑄𝛼𝑖,𝒒e−i𝒒⋅𝑹″

⇔ 𝜔2
𝒒𝑸𝒒 = 𝐷(𝒒) ⋅ 𝑸𝒒 (3.11)

Through the introduction of the 3𝑁ion-dimensional vector 𝑸𝒒, we implicitly defined the
dynamical matrix 𝐷 as the mass-normalized Fourier transform of the force constant matrix.
Finding the phonon dispersion directly corresponds to solving the eigenvalue problem of the
dynamical matrix for each wave vector 𝒒 in question. As the dynamical matrix is Hermitian,
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the eigenvalues 𝜔2
𝒒 are real-valued and the frequencies 𝜔𝒒 will consequently be either real-

valued or pure imaginary numbers. In the latter case, we speak of instabilities in the phonon
dispersion, as they do not correspond to oscillations but to exponentially decaying so-called
soft modes. They indicate, that the system is not in its ground state and the atomic positions
have to be relaxed according to the direction and periodicity of the phonon mode.

Symmetry
Considerations

Due to the dependence of the dynamical matrix on all atoms in the unit cell displaced in
all three Cartesian directions, the computational demand quickly becomes large for a naive
implementation. To at least partially remedy this, the symmetry of the system can be taken
into account, to gain components of the force constant or dynamical matrix by rotating them
from a representative calculation instead of directly calculating each one [146]. The first
premise is of course, that the translation symmetry holds, which was already used in deriving
the dynamical matrix. On top of that, we can look at symmetries that map certain atoms onto
each other. If a transformation 𝑆 can be used to map an atom 𝛼′ onto 𝛼 (and consequently 𝛽′

onto 𝛽 as well) by 𝑆 ⋅ 𝝉𝛼′ = 𝝉𝛼, the 3 × 3 part 𝛷𝛽𝑹𝑗,𝛼𝟎𝑖 of the force constant matrix associated
with this atom obeys

𝛷𝛽′𝑹,𝛼′𝟎 = 𝑆 𝛷𝑆 (𝛽′𝑹),𝛼𝟎𝑆𝑇. (3.12)

From this starting point, we can also look at the behavior of the dynamical matrix under
symmetry transformation. If we define 𝒑 = 𝑆 ⋅ 𝒒, some quick theoretical handiwork proves

𝐷𝛽′,𝛼′(𝒒) = ei𝒒⋅(𝝉𝛼′−𝝉𝛽′)e−i𝒑⋅(𝝉𝛼−𝝉𝛽)𝑆 𝐷𝛽,𝛼(𝒑) 𝑆𝑇. (3.13)

Hence, the rotation does not only affect the dynamical matrix itself, but also to which wave
vector it is associated. This can be used to e.g. calculate the dynamical matrix on a full set of
wave vectors sampling the Brillouin zone from only a considerably smaller set of representatives.
Additionally, a recent implementation effort was using this formula for symmetries that leave
the q-point unchanged. For such symmetries, the equation can be used to reduce the necessary
calculations and drastically reduce the runtime. As the results of this thesis are not produced
with this work in progress implementation in effect, we only highlight the necessary formalism
and workflow in appendix A.

For the sake of completeness, the transformation behavior of forces in a system displaced from
equilibrium should also be considered. It naturally transforms as a vector instead of a matrix,
as it is one-dimensional instead of two-dimensional. It holds

𝑭𝛽′ = 𝑆 ⋅ 𝑭𝛽. (3.14)

Which of these symmetry relations becomes relevant depends on the method used to calculate
the phonon spectrum. This will be highlighted as the respective approaches are discussed. A
much more thorough discussion of symmetries and their application to normal vibrations of a
crystal can be found in reference [147]. Another general property mandated by the system’s
symmetry is the number of phonon modes. The DM is a 3𝑁ion × 3𝑁ion matrix, so it has 3𝑁ion
possibly degenerate eigenvalues. As the sum of all the forces in the system has too vanish,
as to not produce a center of mass motion of the infinite crystal, the so-called acoustic sum
rule arises: The first three phonon frequencies must vanish. The branches starting at 0 are
called the acoustic branches of the spectrum, as they usually lie in an energy range that can
be excited acoustically and they are linked to the speed of sound in a material. The other
3(𝑁ion − 1) modes are referred to as optical modes, as they are more in the energy range of
optical excitations.
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3.3 Frozen Phonon Calculations

The Frozen
Phonon

To arrive at a workflow for phonon calculations, we need to define how exactly our phonon
interacts with the lattice. A common approach is the frozen phonon method, where a phonon
with wave vector 𝒒 is directly overlayed with the system and displaces each atom accordingly.
This can be written in a form with displacements as used in equation (3.7), that are now
associated with a wave vector 𝒒 and take the specific form

𝒘𝛼𝑹,𝒒 = 1

√𝑀̃𝛼

𝑸𝛼,𝒒ei𝒒⋅(𝝉𝛼+𝑹) + c.c.

= 𝒘+
𝛼𝑹,𝒒 + 𝒘−

𝛼𝑹,𝒒. (3.15)

With this definition, we can write down the Taylor series of a general quantity 𝑋 in our solid-
state calculation. This can range from the density 𝑛(𝒓), to the potential or its constituents or
total energy like in equation (3.7). This yields

𝑋(𝒒) = 𝑋(0) + 𝑋(1)(𝒒) + 1
2

𝑋(2)(𝒒) + ...

= 𝑋(0) + ∑
𝛼𝑹𝑖±

∂𝑋
∂𝜏𝛼𝑹𝑖

𝑤±
𝛼𝑹𝑖,𝒒 + 1

2
∑

𝛽𝑹′𝑗±′

𝛼𝑹𝑖±

𝑤±′

𝛽𝑹′𝑗,𝒒
∂2𝑋

∂𝜏𝛽𝑹′𝑗∂𝜏𝛼𝑹𝑖
𝑤±

𝛼𝑹𝑖,𝒒 + ... . (3.16)

This equation is sufficient if we want to look at a system, where the atoms are actually displaced
by a finite amount and a supercell setup is used to cover the summation over 𝑹. Another way
to look at the response of the system to a variation is to evaluate the sum first and look at the
Fourier transformed quantities

𝑋(1)𝛼𝑖± = ∑
𝑹

e±i𝒒⋅𝑹𝑋(1)𝛼𝑹𝑖 ≡ ∑
𝑹

e±i𝒒⋅𝑹 ∂𝑋
∂𝜏𝛼𝑹𝑖

(3.17)

and

𝑋(2)𝛽𝑗±′𝛼𝑖± = ∑
𝑹′𝑹

ei𝒒⋅(±𝑹±′𝑹′)𝑋(2)𝛽𝑹′𝑗𝛼𝑹𝑖 ≡ ∑
𝑹′𝑹

ei𝒒⋅(±𝑹±′𝑹′) ∂2𝑋
∂𝜏𝛽𝑹′𝑗∂𝜏𝛼𝑹𝑖

(3.18)

instead. The response of the system then depends only on these newly defined quantities,
the atomic masses, and the finite polarization vectors 𝑄±

𝛼𝑖,𝒒 (where (−) corresponds to the
complex conjugate of (+) as above). We write this as

𝑋(𝒒) = 𝑋(0) + ∑
𝛼𝑖±

e±i𝒒⋅𝜏𝛼

√𝑀̃𝛼

𝑋(1)𝛼𝑖±𝑄±
𝛼𝑖,𝒒

+1
2

∑
𝛽𝑗±′

𝛼𝑖±

𝑄±′

𝛽𝑗,𝒒
ei𝒒⋅(±′𝜏𝛽±𝜏𝛼)

√𝑀̃𝛽𝑀̃𝛼

𝑋(2)𝛽𝑗±′𝛼𝑖±𝑄±
𝛼𝑖,𝒒 + ... . (3.19)

With this equation in mind, when we look at the total energy explicitly, we find a direct
correspondence between the force constant and dynamical matrices and the newly defined
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second order term

𝐸(2)𝛽𝑗−𝛼𝑖+
tot = ∑

𝑹′𝑹
e−i𝒒⋅(𝑹′−𝑹)𝛷𝛽𝑹′𝑗,𝛼𝑹𝑖 = ∑

𝑹″

e−i𝒒⋅𝑹″𝛷𝛽𝑹″𝑗,𝛼𝟎𝑖 (3.20)

⇔ 𝐷𝛽𝑗,𝛼𝑖 = ei𝒒⋅(𝝉𝛼−𝝉𝛽)

√𝑀̃𝛽𝑀̃𝛼

𝐸(2)𝛽𝑗−𝛼𝑖+
tot (3.21)

The second lattice vector sum technically gives an additional factor of 𝑁u.c., that is omitted as
𝑁u.c. ⟶ ∞ and we want to look at the energy derivatives per unit cell. It can easily be shown
from their definition, that the Fourier transformed quantities are no longer lattice periodic,
where the ground-state quantities have been, but instead carry an additional phase dependent
on the wave vector of the phonon. The same holds for the wave functions, that are Bloch
waves to a specific 𝒌 in the ground state. This can be summarized as

𝑋(1)𝛼𝑖±(𝒓 + 𝑹) = e±i𝒒⋅𝑹𝑋(1)𝛼𝑖±(𝒓), (3.22)
𝑋(2)𝛽𝑗±′𝛼𝑖±(𝒓 + 𝑹) = e(±′±)i𝒒⋅𝑹𝑋(2)𝛽𝑗±′𝛼𝑖±(𝒓), (3.23)

𝜓(1)𝛼𝑖±
𝒌𝜈 (𝒓 + 𝑹) = ei(𝒌±𝒒)⋅𝑹𝜓(1)𝛼𝑖±

𝒌𝜈 (𝒓). (3.24)

Practically speaking, each lattice periodic function becomes a Bloch wave with a Bloch vector 𝒒
and each Bloch wave with vector 𝒌 has it altered by 𝒒 as well; the perturbation from a phonon
carries a finite momentum change into the system. Another thing to note, is that the Fourier
transformed first order quantities and their complex conjugates are related by the interchange
of the sign of the phase ±. This also follows from their definition and will be of use later. We
write

𝑋(1)𝛼𝑖±∗(𝒓) = 𝑋(1)𝛼𝑖∓(𝒓). (3.25)

We have now established the central quantities of phonon calculations both in real (lattice
vector) space, as well as in reciprocal space. Now, we will look at numerical methods that can
yield the necessary quantities for the respective approach.

3.4 The Finite-Displacement Method

Numerical
Second

Derivative

If we stick to the real-space description of the second order energy perturbation, our quantity of
interest is the force constant matrix. Computing it usually makes use of the finite displacement
(FD) method. The first order energy responses (i.e. the forces on the atoms) are calculated
analytically, and the second order derivative is evaluated as the numerical derivative between
the forces of a lattice with a displaced atom and the equilibrium one. Using the definition of
the Hellmann–Feynman forces, this gives us

𝐸(1)𝛼𝑹𝑖
tot = ∫ 𝑛(𝒓)𝑉 (1)𝛼𝑹𝑖

ext (𝒓)d𝒓 + 𝐸(1)𝛼𝑹𝑖
ii = −𝐹𝛼𝑹𝑖. (3.26)

It can be derived from equation (2.13) by straight-forward differentiation and evaluation
of the eigenenergy derivative that will emerge, as shown e.g. in [92]. The derivative of
the occupation numbers cancels out with the entropy term, keeping the first order energy
derivative variational in the unperturbed quantities [92, 125]. The resulting formula is in
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a sense complete for any approach, where we do not have any dependence of the basis on
the atomic positions. Such a dependence exists for the FLAPW method, however, and will be
discussed in section 4.1. The numerical differentiation for the second order response reads

𝐸(2)𝛽𝑹′𝑗𝛼𝑹𝑖
tot ≈ −

𝐹𝛼𝑹𝑖[𝜏𝛽𝑹′𝑗 + 𝑤𝛽𝑹′𝑗] − 𝐹𝛼𝑹𝑖[𝜏𝛽𝑹′𝑗]
𝑤𝛽𝑹′𝑗

. (3.27)

This derivative delivers the correct quadratic energy dependence in second order, provided
that the finite displacement is small as compared to the distance between neighboring atoms.
Otherwise, anharmonic effects will be taken into account as well, which makes the description
as a harmonic oscillator invalid.

SupercellsFor the finite displacement method to deliver accurate results, we need to think about the
construction of supercells. There are two aspects: On the one hand, the force on an atom, as
the result of shifting one in another unit cell, will diminish with distance. A supercell for a
phonon calculation must be at least big enough, so that this force is sufficiently decayed in
relation to the scale of phononic energy differences. On the other hand, the frozen phonon
approach will be displacing atoms in different cells by different amounts to imprint the wave
form onto the lattice. To correctly describe this, the extent of the supercell needs to be at least
big enough, that a full period of oscillation fits into it, i.e. 1 = 𝒒 ⋅ 𝑹.

PhonopyIn practice, the second of these requirements is relaxed to a certain extent. For the calculations
in this work, we make use of the phonopy code [148–150]. The package has interfaces to
several popular DFT codes and can, in theory, be interfaced to any electronic structure software,
that provides structural input and accurate forces. We programmed a FLEUR [90, 91] interface
for it, to be able to accurately benchmark the results of our own phonon calculations against
those from phonopy. From a basic unit cell input and information on the desired supercell, it
will generate the corresponding supercell input. It is broken down to the bare minimum of
necessary displacements according to the symmetry considerations in section 3.2. We can
feed the input back into FLEUR to calculate the forces induced by the atomic displacement.
Once this is done for each displacement, phonopy can read the force data files to generate the
force constant matrix. From there, several thermodynamic quantities can be accessed. For
our purposes, it is most important that the phonon dispersion can be interpolated from the
force constant matrix by Fourier transform.

3.5 Density-Functional Perturbation Theory

Analytical Second
Derivative

While the phonon spectra in an FD approach are a necessary benchmark and a reliable way
to gain insight about the vibrational properties of a system, the main focus of this work is
the complementary method of density-functional perturbation theory (DFPT) [43–47]. It
distinguishes itself from FD in the way we investigate the second order energy derivative.
Whereas it was half-analytical, half-numerical before, we now derive an analytic expression
for the second order as well. Using the notation we established in section 3.3 and applying
the derivative in a second atom to equation (3.26) yields

𝐸(2)𝛽𝑹′𝑗𝛼𝑹𝑖
tot = ∫ [𝑛(1)𝛽𝑹′𝑗(𝒓)𝑉 (1)𝛼𝑹𝑖

ext (𝒓) + 𝑛(𝒓)𝑉 (2)𝛽𝑹′𝑗𝛼𝑹𝑖
ext (𝒓)] d𝒓 + 𝐸(2)𝛽𝑹′𝑗𝛼𝑹𝑖

ii (3.28)
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or in the subsequent notation with Fourier transformed quantities

𝐸(2)𝛽𝑗−𝛼𝑖+
tot = ∫

Ω
[𝑛(1)𝛽𝑗−(𝒓)𝑉 (1)𝛼𝑖+

ext (𝒓) + 𝑛(𝒓)𝑉 (2)𝛽𝑗−𝛼𝑖+
ext (𝒓)] d𝒓 + 𝐸(2)𝛽𝑗−𝛼𝑖+

ii . (3.29)

Again, we omit a factor 𝑁u.c. from the unit cell summation and explicitly introduce the
integration domain as the unit cell with volume Ω. This is due to the nature of the Fourier
transformed quantities involved. If their phases add up to 0, as it does for a combination of
real-space quantities with superscripts + and −, their product is the same in each unit cell.
This means we only need the integral over the representative unit cell. If the phases do not
match, the integral vanishes instead.

The Sternheimer
Equation

Due to the relation of the dynamical matrix to the energy derivative in equation (3.29), we
now know all quantities needed to calculate it. These quantities, however, are no longer
all available or can be constructed solely from a ground-state density SCF calculation, as
they were for the forces. Instead, the response of the density and thus the response of the
wave functions needs to be calculated explicitly. It obeys a first order equivalent of the KS
Schrödinger equation, that is widely known as the Sternheimer equation [151]. It is obtained
by perturbing equation (2.5) with respect to atom 𝛽 in the 𝑗 direction for a positive q-point
+𝒒 (𝛽𝑗+):

(−1
2

∇2 + 𝑉eff(𝒓) − 𝜀𝒌𝜈) 𝜓(1)𝛽𝑗+
𝒌𝜈 (𝒓) = − (𝑉 (1)𝛽𝑗+

eff (𝒓) − 𝜀(1)𝛽𝑗+
𝒌𝜈 ) 𝜓𝒌𝜈(𝒓). (3.30)

This equation needs to be solved self-consistently, just like the KS equations before. This is
again due to the relations between the potential, density, and wave function responses. The
first order density

𝑛(1)𝛽𝑗+(𝒓) = ∑
𝒌𝜈

[ ̃𝑓 (1)𝛽𝑗+
𝒌𝜈 |𝜓𝒌𝜈(𝒓)|2

+ ̃𝑓𝒌𝜈𝜓∗(1)𝛽𝑗+
𝒌𝜈 (𝒓)𝜓𝒌𝜈(𝒓) + ̃𝑓𝒌𝜈𝜓∗

𝒌𝜈(𝒓)𝜓(1)𝛽𝑗+
𝒌𝜈 (𝒓)]. (3.31)

is constructed from the first order wave functions and occupation numbers. For the scope of
this thesis, we will always assume our lattice to be symmetric under inversion or time-inversion,
which consequently means the following relations for the wave functions and eigenenergies
hold:

𝜓∗
𝒌𝜈 = 𝜓−𝒌𝜈, 𝜀𝒌𝜈 = 𝜀−𝒌𝜈. (3.32)

Inversion symmetry is the stronger condition of the two, in that it additionally enforces real-
valued wave functions. The latter equation also translates to the occupation numbers. With
some sum manipulation, this means we can simplify the form of the first order density

𝑛(1)𝛽𝑗+(𝒓) = ∑
𝒌𝜈

[ ̃𝑓 (1)𝛽𝑗+
𝒌𝜈 |𝜓𝒌𝜈(𝒓)|2 + 2 ̃𝑓𝒌𝜈𝜓∗

𝒌𝜈(𝒓)𝜓(1)𝛽𝑗+
𝒌𝜈 (𝒓)] , (3.33)

which limits the calculation to the perturbation for +𝒒. Moving on to the next step of the
workflow, the response of the effective potential (through its constituents) depends on the
density response just like the effective potential depends on the density:

𝑉 (1)𝛽𝑗+
eff (𝒓) = 𝑉 (1)𝛽𝑗+

ext (𝒓) + 𝑉 (1)𝛽𝑗+
H (𝒓) + 𝑉 (1)𝛽𝑗+

xc (𝒓), (3.34)
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𝑉 (1)𝛽𝑗+
ext (𝒓) = − ∑

𝑹
ei𝒒⋅𝑹∇𝑗𝑉

𝛽𝑹
ext , (3.35a)

𝑉 (1)𝛽𝑗+
H (𝒓) = ∫

𝑛(1)𝛽𝑗+(𝒓′)
|𝒓 − 𝒓′|

d𝒓′, (3.35b)

𝑉 (1)𝛽𝑗+
xc (𝒓) = 𝑛(1)𝛽𝑗+(𝒓)

𝛿2𝐸xc[𝑛]
𝛿𝑛(𝒓)2 = 𝑛(1)𝛽𝑗+(𝒓)𝐾xc[𝑛](𝒓). (3.35c)

Here we implicitly used the fact, that we restrict ourselves to LDA functionals, for which the
xc Kernel 𝐾𝑥𝑐 only needs to be multiplied with the density response. This form becomes more
complicated e.g. for GGA functionals. In the case of a spin-polarized system, the equation
assumes a slightly different form,

𝑉 (1)𝛽𝑗+
xc,𝜎 (𝒓) = ∑

𝜎′

𝑛(1)𝛽𝑗+
𝜎′ (𝒓)

𝛿2𝐸xc[𝑛↑, 𝑛↓]
𝛿𝑛𝜎′(𝒓)𝛿𝑛𝜎(𝒓)

, (3.36)

where each spin channel requires the xc Kernel for the mixed spin derivative and the corre-
sponding second derivative in its own spin. This gives us terms for the first order quantities,
that are very alike to their ground-state counterparts. This also means that the first order
SCF loop can be run in a similar setup as the ground-state one, though with modifications at
various points.

Perturbed
Occupation
Numbers

In equation (3.33) we need not only the perturbed wave functions, but also the response of
the occupation numbers. It will only contribute in metallic materials, where the step function
cutting off the unoccupied state is smeared into a smooth form as stated in section 2.4. Assum-
ing the smearing function to be Fermi–Dirac like again, they can be gained by differentiating
the explicit form of the occupation numbers,

̃𝑓𝒌𝜈 =
𝑓𝒌

e𝑥 + 1
|𝑥=(𝜀𝒌𝜈−𝐸F)/(𝑘B𝑇 ), (3.37)

with the weight 𝑓𝒌 of each k-point. This gives us a form for the first order occupations

̃𝑓 (1)𝛽𝑗+
𝒌𝜈 = −

̃𝑓𝒌
e−𝑥 + 1

|𝑥=(𝜀𝒌𝜈−𝐸F)/(𝑘B𝑇 )
𝜀(1)𝛽𝑗+

𝒌𝜈 − 𝐸(1)𝛽𝑗+
F

𝑘B𝑇
, (3.38)

that is not yet fully soluble, as it depends on the first order Fermi energy that is at this point
undetermined. We can find a closed form for it by differentiating equation (2.16) under the
assumption, that the electron count does not vary and thus the left hand side derivative is 0.
This yields

𝐸(1)𝛽𝑗+
F =

∑𝒌𝜈
̃𝑓𝒌𝜈𝜀(1)𝛽𝑗+

𝒌𝜈 /(e−𝑥 + 1)|𝑥=(𝜀𝒌𝜈−𝐸F)/(𝑘B𝑇 )

∑𝒌𝜈
̃𝑓𝒌𝜈/(e−𝑥 + 1)|𝑥=(𝜀𝒌𝜈−𝐸F)/(𝑘B𝑇 )

. (3.39)

In the case of semiconductors and insulators, the calculation is skipped and this quantity is
set to 0 to avoid divisions by very small numbers.

Analytic Second
Order Quantities

The remaining terms in equation (3.29) that are yet to be discussed are the second order
responses of the external potential and the ion-ion interaction. Both of these quantities are
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analytical and completely independent of both the ground-state and first-order density SCF
calculations. The best way to calculate them depends on the basis set chosen for the electronic
structure calculation, but we want to introduce their analytical form here for the sake of
completeness of the chapter. The second order external potential perturbation is independent
of 𝒒 and directly follows from the first order in equation (3.35a) and reads

𝑉 (2)𝛽𝑗−𝛼𝑖+
ext (𝒓) = δ𝛽𝛼 ∑

𝑹
∇𝑗∇𝑖𝑉 𝛼𝑹

ext (𝒓). (3.40)

The formula for the second order ion-ion interaction is more involved. This stems from the
fact that we look at a double sum that excludes one specific combination of atoms that would
make the Coulomb singularity diverge. It reads

𝐸(2)𝛽𝑗−𝛼𝑖+
ii = −δ𝛽𝛼𝑍𝛼∑

𝑹
∑

𝛾𝑹″≠𝛼𝑹
∇𝑗∇𝑖𝑉

𝛾𝑹″

ext (𝒓)|𝒓=𝝉𝛼𝑹

+𝑍𝛼 ∑
𝑹′𝑹

𝛽𝑹′≠𝛼𝑹

e−i𝒒⋅(𝑹′−𝑹)∇𝑗∇𝑖𝑉
𝛽𝑹′

ext (𝒓)|𝒓=𝝉𝛼𝑹
. (3.41)

The first term is a second spatial derivative of the external potential of all atoms except the
one at 𝝉𝛼𝑹 evaluated at the position of this exact atom. The second term is similar, but gains
a dependence on the phonon wave vector and is restricted to the displaced atom with the row
index. A similar form, that lacked the sum over all atoms in the first term was established
in [92] and elaborated on in [93]. The exact calculation of these elements and the second
order external potential response in the FLAPW framework will be discussed in the next
chapter.

Other Types of
Perturbations

The general formalism of DFPT was introduced in this chapter on the specific example of
phononic perturbations. It should be noted, that this is by no means the only type of pertur-
bation that can be applied, i.e. other important response quantities are related to different
perturbations like mechanical strain or external fields. The general form for such perturbations
(aside from the initial potential perturbation and the ion-ion interaction response) as well as
the resulting Sternheimer equation are all quite similar in nature, as long as they do not create
responses that lie outside the Hilbert space of the original wave functions. In the specific case
of DFPT for vibrational excitations in a linearized augmented plane-wave basis, such terms
indeed exist which make the theory and implementation a lot more complicated. This will be
discussed in detail in section 4.3, while allusions to other response quantities are given where
they are adequate.

Variationality and
2n+1 Theorem

From equations (3.26) and the related quantities it can be seen that for a phononic perturbation,
the first order response only depends on self-consistent quantities form the ground-state
calculation as well as an analytic expression for the external potential response. The same
does not hold for the second order energy response in equation and (3.29), where the first
order density response is incorporated as well. These dependencies of response terms on
lower order expressions is a general consequence of the 2𝑛 + 1-theorem. It states, that the
responses of physical quantities up to (2𝑛 + 1)th order can be expressed through the responses
of the wave functions and eigenenergies up to only 𝑛th order. The proof of this theorem relies
on the varitationality of such quantities up to arbitrary order [45, 152–154]. The general fact,
that the second order energy response is variational with respect to the ground-state density
and the first order wave function response also mandates a good convergence behaviour. The
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numerical consequence of variationality is that the total energy of the KS system converges
more quickly than the ground-state density itself, i.e. middling accuracy of the density already
gives good accuracy of the energy - the convergence is stable with respect to the basis set
chosen. As the second order energy response is variational as well with respect to the first
order density response, a similar relation between the accuracy of the phonon dispersion and
the degree of convergence in the Sternheimer SCF cycle can be expected.
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Chapter 4
Density-Functional Perturbation Theory in the
All-Electron Full-Potential Linearized
Augmented Plane-Wave Method

4.1 The Linearized Augmented Plane-Wave Basis . . . . . . . . . . . . . . . . . . . 30

4.2 The Quantum Engine of FLAPW . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Adapting DFPT to FLAPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

The Choice of
Basis

To this point, the only assumption we made about the solid state system under consideration
has been the periodicity of the lattice. This dictates the general form of the wave functions,
being Bloch waves with crystal momentum 𝒌, but not the specific form of the lattice periodic
functions 𝑢𝒌𝜈(𝒓). The space of possible functions is vast and a common approach is to define
a set of basis functions in which the wave functions

𝜓𝒌𝜈(𝒓) = ∑
𝑮

𝑧𝒌𝑮𝜈𝜙𝒌𝑮(𝒓) = ∑
𝑮

𝑧𝒌𝑮𝜈ei𝒌⋅𝒓𝑢𝒌𝑮(𝒓) (4.1)

can be expanded. Each basis function 𝜙𝒌𝑮 and expansion coefficient 𝑧𝒌𝑮𝜈 is associated with
a vector 𝒌 + 𝑮, where 𝑮 is a reciprocal lattice vector. The computational setup is dictated by
the exact choice of basis and its ramifications. Aside from this, some other factors come into
play. The choice of the xc functional greatly influences the ground-state density. The kinetic
energy operator in the KS equations can be handled non-relativistically, in a scalar-relativistic
approximation (SRA) or in a fully relativistic fashion. The potential can be approximated by
a smooth pseudopotential to deal with the Coulomb singularities at the atomic nuclei, and
lastly, the shape of the potential across the unit cell can be fixed to be spherical around the
atoms and flat farther away from them. Generally, the expansion into a basis set transforms
the KS equations into a (possibly generalized) eigenvalue problem

𝟎 = (𝐻(𝒌) − 𝜀𝒌𝜈𝑆(𝒌)) ⋅ 𝒛𝒌𝜈, (4.2)

with a Hamiltonian and overlap matrix

𝐻𝑮′,𝑮 = ⟨𝜙𝒌𝑮′|ℋ|𝜙𝒌𝑮⟩Ω, (4.3)
𝑆𝑮′,𝑮 = ⟨𝜙𝒌𝑮′|𝜙𝒌𝑮⟩Ω, (4.4)
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where the expansion coefficients have been written as a vector with components labeled by
the reciprocal lattice vectors 𝑮. The subscript Ω on the brakets indicates an integration over a
single unit cell and equation (4.2) needs to be solved for each k-point in the Brillouin zone.
The following sections highlight our method of choice, the all-electron full-potential linearized
augmented-plane wave method (FLAPW) as implemented in the electronic structure code
FLEUR, the theoretical considerations that lead to its development, as well as its application to
the DFPT formalism. The last point encompasses the main focus of this thesis. The FLAPW
framework was specifically constructed to deal with the ionic 1/𝑟-singularities in a way that
does not require any shape approximations and contains in its setup not only the valence
electrons, but the core electrons, too. References to methods, that are also common, but
unrelated to FLAPW will be given where appropriate.

4.1 The Linearized Augmented Plane-Wave Basis

4.1.1 Plane-Wave and Augmented Plane-Wave Methods

PW Methods Historically, the FLAPW method is based on the successive improvement upon more simple
ideas, that have preceded it. We start with the natural choice for the description of a periodic
lattice - an orthonormalized plane wave (PW) basis function

𝜙PW
𝒌𝑮(𝒓) = 1√

Ω
ei(𝒌+𝑮)⋅𝒓. (4.5)

With this basis, the overlap matrix becomes unity (𝑆𝑮′,𝑮 = δ𝑮′,𝑮) and the Hamiltonian matrix
is equivalent to a Fourier transform of the potential ̂𝑉eff(𝑮′ −𝑮) plus a diagonal kinetic energy
term δ𝑮,𝑮′(𝒌 + 𝑮)2/2. The basis introduces a cutoff parameter 𝐾max that limits the set of
plane waves by demanding that |𝒌 + 𝑮| < 𝐾max. This effectively limits the kinetic energy of
the electrons. The method is straight-forward to implement [155], but has a set of drawbacks.
The most significant of them is the treatment of the Coulomb singularities at the nuclei. In
practice, the divergent nature of the ionic term will lead to high-frequency oscillations in the
wave functions, which can only be captured in plane waves with a very large cutoff parameter
(𝐾max ⟶ ∞), which is of course detrimental in terms of computational effort. Therefore, PW
codes often opt to substitute the 1/𝑟-term with a smooth pseudopotential, that matches the
true form away from the singularity but replaces the divergent term by a flat one with similar
scattering properties. This method has been in use for a very long time and is still used to great
success today [156]. Another way to mitigate the issues is to use the projector-augmented
wave method [157].

APW Methods A natural way to account for the Coulomb singularities is to consider their spherical nature
and to treat the radial part numerically or in a basis. It would be fitting to have basis functions,
that share that same radial nature close to the ions, but are nevertheless lattice periodic, i.e.
match to plane waves at a proper distance from them. This led Slater to develop the class of
augmented-plane wave (APW) basis sets [158, 159]. In a preset radius around each nucleus
𝛾, the basis set is changed to an expansion in radial functions and spherical harmonics, that
depend on the polar coordinates with the origin at the atom’s position 𝝉𝛾. The resulting
position vector is 𝒓𝛾 ≔ 𝒓 − 𝝉𝛾. This leads to a separation into a set of spheres, that optimally
take up most of the unit cell [160], and interstitial region (IR) between them, where the
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plane wave description still applies. Visualizing this idea in a two-dimensional space leads to
a picture resembling a muffin tin, hence the radii of these spheres are known as muffin-tin
(MT) radii. The basis takes the following read

𝜙APW
𝒌𝑮 (𝒓) =

⎧{
⎨{⎩

1√
Ω

ei(𝒌+𝑮)⋅𝒓, 𝒓 ∈ IR
∑ℓ𝑚 𝑎𝒌+𝑮,𝛾

ℓ𝑚 𝑢𝛾
ℓ (𝑟𝛾)𝑌 𝑚

ℓ ( ̂𝒓𝛾) 𝒓 ∈ MT𝛾

= ΘIR(𝒓)𝜙IR
𝒌𝑮(𝒓) + ∑

𝛾
Θ𝛾(𝒓)𝜙𝛾

𝒌𝑮(𝒓), (4.6)

where we defined the step function ΘIR, that cuts out the MT spheres and leaves only the
interstitial region as

Θ𝛾(𝒓) ≔ Θ(𝑅MT𝛾 − |𝒓 − 𝝉𝛾|), (4.7)
ΘIR(𝒓) ≔ 1 − ∑

𝛾
Θ𝛾(𝒓) = ∑

𝑮
Θ̂(𝑮)ei𝑮⋅𝒓, (4.8)

Θ̂(𝑮) ≔ δ𝑮,𝟎 − ∑
𝛾

4π𝑅3
MT𝛾

Ω
𝑗1(𝐺𝑅MT𝛾)

𝐺𝑅MT𝛾
e−i𝑮⋅𝝉𝛾, (4.9)

as found in [133]. The setup is clarified in figure 4.1. It explicitly shows several MT spheres
with the respective atomic positions and MT radii 𝑅MT, and the interstitial region.

𝝉𝛾
𝑅MT𝛾

𝝉𝛿

𝑅MT𝛿

𝝉𝛽

𝑅MT𝛽

𝝉𝛼

𝑅MT𝛼

IR

Figure 4.1: Sketch of the muffin tin sphere setup in APW methods

Due to the choice of a segmented basis set, the radial part needs to be multiplied by a matching
coefficient 𝑎𝒌+𝑮,𝛾

ℓ𝑚 , that is determined in a way that ensures continuity at the MT boundary.
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Thus it takes the form

𝑎𝒌+𝑮,𝛾
ℓ𝑚 = 4πiℓ√

Ω
ei(𝒌+𝑮)⋅𝝉𝛾

𝑗ℓ (|𝒌 + 𝑮| 𝑅MT𝛾)
𝑢𝛾

ℓ (𝑅MT𝛾)
𝑌 𝑚∗

ℓ (𝒌 + 𝑮) , (4.10)

due to the expansion of the plane waves into spherical harmonics. It includes spherical Bessel
functions of the first kind 𝑗ℓ. The radial expansion of the basis set is obviously not infinite,
but also cut off by a maximum angular momentum number ℓ𝛾

max, that can in principle vary
for each atom. The radial functions in the MT spheres are as of yet unspecified. They were
defined first by Slater as the solutions to the radial part of the KS equation, i.e. solving

ℋsph𝑟𝛾𝑢𝛾
ℓ (𝑟𝛾) = (−1

2
∂2

𝑟𝛾
+

ℓ(ℓ + 1)
2𝑟2

𝛾
+ 𝑉 𝛾

eff,sph(𝑟𝛾)) 𝑟𝛾𝑢𝛾
ℓ (𝑟𝛾) = 𝐸𝛾

ℓ 𝑟𝛾𝑢𝛾
ℓ (𝑟𝛾) (4.11)

with an energy parameter 𝐸𝛾
ℓ [158]. The equation is solved self-consistently for 𝑟𝛾𝑢𝛾

ℓ for the
sake of numerical convenience. The radial functions are normalized according to

1 = ⟨𝑢𝛾
ℓ |𝑢𝛾

ℓ ⟩MT𝛾 = ∫
𝑅MT𝛾

0
𝑟2

𝛾𝑢𝛾
ℓ (𝑟𝛾)𝑢𝛾

ℓ (𝑟𝛾)d𝑟𝛾. (4.12)

With this separation and the corresponding definitions, the Hamiltonian and overlap matrix
elements of the APW method get additional contributions as opposed to the PW case. The
MT Hamiltonian can be split up into the spherical part and the non-spherical potential. The
spherical part can be expressed solely through the overlap and the eigenenergies, while the
radial part of the non-spherical potential is neglected. The details on this will be discussed in
the following part dealing with the LAPW basis, where the setup becomes more involved. For
now, the Hamiltonian and overlap take the general form

𝐻𝑮′,𝑮(𝒌) = ∑
𝛾

⟨𝜙𝛾
𝒌𝑮′|ℋ

𝛾
sph|𝜙𝛾

𝒌𝑮⟩𝛾 + ⟨𝜙IR
𝒌𝑮′|ΘIRℋ|𝜙IR

𝒌𝑮⟩Ω

𝑆𝑮′,𝑮(𝒌) = ∑
𝛾

⟨𝜙𝛾
𝒌𝑮′|𝜙

𝛾
𝒌𝑮⟩𝛾 + ⟨𝜙IR

𝒌𝑮′|ΘIR|𝜙IR
𝒌𝑮⟩Ω. (4.13)

The MT part of the Hamiltonian can be expressed through the overlap matrix elements and the
energy parameters 𝐸𝛾

ℓ , which will be discussed in more detail for the implementation of the
LAPW basis. In the APWmethod, the IR potential is often assumed to be a constant and the MT
potential a spherical function. This is referred to as the atomic sphere approximation (ASA).
Otherwise the wave functions are not well-described by the radial basis. The basis is only
flexible enough when the energy parameters match the initially unknown band energies 𝜀𝒌𝜈
closely. But these energies are a quantity that should be a result of the calculation, not an input.
So an initial energy guess 𝐸𝛾

ℓ is made, leading to a secular equation for the eigenenergies,
where the Hamiltonian and overlap depend on 𝐸𝛾

ℓ as well. This problem is non-linear and
its solution is a state, where 𝐸𝛾

ℓ equals the final eigenenergy determined. The calculation
is highly involved and has to be repeated for each state, which makes it computationally
expensive. Another drawback is the so-called asymptote problem. Certain combinations of
energy parameters and MT radii can make the radial functions vanish at the MT boundary,
which makes matching them against the plane waves impossible. In equation (4.10), this
corresponds to divergent matching coefficients. The next successive improvement to this
method will remedy both of these problems.
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4.1.2 Full-Potential Linearized Augmented Plane-Wave Method

LAPW MethodThe linearized augmented plane-wave basis was introduced by Marcus [161] and expanded
upon by Andersen [71], Koelling, and Arbman [72] to deal with the shortcomings of the plain
APW approach. It is motivated by a linearization of the radial eigenfunctions around the
preset energy parameter:

𝑢𝛾
ℓ (𝑟𝛾, 𝜀) ≈ 𝑢𝛾

ℓ (𝑟𝛾, 𝐸𝛾
ℓ ) +

∂𝑢𝛾
ℓ

∂𝜀
(𝑟𝛾, 𝐸𝛾

ℓ )(𝜀 − 𝐸ℓ). (4.14)

This leads to an improved description of radial functions at arbitrary energies 𝜀 close to the
chosen energy parameter instead of only directly at it. We take the radial eigenfunctions and
their energy derivatives 𝑢̇𝛾

ℓ (𝑟𝛾, 𝐸𝛾
ℓ ) together as the new radial part of the basis set. The energy

derivatives are determined by a differentiated version of equation (4.11):

ℋsph𝑟𝛾𝑢̇𝛾
ℓ (𝑟𝛾) = 𝑟𝛾𝑢𝛾

ℓ (𝑟𝛾) + 𝐸𝛾
ℓ 𝑟𝛾𝑢̇𝛾

ℓ (𝑟𝛾) (4.15)

The equation contains the radial solutions and the energy derivatives are thus created after
them. The energy derivatives are usually made orthogonal to the initial radial functions
(⟨𝑢̇𝛾

ℓ′|𝑢
𝛾
ℓ ⟩MT𝛾 = 0) and are not normalized (⟨𝑢̇𝛾

ℓ′|𝑢̇
𝛾
ℓ ⟩MT𝛾 = 𝑐𝛾

ℓ′ℓ). The latter property needs to
be taken into account e.g. when the matrix elements are evaluated. With the radial functions
and their energy derivatives, the LAPW basis functions now look as follows:

𝜙LAPW
𝒌𝑮 (𝒓) =

⎧{
⎨{⎩

1√
Ω

ei(𝒌+𝑮)⋅𝒓, 𝒓 ∈ IR

∑ℓ𝑚 (𝑎𝒌+𝑮,𝛾
ℓ𝑚 𝑢𝛾

ℓ (𝑟𝛾) + 𝑏𝒌+𝑮,𝛾
ℓ𝑚 𝑢̇𝛾

ℓ (𝑟𝛾)) 𝑌 𝑚
ℓ ( ̂𝒓𝛾), 𝒓 ∈ MT𝛾 (4.16)

We need two sets of matching coefficients 𝑎𝒌+𝑮,𝛾
ℓ𝑚 and 𝑏𝒌+𝑮,𝛾

ℓ𝑚 for this new basis. They are
determined by again requiring the continuity of the basis at the MT boundary, but now with
the added stipulation of being continuously differentiable there as well. This leads to a
vector-matrix equation for the matching coefficients,

(𝑎𝒌+𝑮,𝛾
ℓ𝑚

𝑏𝒌+𝑮,𝛾
ℓ𝑚

) = 4πiℓ√
Ω

ei(𝒌+𝑮)⋅𝝉𝛾𝑌 𝑚∗
ℓ (𝒌 + 𝑮) 𝑈−1

ℓ𝛾 ⋅ (
𝑗ℓ (|𝒌 + 𝑮| 𝑅MT𝛾)

|𝒌 + 𝑮| 𝑗′

ℓ (|𝒌 + 𝑮| 𝑅MT𝛾)
) , (4.17)

that involves inverting the matrix

𝑈 ℓ𝛾 = (
𝑢𝛾

ℓ (𝑅MT𝛾) 𝑢̇𝛾
ℓ (𝑅MT𝛾)

𝑢
′𝛾
ℓ (𝑅MT𝛾) 𝑢̇

′𝛾
ℓ (𝑅MT𝛾)

) (4.18)

of radial boundary values. The required matrix is easily found by the standard way of inverting
a 2 × 2-matrix. With the determinant of the boundary value matrix 𝑊 𝛾

ℓ , it can be written as

𝑈−1
ℓ𝛾 = 1

𝑊 𝛾
ℓ

⎛⎜
⎝

𝑢̇
′𝛾
ℓ (𝑅MT𝛾) −𝑢̇𝛾

ℓ (𝑅MT𝛾)
−𝑢

′𝛾
ℓ (𝑅MT𝛾) 𝑢𝛾

ℓ (𝑅MT𝛾)
⎞⎟
⎠

. (4.19)

This way of determining the matching coefficients by matrix inversion can always be done,
as long as the matrix determinant, i.e. the Wronskian of the radial functions, is finite. It can
easily be shown, that this is always the case, as the Wronskian

𝑊 𝛾
ℓ = 𝑢𝛾

ℓ (𝑅MT𝛾)𝑢̇
′𝛾
ℓ (𝑅MT𝛾) − 𝑢̇𝛾

ℓ (𝑅MT𝛾)𝑢
′𝛾
ℓ (𝑅MT𝛾) = − 2

𝑅2
MT𝛾

≠ 0 (4.20)
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takes on a finite value independent of the form of the radial functions. Please note, that
the Wronskian that is written out by FLEUR is defined with an additional negative prefactor,
yielding a finite positive value. In many parts of the method, that involve radial integrals (in
particular the DFPT implementation), it is convenient to rewrite the matching coefficients.
They are usually paired up with the basis expansion coefficients, to get a new set of parameters,
where the reciprocal vector dependency is already summed over. To distinguish between the
matching coefficients with and without the contraction with the expansion coefficients, we
will refer to them as the large and the small matching coefficients. The large coefficients

(𝐴𝒌𝜈𝛾
ℓ𝑚

𝐵𝒌𝜈𝛾
ℓ𝑚

) = ∑
𝑮

𝑧𝒌𝑮𝜈 (𝑎𝒌+𝑮,𝛾
ℓ𝑚

𝑏𝒌+𝑮,𝛾
ℓ𝑚

) (4.21)

take up less space and make the formalism more elegant on paper as well. To summarize,
the LAPW basis cures both the asymptote problem and the non-linear nature of the APW
eigenvalue problem. The linearization provides enough variational freedom that the energy
parameters no longer need to be set strictly to the band energies. They provide an energy
window in which the eigenenergies will be described accurately enough in most cases. The
computational method is reduced to a single generalized eigenvalue equation for each k-point.
The variational freedom also allows us to lift the shape approximations made before.

FLAPW In the FLAPW [73] method, not only the basis determines the computational workflow and
effort, but also the choice of our expressions for the density and potential. In general, it makes
no restrictions to the shape the potential can take, but rather allows a full expansion of the
MT functions into spherical harmonics and the IR function into plane waves. This enables the
accurate description of atomic quantities and the basis expansion takes the form

𝑛(𝒓) = {
∑𝑮 𝑛IR(𝑮)ei𝑮⋅𝒓, 𝒓 ∈ IR
∑ℓ𝑚 𝑛𝛾ℓ𝑚(𝑟𝛾)𝑌 𝑚

ℓ ( ̂𝒓𝛾) 𝒓 ∈ MT𝛾 , (4.22)

𝑉eff(𝒓) = {
∑𝑮 𝑉eff,IR(𝑮)ei𝑮⋅𝒓, 𝒓 ∈ IR
∑ℓ𝑚 𝑉eff,𝛾ℓ𝑚(𝑟𝛾)𝑌 𝑚

ℓ ( ̂𝒓𝛾) 𝒓 ∈ MT𝛾 . (4.23)

The IR part is cut off at an additional parameter 𝐺max that limits the amount of plane waves
taken into account (|𝑮| < 𝐺max). It needs to be at least twice as big as the basis cutoff 𝐾max
and is taken to be 3𝐾max for accuracy, if not specified otherwise. Along with taking both
core and valence electrons into account in the calculation, this description of the density and
potential constitutes the full-potential part of the all-electron FLAPW method [54, 73, 160].
In the FLEUR code, this expansion of the density and the potential is further broken down into
a symmetrized set of functions, the so-called star-functions [133] in the IR, and symmetrized
spherical harmonics, so-called lattice harmonics [162], in the MT. The stars are constructed
as the sum of all symmetry-equivalent reciprocal lattice vectors, that thus share the same
expansion coefficient up to a phase. They read

𝑓𝑠(𝒓) = 1
𝑁op

∑
op

ei(𝑆𝑮𝑠)(𝒓−𝒕), (4.24)

for a set of 𝑁op symmetry operations {𝑆, 𝒕}. The rotation matrices 𝑆 transform a representative
reciprocal lattice vector 𝑮𝑠 into a set of symmetry equivalents. The lattice harmonics are
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constructed as real-valued combinations of the spherical harmonics exclusively for orbitals
(ℓ, 𝑚) that are allowed under the symmetry of the lattice. They read

𝑌𝛾𝐿(( ̂𝒓𝛾)) = ∑
𝜇(𝐿)

𝑐𝛾
𝐿𝜇𝑌 𝑚(𝐿,𝜇)

ℓ(𝐿) (( ̂𝒓𝛾)). (4.25)

The index 𝐿 enumerates the lattice harmonics and 𝜇(𝐿) is the index of the members of one
specific lattice harmonic. With this, the symmetrized density or potential can be expanded as

𝑋(𝒓) = {
∑𝑠 𝑋IR(𝑠)𝑓𝑠(𝒓), 𝒓 ∈ IR
∑𝐿 𝑋𝛾𝐿(𝑟𝛾)𝑌𝛾𝐿( ̂r𝛾) 𝒓 ∈ MT𝛾 . (4.26)

It should be noted, that the symmetry of quantities perturbed in first order like the density
response generally differs from that of the ground-state system. Due to this, we treat them
without symmetry. In practice, this makes the stars expand back into plane waves (as only
the identity matrix is present as a symmetry operation), while the MT functions are still
described by real-valued (𝑚, −𝑚) combinations of spherical harmonics, albeit all orbitals up
to ℓmax will be allowed. This needs to be taken into account, by keeping track of the lattice
harmonic coefficients 𝑐𝛾

𝐿𝜇. The density and potential constructions for the FLAPW method
will be discussed in later sections. For now we deal with some additional considerations of
the electrons and the basis set at hand.

4.1.3 All-Electron Aspects of the FLAPW Method

RelativismUp to this point, our description of the electrons and the corresponding radial basis was
strictly non-relativistic. It assumed a Schrödinger-like form for the KS equation for a single
particle (2.5), which will break down e.g. for heavy nuclei that lead to high kinetic energies
for the atoms. In such a case, the more general equation to study is the KS Dirac equation for
a spherical potential [134], that can be written as

[𝑐𝜶𝒑 + (𝛽 − 𝐼4)𝑐2 + 𝑉 𝛾
eff,sph] 𝜳 = 𝐸𝑛𝜳, (4.27)

with the main quantum number 𝑛 and the matrices

𝜶 =
3

∑
𝑖=1

̂𝒆𝑖 (02 𝜎𝑖
𝜎𝑖 02

) , 𝛽 = diag(1, 1, −1, −1), 𝐼4 = diag(1, 1, 1, 1). (4.28)

This equation contains relativistic effects, that are usually split-up into e.g. a Darwin term,
the mass-velocity term, and a spin-orbit interaction. It forms a set of four coupled first order
differential equations for the large and small components 𝑔𝜅 and 𝑓𝜅 of both spins. Furthermore,
the total angular momentum 𝜅 is taken into account instead of ℓ. The additional effort for
the core electrons is insignificant in this regard, as their radial functions are determined
from the current potential in each iteration, but the valence electrons are a different case.
Their self-consistent calculation for a four-component wave function instead of a scalar one
increases the size of the Hamiltonian by a factor of 4 in each dimension and thus leads to a
diagonalization step that is 43 times as costly as in a nonmagnetic non-relativistic calculation.
This factor reduces to by half for a collinear calculation and to 23 in a non-collinear setup,
where the spin-channels are already coupled. The coupling is numerically expensive [163],
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which is why we turn to the scalar relativistic approximation (SRA) [164]. It neglects the
spin-orbit interaction of the Dirac equation, separating the spin channels and thus decoupling
the majority and minority spin contributions. This reduces the increase in effort from a factor
of 43 to 2 × 23, which is a lot more feasible. In an already spin-polarized setup, this reduces
down from 32 to only a factor of 8. Spin-orbit coupling can either be reintroduced by an
additional off-diagonal contribution to the Hamiltonian in spin space for a non-collinear setup
or be treated as a small perturbation in second variation, as described in section 2.7. In this
SRA, we want to calculate the relativistic equivalents of the radial basis functions and energy
derivatives determined by equations (4.11) and (4.15) for the valence electrons. We replace
the small component 𝑓𝜅 by 𝛷𝜅 = 𝑓𝜅 + (𝜅 + 1)𝑔𝜅/(2𝑀𝑐𝑟) and identify that in the SRA, the
total angular momentum can be replaced by ℓ due to the relation 𝜅(𝜅 + 1) = ℓ(ℓ + 1). The
scalar relativistic equation for the radial functions then reads

⎛⎜
⎝

−∂𝑟𝛾
2𝑀𝑐

1
2𝑀𝑐

ℓ(ℓ+1)
𝑟2

𝛾
+ 1

𝑐
(𝑉 𝛾

eff,sph − 𝐸𝛾
ℓ ) − 2

𝑟𝛾
− ∂𝑟𝛾

⎞⎟
⎠

(𝑔𝛾
ℓ

𝜙𝛾
ℓ
) (𝑟𝛾) = 0, (4.29)

while that for the corresponding energy derivatives is

⎛⎜
⎝

−∂𝑟𝛾
2𝑀𝑐

1
2𝑀𝑐

ℓ(ℓ+1)
𝑟2

𝛾
+ 1

𝑐
(𝑉 𝛾

eff,sph − 𝐸𝛾
ℓ ) − 2

𝑟𝛾
− ∂𝑟𝛾

⎞⎟
⎠

( ̇𝑔𝛾
ℓ
̇𝜙𝛾
ℓ
) (𝑟𝛾)

+ ⎛⎜
⎝

0 1
𝑐

− 1
4𝑀2𝑐3

ℓ(ℓ+1)
𝑟2

𝛾
− 1

𝑐
0
⎞⎟
⎠

(𝑔𝛾
ℓ

𝜙𝛾
ℓ
) (𝑟𝛾) = 0. (4.30)

In these equations, we introduced a relativistic mass term 𝑀(𝑟𝛾) = 1+(𝐸𝛾
ℓ −𝑉 𝛾

eff,sph(𝑟𝛾))/(2𝑐2).
The resulting functions are normalized akin to the non-relativisitic case and the energy
derivatives are again made orthogonal to them:

⟨(𝑔𝛾
ℓ

𝜙𝛾
ℓ
)∣ (𝑔𝛾

ℓ
𝜙𝛾

ℓ
)⟩

MT𝛾

= 1, ⟨( ̇𝑔𝛾
ℓ
̇𝜙𝛾
ℓ
)∣ (𝑔𝛾

ℓ
𝜙𝛾

ℓ
)⟩

MT𝛾

= 0. (4.31)

From the solutions, we can recover the large component of the SRA directly and the small
component as a linear combination of 𝛷ℓ and the large one. These large and small components
then replace the scalar solution 𝑢ℓ in all further calculations. The scalar-relativistic equivalents
of the matching coefficients equation (4.17) should technically get another dimension to cover
the large and small part of the spinor in the KS Dirac equation. Due to the scalar nature of the
IR basis, however, only the large component is matched against the plane waves, neglecting
the small one.

Core Electrons As mentioned in the previous section, the core electrons are treated fully relativistically due
to a negligible rise in computational effort and their proximity to the nuclei. They give an
additional spherical contribution to the MT density, which will be discussed in the next chapter.
There are no expansion coefficients that are calculated self-consistently for them; they are
solely determined by their energy parameters and the spherical potential. Their wave functions
can be written with a factor containing the Bloch wave vector 𝒌, but this does not carry a
real functional dependence. We will continue the discussion of core electrons in section 4.2.3
about the density generation.

Local Orbitals A well explored way to improve the convergence and quality of (FL)APW calculations is
supplementing the radial basis with additional functions, the so-called local orbitals (LO) [133,
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165, 166]. They can be constructed in different ways for different purposes and have been
used to reduce the linearization error [167, 168], to improve the description of high-lying
unoccupied states [169], and to deal with core electrons, that are high in energy and not
strongly confined. Such semi-core electrons are prominent in the complete left side of the
periodic table and when dealing with heavy elements, as e.g. the 𝑓-electrons have an energy
range that is not well-described by the low energy parameters of the core electrons. There
are different classes of LOs to combat the different problems arising. An exhaustive study
on them can be found in [168], where the terms ”higher derivative local orbital” (HDLO)
and ”higher energy local orbital” (HELO) were coined. The former can be used to go to
higher orders of energy differentiation for the radial functions to both reduce the linearization
error and enlarging the window of well-described energies. The latter, in contrast, forego
the original energy parameters to construct radial functions at a different, higher energy or ℓ.
This effectively opens up a second range of energies, where the electronic structure is well
captured. The LOs are constructed from a radial differential equation similarly to the existing
𝑢𝛾

ℓ and 𝑢̇𝛾
ℓ of a particular ℓ and 𝐸ℓ and added onto them, to form radial terms

𝑅𝛾,LO
ℓ (𝑟𝛾) = 𝑎𝛾,LO

ℓ 𝑢𝛾
ℓ (𝑟𝛾) + 𝑏𝛾,LO

ℓ 𝑢̇𝛾
ℓ (𝑟𝛾) + 𝑐𝛾,LO

ℓ 𝑢𝛾,LO
ℓ (𝑟𝛾). (4.32)

The LO coefficients 𝑎𝛾,LO
ℓ , 𝑏𝛾,LO

ℓ , 𝑐𝛾,LO
ℓ are chosen, such that the radial function and its radial

derivative vanish at the MT boundary and the function is normalized akin to equation (4.12).
Furthermore, in the FLEUR code, these coefficients are multiplied by a phase factor. This
means, e.g. for the first coefficient

𝑎𝒌+𝑮LO,𝛾
ℓ𝑚 = 4πiℓei(𝒌+𝑮LO)⋅𝝉𝛾𝑌 𝑚∗

ℓ ( ̂𝒌 + 𝑮LO) 𝑎𝛾,LO
ℓ /𝑊 𝛾

ℓ . (4.33)

They are matched against a virtual plane wave with reciprocal lattice vector 𝑮LO. Each LO
enlarges the number of radial basis functions by 2ℓ+1, due to the dependence on the magnetic
quantum number 𝑚. This ensures more variational freedom and makes LOs a remedy for the
aforementioned problems. The added matching coefficients ensure their linear independence
and restore the inversion symmetry (if the system exhibits it) by combining several LOs into
real-valued combinations. Furthermore, they gain the same Bloch character with Bloch vector
𝒌 that the rest of the basis has.
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4.2 The Quantum Engine of FLAPW

Generate starting density 𝑛in
1 (𝒓)

Generate 𝑉eff(𝒓)

Set up 𝐻(𝒌) and 𝑆(𝒌)

Solve generalized eigenvalue problem

Synthesize { ̃𝑓𝒌𝜈}, 𝐸F

Synthesize 𝑛out
𝑚 (𝒓)dist < 𝜀SCF?

Mix 𝑛in
𝑚+1 = 𝑓(𝑛out

𝑚 , {𝑛in
𝑚}, 𝛼mix)

Ground-state density 𝑛(0)(𝒓) found

∀𝒌

Yes

No

Figure 4.2: Sketch of the DFT self-consistency workflow for a periodic basis set. On top of the
general structure in 2.2, the (generalized) eigenvalue problem has to be solved for
each Bloch vector 𝒌 by setting up the matrix elements 𝐻/𝑆𝑮′𝑮(𝒌) for the basis set in
question, i.e. the LAPW basis. It does not directly result in the wave functions, but
in expansion coefficients 𝑧𝒌𝑮𝜈 as its eigenvectors. Aside from the resulting k-point
summations for the Fermi energy and output density, the overall structure remains
intact.

The Loop
Structure

Now that we have provided detailed information on each of the facets of the FLAPW method,
from the all-electron character, to the lack of shape approximations, and lastly the form of the
(LO supplemented) basis, it is time to move on to actually providing numerical recipes. From
figure 2.2, the SCF-loop has to be adjusted to contain the loop over the Bloch vectors 𝒌 and the
construction of the basis specific Hamiltonian and overlap matrices. The result of this is shown
in figure 4.2. We refer to the SCF-loop of the FLAPW-DFT method as the quantum engine
of the code, as opposed to the property calculator that takes the results of the ground-state
run to output physical results. For the next section, we will deal with the FLAPW centered
specifications of each step shown in the scheme, starting with the generation of the potential.
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4.2.1 Potential Generation

Coulomb
Potential
Generation

The difficulty of constructing a potential from a given charge density strongly depends on the
underlying method of choice. Specifically, the shape approximations that are or are not made
and the basis in which the quantities are expanded determine the degree of effort. For the
Coulomb part, the central equation to solve is Poisson’s equation

Δ𝑉𝐶(𝒓) = −4𝜋𝑛(𝒓), (4.34)

where the second spatial derivative of the Coulomb potential (cf. equation (2.10) and the
consequent text section) is proportional to the density. If we were to work in a PW basis, we
could easily expand both sides and calculate the Fourier coefficients of the potential from those
of the density. Due to the augmentation with the MT spheres, however, the problem becomes
a lot more involved. Weinert proposed a cohesive recipe to deal with this challenge [170]
and his method of solving Poisson’s equation will be frequently highlighted as a solution to
different problems in the scope of this thesis. It is based on the construction of a pseudodensity
𝑛ps(𝒓), such that the straight-forward PW solution for the IR can be applied to its Fourier
coefficients

𝑉C,IR(𝑮) = (1 − δ𝑮,𝟎)
4𝜋𝑛ps(𝑮)

𝐺2 . (4.35)

Consequently, the potential inside a specific MT can be calculated by solving equation (4.34) as
a Dirichlet boundary value problem with the IR potential already fixed. This leads to a formula
with the appropriate Green’s function for the spherical problem and the MT density, and a
surface integral over the MT boundary with the normal derivative of said Green’s function and
the IR potential. Evaluating the angular integrals gives a form for the MT potential coefficients

𝑉C,𝛾ℓ𝑚(𝑟𝛾) = 4𝜋
2ℓ + 1

∫
𝑅MT𝛾

0
𝑟′2𝑛𝛾ℓ𝑚(𝑟′)

𝑟ℓ
<

𝑟ℓ+1
>

⎛⎜
⎝

1 − (
𝑟>

𝑅MT𝛾
)

2ℓ+1
⎞⎟
⎠

d𝑟′

+ (
𝑟𝛾

𝑅MT𝛾
)

ℓ

4πiℓ ∑
𝑮≠𝟎

ei𝑮⋅𝝉𝛾𝑗ℓ(𝐺𝑅MT𝛾)𝑌 𝑚∗
ℓ ( ̂𝑮) 𝑉C,IR(𝑮), (4.36)

that is only dependent on a radial integration with the variables 𝑟</> = min / max{𝑟′, 𝑟𝛾}.
This provides an easy way to calculate the Coulomb potential. But we have yet to discuss the
construction of the pseudodensity for the interstitial potential generation. It is based on the
idea of slightly refactoring the density and subsequently representing it as a Fourier series. In
practice, the reformulation looks as follows:

𝑛(𝒓) = ΘIR(𝒓)𝑛IR(𝒓) + ∑
𝛾

Θ𝛾(𝒓)𝑛𝛾(𝒓)

= 𝑛IR(𝒓) + ∑
𝛾

Θ𝛾(𝒓)(𝑛𝛾(𝒓) − 𝑛IR(𝒓))

→ 𝑛IR(𝒓) + 𝑛MT,ps(𝒓) = ∑
𝑮

(𝑛IR(𝑮) + 𝑛MT,ps(𝑮)) ei𝑮⋅𝒓. (4.37)

In this we introduced a pseudodensity for the MT region, that can be smoothly expanded
into plane waves and reproduces the correct multipole moments of the true MT density. This
kind of pseudodensity can be inserted into equation (4.35). The only task remaining is to
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express it in a closed form. This can be done by expressing the charge in the MT through
multipole moments of the MT density and multipole moments of the IR density continued to
the MT region, so the pseudodensity will reproduce the same moments by construction. The
necessary equations are

𝑛MT,ps(𝑮) = δ𝑮,𝟎

√
4𝜋
Ω

∑
𝛾

̃𝑞𝛾
00 (4.38)

+(1 − δ𝑮,𝟎)4𝜋
Ω

∑
𝛾ℓ𝑚

(−i)ℓ (2ℓ + 2𝑁 + 3)!!
(2ℓ + 1)!!

𝑗ℓ+𝑁+1(𝐺𝑅MT𝛾)
(𝐺𝑅MT𝛾)𝑁+1 ̃𝑞𝛾

ℓ𝑚e−i𝑮⋅𝝉𝛾𝑌 𝑚
ℓ ( ̂𝑮)

̃𝑞𝛾
ℓ𝑚 = 𝑞𝛾

ℓ𝑚 − 𝑞𝛾,ps
ℓ𝑚 (4.39)

𝑞𝛾
ℓ𝑚 = ∫

MT𝛾
𝑌 𝑚∗

ℓ ( ̂𝒓𝛾) 𝑟ℓ
𝛾𝑛(𝒓)d𝒓𝛾 (4.40)

𝑞𝛾,ps
ℓ𝑚 = δℓ,0

√
4𝜋
3

𝑅3
MT𝛾𝑛IR(𝟎)

+4𝜋 ∑
𝑮≠𝟎

iℓ𝑅ℓ+3
MT𝛾

𝑗ℓ+1(𝐺𝑅MT𝛾)
𝐺𝑅MT𝛾

𝑛IR(𝑮)ei𝑮⋅𝝉𝛾𝑌 𝑚∗
ℓ ( ̂𝑮) (4.41)

The derivation of these quantities requires repeated expansions of plane waves into spherical
harmonics (like for the construction of the matching coefficients) and a study of the numerical
properties of the convergence factor (i.e. the fractions) in the pseudodensity sum. It is
influenced by the freely adjustable parameter 𝑁, for which Weinert gives a table of suitable
values [170]. FLEUR automatically provides such values without the need of specifying them
in the input. For the construction of the true multipole moments and the MT boundary value
problem, the full density needs to be considered, the electronic and ionic part that is. That
means the point charges at the MT centers also contribute.

The xc Potential Now that the Coulomb part of the potential is well described, we turn to the description of the
exchange-correlation potential. It was defined in equation (2.11c) as the functional derivative
of the xc energy functional with respect to the density. For the LDA, that we use in this work,
the result of this differentiation is straight-forward:

𝑉xc(𝒓) = 𝜀xc(𝑛(𝒓)) + 𝑛(𝒓)
∂𝜀xc(𝑛(𝒓))

∂𝑛(𝒓)
. (4.42)

This means, that the exact form of the potential solely depends on the functional dependence
of the xc energy density on the density and, consequently, its derivative. This can of course be
a non-trivial function to differentiate (FLEUR provides only a selection of the most popular
LDA and GGA functionals that are hardcoded), but this task is simplified greatly, when the
libxc library of functionals is employed [171]. For a given density (or in the case of more
advanced functionals additional input like the density gradient etc.) in real space, it constructs
both the xc energy density and its derivative analytically and returns the corresponding values
at the same real space points. The xc potential is thus constructed from the density in three
steps. i) Transforming the density from coefficient space into real space by multiplying it
with the lattice harmonics in the MT regions on a grid of points in the sphere and Fourier
transforming the Fourier components in the IR on a dense real space grid. ii) Evaluating the
xc quantities in real space with the use of libxc. iii) Transforming the real space quantities
back into coefficient space. These coefficients can then be added onto those of the Coulomb
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potential to gain the full effective potential. This concludes our summary of the potential
generation and we move on to the next step of the SCF loop.

4.2.2 Matrix Setup and Diagonalization

As shown in equation (4.13), the setup of the Hamiltonian and overlap matrices in an (L)APW
basis consists of more terms than the simple PW potential integral. Here we highlight the fully
evaluated form these contributions take, starting with terms that stem from the IR quantities.
The unit cell integral involving the IR potential amounts to a convolution of it and the step
function in reciprocal space, as it is a product of the same in real space. In practice, the step
function and potential are actually Fourier transformed onto a real space grid, multiplied into
a warped potential ̃𝑉eff(𝒓) = ΘIR(𝒓)𝑉eff(𝒓), and then transformed back - akin to the procedure
for the xc potential generation. The integration results in a contribution ̃𝑉 (𝑮 − 𝑮′) to the
Hamiltonian matrix element. The second contribution is the kinetic energy term, that involves
the application of the Laplace operator to the plane wave and the evaluation of the step
function. The same evaluation needs to be done for the overlap matrix, yielding the IR matrix
elements

𝐻 IR
𝑮′,𝑮(𝒌) = ̃𝑉 (𝑮 − 𝑮′) +

|𝒌 + 𝑮|2

2
ΘIR(𝑮 − 𝑮′), (4.43)

𝑆IR
𝑮′,𝑮(𝒌) = ΘIR(𝑮 − 𝑮′). (4.44)

The MT contributions to the matrices decompose into a spherical part and a non-spherical
one, the latter of which only contributes to the Hamiltonian. Evaluating the MT integral of
the basis functions gives an overlap contribution

𝑆MT
𝑮′,𝑮(𝒌) = ∑

𝛾ℓ𝑚
𝑎𝒌+𝑮′,𝛾∗

ℓ𝑚 𝑎𝒌+𝑮,𝛾
ℓ𝑚 + 𝑏𝒌+𝑮′,𝛾∗

ℓ𝑚 𝑏𝒌+𝑮,𝛾
ℓ𝑚 ⟨𝑢̇𝛾

ℓ |𝑢̇𝛾
ℓ ⟩MT𝛾. (4.45)

The spherical Hamiltonian looks similar. We make use of the defining differential equations of
the radial functions (4.11) and energy derivatives (4.15), to find

𝐻MT,sph
𝑮′,𝑮 (𝒌) = ∑

𝛾ℓ𝑚
𝐸𝛾

ℓ 𝑎𝒌+𝑮′,𝛾∗
ℓ𝑚 𝑎𝒌+𝑮,𝛾

ℓ𝑚 + 𝑎𝒌+𝑮′,𝛾∗
ℓ𝑚 𝑏𝒌+𝑮,𝛾

ℓ𝑚

+𝐸𝛾
ℓ 𝑏𝒌+𝑮′,𝛾∗

ℓ𝑚 𝑏𝒌+𝑮,𝛾
ℓ𝑚 ⟨𝑢̇𝛾

ℓ |𝑢̇𝛾
ℓ ⟩MT𝛾. (4.46)

In the non-spherical part, the integral over the spherical harmonics in the basis does not
directly collapse the sum, as there is a third factor from the potential term. This is tantamount
to saying that the three spherical harmonics form Gaunt coefficients instead of Kronecker
deltas when integrated. For the purposes of this thesis, we define them by

𝐺𝑚′,𝑚″,𝑚
ℓ′,ℓ″,ℓ ≔ ∮

∂𝐵1(𝟎)
𝑌 𝑚′∗

ℓ′ ( ̂r)𝑌 𝑚″

ℓ″ ( ̂r)𝑌 𝑚
ℓ ( ̂r)d𝑆. (4.47)

The integration domain is the ball of radius 1 around the origin. They only have a finite
value, when a) the relation 𝑚′ = 𝑚 + 𝑚″ and b) the triangle inequality |ℓ − ℓ″| ≤ ℓ′ ≤ ℓ + ℓ″

are fulfilled. We use the coefficients to first integrate out the radial dependencies of the
non-spherical Hamiltonian matrix:

𝑡𝛾(⋅)(⋅)
ℓ′𝑚′ℓ𝑚 ≔ ⟨

(⋅)
𝑢

𝛾
ℓ′𝑌 𝑚′

ℓ′ |𝑉 𝛾
eff,nsph|

(⋅)
𝑢

𝛾
ℓ 𝑌 𝑚

ℓ ⟩𝛾 = ∑
ℓ″≥1,𝑚″

𝐺𝑚′,𝑚″,𝑚
ℓ′,ℓ″,ℓ ⟨

(⋅)
𝑢

𝛾
ℓ′|𝑉eff,𝛾ℓ″𝑚″|

(⋅)
𝑢

𝛾
ℓ ⟩𝛾. (4.48)
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These t-coefficients form a matrix 𝑡 in the space spanned by the superindices (ℓ𝑚(⋅)), where
the (⋅) discriminates between radial functions and their energy derivatives. If we define a
supervector in these same indices from the matching coefficients of both the radial functions
and energy derivatives, 𝒂𝒌+𝑮,𝛾 = (𝑎𝒌+𝑮,𝛾

00 , ..., 𝑎𝒌+𝑮,𝛾
ℓmaxℓmax

, 𝑏𝒌+𝑮,𝛾
00 , ..., 𝑏𝒌+𝑮,𝛾

ℓmaxℓmax
)⊤, we can efficiently

cast the Hamiltonian matrix elements as the result of a linear algebra problem and write

𝐻MT,nsph
𝑮′,𝑮 (𝒌) = ∑

𝛾
𝒂𝒌+𝑮′,𝛾† ⋅ 𝑡𝛾 ⋅ 𝒂𝒌+𝑮,𝛾. (4.49)

This constitutes a problem with big matrices and vectors well-suited for the application of
GPU computing power. In practice, the higher ℓ contributions will contribute less and less
to the matrix element and in FLEUR, an additional cutoff ℓnsph is introduced, that limits the
extent of 𝑡.

LO Contributions Until now, only the radial functions and energy derivatives to the MT matrices were discussed.
There will be combinations of these functions with local orbitals and LO-LO combinations
that contribute as well. They are constructed in a very similar way to the MT part of the basic
Hamiltonian. But there is one key difference: The local orbitals are only artificially matched
to the IR, as their radial part vanishes at the MT boundaries. This means they are completely
independent of the plane waves and each LO constitutes an additional linearly independent
basis function. This means the number of possible states in the system is also increased. The
LOs are thus not summed onto the rest of the Hamiltonian and overlap, but rather extend its
size in each dimension by the total number of LOs in the system 𝑁LO = ∑LO(2ℓLO + 1).

Symmetrization
and Occupations

The Hamiltonian of a solid state system should by definition be a self-adjoint operator and
thus the constructed matrix is to be Hermitian. In practice, FLEUR ensures this by calculating
parts of the Hamiltonian slightly differently. In particular, the Laplace operator in the KS
equation is made to not only apply to the basis function on its right, but averaged between
working to the left and to the right. This modifies the kinetic energy term in the IR (4.43)
and the spherical Hamiltonian term in the MT (4.46):

|𝒌 + 𝑮|2

2
⟶

|𝒌 + 𝑮′|2 + |𝒌 + 𝑮|2

4
, (4.50)

𝑎𝒌+𝑮′,𝛾∗
ℓ𝑚 𝑏𝒌+𝑮,𝛾

ℓ𝑚 ⟶ 1
2

(𝑎𝒌+𝑮′,𝛾∗
ℓ𝑚 𝑏𝒌+𝑮,𝛾

ℓ𝑚 + 𝑏𝒌+𝑮′,𝛾∗
ℓ𝑚 𝑎𝒌+𝑮,𝛾

ℓ𝑚 ) . (4.51)

Once all eigenenergies and expansion coefficients are determined by solving equation (4.2)
for the symmetrized Hamiltonian, the state-dependent information for the iteration is fully
determined. From the eigenenergy spectrum, the Fermi energy and the occupation of each
state is determined by iterating from an initial guess 𝐸F = max{𝜀𝒌𝜈} as described in section 2.4.
The index 𝜈 counts all states ordered by energy, that sum up to just below the electron count,
when no smearing is applied. The only amendment is, that now the (fractionally) occupied
states for all Bloch vectors need to add up to the total electron count, adding an additional
index to the occupation numbers ̃𝑓𝒌𝜈 as discussed for equation (3.6).

4.2.3 Density Generation

Valence Electron
Density

The determination of the expansion coefficients and occupation numbers enables the calcula-
tion of the electron density of the system. For this we once again look at the IR and MT region
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separately. For the plane wave functions, the expansion coefficients are Fourier transformed
(FT) onto a real space grid and normalized with the volume of the unit cell, to find the wave
functions

𝜓𝒌𝜈(𝒓) = 1√
Ω
FT[𝑧𝒌𝑮𝜈] = 1√

Ω
∑
𝑮

𝑧𝒌𝑮𝜈ei𝑮⋅𝒓, (4.52)

which are then squared, weighted with the occupation numbers, and summed up for each
Bloch vector. The phase factor from the k-point itself is neglected, as it vanishes through this
procedure. This yields the Fourier coefficients for the density of a specific 𝒌

𝑛IR,𝒌(𝑮) = IFT[∑
𝜈

̃𝑓𝒌𝜈|𝜓𝒌𝜈(𝒓)|2] (4.53)

when transformed back (inverse Fourier transform IFT) into coefficient space. Evaluating
the sum over all Bloch vectors then yields the Fourier coefficients of the full valence electron
density. The same contribution for the MT spheres is constructed in a different way. First, the
wave function in a specific MT 𝛾

𝜓𝛾
𝒌𝜈(𝒓) = ∑

𝑮
𝑧𝒌𝑮𝜈𝜙𝛾

𝒌𝑮(𝒓) = ∑
ℓ𝑚

(𝐴𝒌𝜈𝛾
ℓ𝑚 𝑢𝛾

ℓ (𝑟𝛾) + 𝐵𝒌𝜈𝛾
ℓ𝑚 𝑢̇𝛾

ℓ (𝑟𝛾)) 𝑌 𝑚
ℓ ( ̂r𝛾) (4.54)

is expressed in terms of the large matching coefficients. From there, the idea is to reduce the
formula down to a sum of weighted radial functions and energy derivatives, i.e. summing over
all indices besides the angular quantum numbers for each Bloch vector and then evaluating the
sum over all Bloch vectors as it is done in the IR case. In this spirit, the full density coefficient
of atom 𝛾 can be written with the summed prefactors 𝑑𝒌𝛾

ℓ′ℓℓ″(⋅)′(⋅) as

𝑛𝛾ℓ″𝑚″(𝑟𝛾) = ∑
𝒌𝜈

̃𝑓𝒌𝜈 ∑
ℓ′𝑚′(⋅)′

ℓ𝑚(⋅)

𝐴𝒌𝜈𝛾∗
ℓ′𝑚′(⋅)′

(⋅)′

𝑢
𝛾

ℓ′(𝑟𝛾)𝐴𝒌𝜈𝛾
ℓ𝑚(⋅)

(⋅)
𝑢

𝛾
ℓ (𝑟𝛾)𝐺𝑚,𝑚″,𝑚′

ℓ,ℓ″,ℓ′

= ∑
𝒌

∑
ℓ′(⋅)′

ℓ(⋅)

𝑑𝒌𝛾
ℓ′ℓℓ″(⋅)′(⋅)

(⋅)′

𝑢
𝛾

ℓ′(𝑟𝛾)
(⋅)
𝑢

𝛾
ℓ (𝑟𝛾). (4.55)

As was the case when constructing the matrix elements, the selection of certain channels
(ℓ″𝑚″) leads to integrals over three spherical harmonics and consequently to the evaluation
of Gaunt coefficients. With these formulae, the valence density coefficients can be constructed
component wise within the Bloch vector loop, alongside the IR Fourier coefficients. The
summation over the radial functions can be done after the loop and is computationally cheap.

Core Electron
Density

The core electron density 𝑛core is constructed separately from the valence contribution. As
mentioned before, the core electrons are assumed to be confined to their respective MT sphere
and to have their radial functions vanish at the MT boundary. This leads to a description of the
MT through spherically symmetric functions, when the (occupied) core states are summed over
all relevant quantum numbers (expressed as a composite index 𝑐 = (𝑛ℓ𝑚ℓ) for the quantum
numbers of the Schrödinger equation or 𝑐 = (𝑛𝑗𝑚𝑗) for the relativistic Dirac case). The
corresponding MT coefficients read

𝑛core,𝛾00(𝑟𝛾) =
√

4𝜋 ∑
𝑐

|𝜓𝑐(𝑟𝛾)|2. (4.56)
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Here, there is once again a distinction between large and small components due to the
relativistic nature of the Dirac equation, which we omit for the sake of brevity. If the core
electrons are sufficiently confined to their MT spheres, this description is enough to describe
their contribution to the density. Conversely, if there are high-lying core states that are not
properly modeled by taking additional LOs into account there can be a leakage of charge into
the interstitial region. Usually, when the leakage is small, the resulting leaked charge can be
subtracted from the overall charge 𝑄core of the core electrons and then smoothly distributed
by averaging it with respect to the IR volume. This gives an additional 𝑮 = 𝟎 contribution to
the Fourier coefficients

𝑛core,IR(𝑮 = 𝟎) = (𝑄core − ∑
𝛾

∫
𝑅MT𝛾

0
𝑟2

𝛾𝑛core,𝛾00(𝑟𝛾)𝑌 0
0 d𝑟𝛾) /ΩIR. (4.57)

Another way to deal with cases of bigger leakage is the proper description of the leaking
core-tails [172] through a proper Fourier transform onto the IR density coefficients and a
subsequent continuation into the other MT spheres. For this, the core density is first modeled
by a Gaussian in the MT as

𝑛̃𝛾
core(𝒓𝛾) = {

𝐴𝛾e−𝑎𝛾𝑟2
𝛾, 𝑟𝛾 ≤ 𝑅MT𝛾

𝑛core,𝛾00(𝑟𝛾)𝑌 0
0 , else

, (4.58)

where the coefficients are determined as to ensure a continuous and differentiable function at
the MT boundary. 𝑛̃𝛾

core can be seen as the density of the core-tails leaking into the interstitial
and other MT spheres. The Fourier coefficients of the resulting IR core-tail density are

𝑛ct,IR(𝑮) = ∑
𝛾

e−i𝑮⋅𝝉𝛾⏟
𝑆𝛾(𝑮)

1
Ω

∫
𝛾

𝑛̃𝛾
core(𝒓𝛾)d𝒓𝛾

⏟⏟⏟⏟⏟⏟⏟
𝐹𝛾(𝑮)

, (4.59)

where we defined the structure factor 𝑆𝛾(𝑮) and the form factor 𝐹𝛾(𝑮). Once the latter is
determined, they can be used to calculate the density

𝑛̃𝛾
ct,𝛾′ℓ𝑚(𝒓𝛾) = 4𝜋iℓ ∑

𝑮
𝑆𝛾(𝑮)𝐹𝛾(𝑮)𝑆∗

𝛾′(𝑮)𝑌 𝑚∗
ℓ (Ĝ)𝑗ℓ(𝐺𝑟𝛾′) (4.60)

induced in a MT sphere 𝛾′ ≠ 𝛾 by the core-tail of atom 𝛾. Adding the core electron density to
the valence contribution finally gives the full density of the electrons. To ensure the charge
neutrality of the system, at this point it is normally checked that the unit cell integral of the
charge density reproduces the total electronic charge. If there are slight deviations, the density
is corrected by a global factor on all coefficients, so the condition is met.

4.2.4 Total Energy and Mixing

Calculating the
Total Energy

In contrast to the general and unspecific total energy calculation in KS DFT (equation (2.13)),
the application of the FLAPW method in a periodic lattice directly affects the evaluation
of the density-potential and xc integral terms, as well as the ion-ion interaction. A way of
dealing with the latter term, that has to explicitly avoid self-interaction by prohibiting the
combination of an atom with itself in the summation, was proposed by Weinert, Wimmer, and
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Freeman [173]. In their seminal paper, the electron-ion and ion-ion interaction are grouped
into a Madelung term, that can be used to construct a boundary problem and cancel out the
divergent ionic self-interaction. Thus, the total energy reduces to a form

𝐸tot = ∑
𝒌𝜈

̃𝑓𝒌𝜈𝜀𝒌𝜈 − 1
2

⎡
⎢
⎣

∫
Ω

𝑛(𝒓)𝑉C(𝒓)d𝒓 + ∑
𝛾

𝑍𝛾 ⟨
𝑛(𝒓𝛾)

𝑟𝛾
⟩

𝛾

⎤
⎥
⎦

−1
2

∑
𝛾

𝑍𝛾

𝑅MT𝛾
[𝑅MT𝛾 ̄𝑉C(𝑅MT𝛾) + 𝑍𝛾 − 𝑄𝛾]

+ ∫
Ω

𝑛(𝒓) [𝜀xc[𝑛](𝒓) − 𝑉xc(𝒓)] d𝒓 − 𝑇 𝑆, (4.61)

where the average Coulomb potential ̄𝑉C(𝑅MT𝛾) at the boundary of the MT sphere 𝛾 and the
electronic charge 𝑄𝛾 in said sphere were introduced. ⟨...⟩ indicates the radial integral of a
function in the same sphere. This form can easily be handled numerically and relies solely
on quantities that are already calculated during the iteration. Only the evaluation of the
unit cell integrals needs to be discussed. For this we recall the representation of the density
(equation (4.22)) and potential (equation (4.23)) in plane waves and spherical harmonics, or
rather the symmetrized form of stars and lattice harmonics in equation (4.26). The integral
over a product of two such functions reduces to a scalar product of their respective coefficients
due the orthogonality of the basis in which they are expanded. Hence we can write for two
arbitrary functions 𝑋, 𝑌 in this representation

∫
Ω

𝑋IR(𝒓)𝑌IR(𝒓)d𝒓 = Ω ∑
𝑠

𝑋∗
IR(𝑠)𝑌IR(𝑠), (4.62)

∫
𝛾

𝑋𝛾(𝒓𝛾)𝑌𝛾(𝒓𝛾)d𝒓𝛾 = ∑
𝐿

∫
𝛾

𝑟2
𝛾𝑋𝛾𝐿(𝑟𝛾)𝑌𝛾𝐿(𝑟𝛾)d𝑟𝛾. (4.63)

In practice, the IR integral will contain the step function ΘIR as well to cut out the MT region
and we need a proper way to execute the radial integration there. These points will be
addressed in the following section on mixing, where the general form is further evaluated to
reduce unit cell integrals to a matrix-vector operation with real coefficients.

Mixing in the
FLAPW Method

To conclude the discussion of the SCF iteration, there needs to be a specification of the general
mixing scheme in section 2.5, that is tailored to the representation of the charge density in
the FLAPW method. That means finding a closed form for the distance in equation (2.21)
expressed in the star and lattice harmonic coefficients. If we define the difference between
the input and output densities of iteration 𝑚 as a function 𝛥(𝒓), we find

dist (𝑛out
𝑚 , 𝑛in

𝑚) = √ 1
Ω

∫
Ω

𝛥2(𝒓)d𝒓 (4.64)

for the unit cell volume Ω and the task at hand is the solution of a unit cell integral

∫
Ω

𝛥2(𝒓)d𝒓 = ∫
Ω

ΘIR(𝒓)𝛥2(𝒓)d𝒓 + ∑
𝛾

∫
𝛾

𝛥2(𝒓𝛾)d𝒓𝛾. (4.65)

Let us first investigate the IR contribution. It is expanded in stars and weighted with the
IR step function, that is expanded the same way. This can be rewritten as a product of only
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two star function, when the coefficients of the step function and one of the 𝛥 functions are
convoluted. It can be seen as applying a metric 𝑔 to the star coefficients of 𝛥. We implicitly
define the function ̃𝛥, where this is already done, and use the orthogonality of the stars to
write

∫
Ω

ΘIR(𝒓)𝛥2(𝒓)d𝒓 = ∫
Ω

𝛥∗(𝒓) (ΘIR𝛥)⏟
𝛥̃

(𝒓)d𝒓 = ∑
𝑠

𝛥∗(𝑠) ̃𝛥IR(𝑠). (4.66)

In the MT, the procedure is analogous. The integration over the spheres is transformed into
numerical integration with function values and integration weights at the radial grid points
𝑟𝑖

𝛾, that can also be seen as a metric 𝑔 to multiply with 𝛥, and the orthogonality of the lattice
harmonics is used. This leads to

∫
𝛾

𝛥2(𝒓𝛾)d𝒓𝛾 = ∑
𝐿𝑖

𝛥(∗)
𝛾𝐿(𝑟𝑖

𝛾) 𝑔(𝑟𝑖
𝛾)𝛥𝛾𝐿(𝑟𝑖

𝛾)⏟⏟⏟⏟⏟
𝛥̃

= ∑
𝐿𝑖

𝛥𝛾𝐿(𝑟𝑖
𝛾) ̃𝛥𝛾𝐿(𝑟𝑖

𝛾). (4.67)

The two complementary descriptions of IR and MT allow for an elegant description of the
mixing procedure: A real-valued mixing vector 𝜟 is defined, that contains all the star and
lattice harmonic coefficients (the former of which are split into their real and imaginary part
and the latter are evaluated at the radial grid points). The metric is applied to it and then
the scalar product with the initial mixvector is calculated. Formally, this can be written as a
multiplication of vectors with a matrix 𝑔 representing the metric:

∫
Ω

𝛥2(𝒓)d𝒓 = 𝜟⊤𝑔𝜟. (4.68)

From this, the distance between two charge density iterations can finally be calculated. It
gives a measure of convergence of the SCF procedure and allows for the supervision of the
process. After the densities are mixed, the resulting new input density enters the loop in the
next iteration and all the steps in this section are repeated, until the distance falls under a
preset threshold. This closes the discussion of the FLAPW SCF loop.

4.3 Adapting DFPT to FLAPW

4.3.1 Correction Terms of the Position-Dependent Basis

Correction Terms After specifying the workflow for a ground-state density calculation to the FLAPW method, the
same needs to be done for the DFPT framework. In the self-consistent workflow that links the
wave function, density, and potential responses, each step has to be tailored to the specifics of
the formalism. This becomes prominent for the first time in the LAPW basis functions (4.16)
that are used to expand the wave functions in equation (4.1). The difficulty, as opposed to
the basic formalism outlined in section 3.5, is the dependency of the LAPW basis set on the
atomic positions. They are directly related to the phononic perturbation at hand, which is
reflected in the wave functions subdividing into two parts: a part that can be expressed in the
original set of basis functions, i.e. living in the same Hilbert space and thus marked with a
subscript ||, and a part that is orthogonal to the original basis, with a subscript ⟂:

𝜓(1)𝛽𝑗+
𝒌𝒒𝜈 (𝒓) = ∑

𝑮
𝑧(1)𝛽𝑗+

𝒌𝑮𝒒𝜈 𝜙𝒌𝑮𝒒(𝒓) + 𝑧𝒌𝑮𝜈 ∑
𝑹

ei𝒒⋅𝑹𝜙(1)𝛽𝑹𝑗
𝒌𝑮 (𝒓)

= 𝜓(1)𝛽𝑗+
||,𝒌𝒒𝜈 (𝒓) + 𝜓(1)𝛽𝑗+

⟂,𝒌𝒒𝜈 (𝒓). (4.69)
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The part outside the original Hilbert space directly follows from the response of the basis
to a shift of the atomic positions. It can be analytically derived from equation (4.16). The
perturbation only acts on the basis function in the specific MT and unit cell, where the displaced
atom is located. It consists of three parts: i) a derivative of the matching coefficients, that
gives an imaginary prefactor, ii) a response term linked to the perturbation of the radial basis
functions and energy derivatives, and iii) a gradient term, that stems from the differentiation
of the spatial dependency of the basis function. The latter two form the incomplete basis
set correction (IBC). The second term is assumed to be negligible, which leads to the so-
called frozen-augmentation approximation [80] to the basis response. It is equivalent to
taking the Pulay corrections [174] to the basis into account, while neglecting the radial basis
response [175]:

𝜙(1)𝛽𝑹𝑗
𝒌𝑮 (𝒓) = Θ𝛽𝑹(𝒓)(i(𝒌 + 𝑮) − ∇)𝑗𝜙

𝛽𝑹
𝒌𝑮(𝒓). (4.70)

The part of the response not contained in the original basis is solely the gradient term, which
will be of further interest at different points in the calculation.

The shift of the atomic coordinates has another side effect, however. It changes the range of
integration for integrals over the unit cell, when they contain the displaced MT. This means,
if such an integral is differentiated with respect to the perturbation, there will be additional
surface terms arising. These are dependent on the normal vector ̂𝒆𝑟 of the MT surface and
consist of an MT contribution as well as an interstitial term with a negative prefactor. This
can be expressed as a surface integral of the discontinuity at the MT boundary:

∂
∂𝜏𝛽𝑹𝑗

∫ 𝑋(𝒓)d𝒓 = ∫
∂𝑋(𝒓)
∂𝜏𝛽𝑹𝑗

d𝒓 + ∮
∂𝛽𝑹

[𝑋(𝒓)]SF ̂𝒆𝑟,𝑗d𝑆, (4.71)

[𝑋(𝒓)]SF ≔ 𝑋MT(𝒓) − 𝑋IR(𝒓). (4.72)

Such terms appear frequently both in solving the Sternheimer equation and in calculating the
dynamical matrix.

It is useful to keep two reformulations in mind. Firstly, through a variant of Gauss’ theorem,
the integral over a closed surface of a scalar function can be rewritten into an integral over
the contained volume of the function’s gradient. Secondly, splitting the unit cell integral into
the MT and IR before differentiating and expressing the IR as an integration over the original
function modulated with the IR step function, the IR surface integral can be associated with
the differentiated term, that contains a perturbation of said step function. The resulting
formulae are

∮
∂𝛽𝑹

𝑋MT(𝒓) ̂𝒆𝑟,𝑗d𝑆 = ∫
𝛽𝑹

∇𝑗𝑋(𝒓)d𝒓, (4.73a)

− ∮
∂𝛽𝑹

𝑋IR(𝒓) ̂𝒆𝑟,𝑗d𝑆 = ∫
∂ΘIR(𝒓)
∂𝜏𝛽𝑹𝑗

𝑋(𝒓)d𝒓 = ∫ Θ(1)𝛽𝑹𝑗
IR (𝒓)𝑋(𝒓)d𝒓. (4.73b)

These identities will be used frequently to recast MT surface integrals into gradient terms,
that can then be used to cancel out those stemming from the basis response. This improves
the algorithm’s stability, as the numerical handling (e.g. integration) of such gradient terms
can be problematic. This is due to the fact, that e.g. the gradient of the density has to be
calculated numerically which can lead to problems both near the core, where the density
becomes negligible, and near the MT boundary, where the spacing between the radial grid
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points is largest due to the choice of a logarithmic grid. Furthermore, something of note
about the first order responses of real-space quantities is their similarity to a gradient of the
same function. Their calculation involves differentiation with respect to the atomic positions,
which e.g. for the external potential is exactly the same as taking its gradient (baring a minus
sign). While this similarity is more implicit in other quantities, this gives them something
like a ”gradient character” in the MT of the displaced atom. They are therefore best handled
numerically, when the gradient is added in this MT for the same displacement direction. As
this will be done frequently, e.g. in the evaluation of matrix elements in equation (4.89), we
introduce a notation for this grouping of responses and gradients:

𝑋(1)𝛽𝑹𝑗∇(𝒓) ≔ 𝑋(1)𝛽𝑹𝑗(𝒓) + Θ𝛽𝑹(𝒓)∇𝑗𝑋(𝒓). (4.74)

4.3.2 First Order Energy Derivatives

Now that the general numerical and conceptional difficulties have been pointed out, it is time to
figure out which quantities need to be calculated for the construction of the dynamical matrix.
For this calculation, as given in equation (3.21), the second order energy derivative is required.
This section gives a short derivation of its closed form. Starting from equation (2.13) with the
added entropy term, the construction of the first order energy response for a displacement of
atom 𝛼𝑹 into the 𝑖-direction leads to a long assortment of terms, due to both the application
of the product rule in integral contributions and the explicit treatment of the resulting surface
corrections:

𝐸(1)𝛼𝑹𝑖
tot = ∑

𝒌𝜈
[ ̃𝑓 (1)𝛼𝑹𝑖

𝒌𝜈 𝜀𝒌𝜈 + ̃𝑓𝒌𝜈𝜀(1)𝛼𝑹𝑖
𝒌𝜈 ] − 𝑇 𝑆(1)𝛼𝑹𝑖 (4.75a)

+ ∫ 𝑛(1)𝛼𝑹𝑖(𝒓) [−𝑉eff(𝒓) + 1
2

𝑉H(𝒓) + 𝑉ext(𝒓) + 𝜀xc[𝑛](𝒓)] d𝒓 (4.75b)

+ ∫ 𝑛(𝒓) [−𝑉eff(𝒓) + 1
2

𝑉H(𝒓) + 𝑉ext(𝒓) + 𝜀xc[𝑛](𝒓)]
(1)𝛼𝑹𝑖

d𝒓 (4.75c)

+ ∮
∂𝛼𝑹

[𝑛(𝒓) [−𝑉eff(𝒓) + 1
2

𝑉H(𝒓) + 𝑉ext(𝒓) + 𝜀xc[𝑛](𝒓)]]
SF

̂𝒆𝑟,𝑖d𝑆 (4.75d)

+𝐸(1)𝛼𝑹𝑖
ii . (4.75e)

This lengthy formula can be reduced piece by piece by employing identities that either hold
for the system or can be easily derived. Firstly, the contributions from the occupation number
and entropy responses in line (4.75a) directly cancel out. This is what the entropy term was
introduced for in [125], as making

∑
𝒌𝜈

̃𝑓 (1)𝛼𝑹𝑖
𝒌𝜈 𝜀𝒌𝜈 − 𝑇 𝑆(1)𝛼𝑹𝑖 = 0. (4.76)

vanish keeps the formulation variational to first order. Secondly, an explicit form for the
perturbed Hartree potential can be constructed. It takes on a Hartree-like form again, only
with respect to the density response instead of the density itself:

𝑉 (1)𝛼𝑹𝑖
H (𝒓) = ∂

∂𝜏𝛼𝑹𝑖
∫

𝑛(𝒓′)
|𝒓 − 𝒓′|

d𝒓′

= ∫
𝑛(1)𝛼𝑹𝑖(𝒓′)

|𝒓 − 𝒓′|
d𝒓′ + ∮

∂𝛼𝑹

[𝑛(𝒓′)]SF
|𝒓 − 𝒓′|

̂𝒆𝑟,𝑖d𝑆′. (4.77)
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As this form is integrated over once more in line (4.75c), the integrations can be interchanged
to reveal a form very alike to the rest of the integral contributions in lines (4.75b) and (4.75d):

∫ 𝑛(𝒓)𝑉 (1)𝛼𝑹𝑖
H (𝒓)d𝒓 = ∫ 𝑛(1)𝛼𝑹𝑖(𝒓)𝑉H(𝒓)d𝒓 + ∮

∂𝛼𝑹
[𝑛(𝒓)𝑉H(𝒓)]SF ̂𝒆𝑟,𝑖d𝑆. (4.78)

In a similar way, the response of the xc energy density in line (4.75c) is recast into a form
dependent on the density response. This is done by applying the chain rule of differentiation
and leads to

(𝜀xc[𝑛](𝒓))(1)𝛼𝑹𝑖 = 𝑛(1)𝛼𝑹𝑖(𝒓)
𝛿𝜀xc[𝑛]
𝛿𝑛(𝒓)

. (4.79)

This can be grouped with the xc term from line (4.75b), to instead find an integral of
𝑛(1)𝛼𝑹𝑖(𝒓)𝑉xc(𝒓). With these considerations, equation (4.75) can be drastically simplified,
yielding

𝐸(1)𝛼𝑹𝑖
tot = ∑

𝜈𝒌

̃𝑓𝜈𝒌𝜀(1)𝛼𝑹𝑖
𝜈𝒌 (4.80a)

+ ∫ 𝑛(𝒓) [−𝑉eff(𝒓) + 𝑉ext(𝒓)](1)𝛼𝑹𝑖 d𝒓 (4.80b)

+ ∮
∂𝛼𝑹

[𝑛(𝒓) {𝜀xc[𝑛](𝒓) − 𝑉xc(𝒓)}]SF ̂𝒆𝑟,𝑖d𝑆 (4.80c)

+𝐸(1)𝛼𝑹𝑖
ii . (4.80d)

The next step is to find a closed form for the eigenenergy response. Starting from the KS
eigenvalue equation,

⟨𝜓𝒌𝜈|𝐻 − 𝜀𝒌𝜈|𝜓𝒌𝜈⟩ = 0, (4.81)

and summing over all states, we quickly arrive at a first order term, where the potential
response part can be separated from the rest:

∑
𝒌𝜈

̃𝑓𝒌𝜈𝜀(1)𝛼𝑹𝑖
𝒌𝜈 = ∑

𝒌𝜈

̃𝑓𝒌𝜈 {⟨𝜓(1)𝛼𝑹𝑖
𝒌𝜈,𝜙 |𝐻 − 𝜀𝒌𝜈|𝜓𝒌𝜈⟩ + ⟨𝜓𝒌𝜈|𝐻 − 𝜀𝒌𝜈|𝜓(1)𝛼𝑹𝑖

𝒌𝜈,𝜙 ⟩ (4.82a)

+ ∮
∂𝛼𝑹

[𝜓∗
𝒌𝜈(𝐻 − 𝜀𝒌𝜈)𝜓𝒌𝜈]

SF
̂𝒆𝑟,𝑖d𝑆} (4.82b)

+ ∫ 𝑛(𝒓)𝑉 (1)𝛼𝑹𝑖
eff (𝒓)d𝒓. (4.82c)

Here, the subscript 𝜙 on the wave function response indicates that only the part with the
basis function response in equation (4.69) is considered. This is because the integral over the
expansion coefficient response vanishes; it is tantamount to evaluating the original eigenvalue
problem at a specific basis function. We can go one step further and use the reformula-
tion (4.73a) of the surface terms in line (4.82b) to cancel out the gradient part of the response
and define

̃𝜓(1)𝛼𝑹𝑖
𝒌𝜈 (𝒓) ≔ Θ𝛼𝑹(𝒓) ∑

𝑮
𝑧𝒌𝑮𝜈i(𝒌 + 𝑮)𝑖𝜙𝛼𝑹

𝒌𝑮(𝒓). (4.83)

With the additional insight, that the last line (4.82c) exactly cancels the effective potential
part of line (4.80b), inserting equation (4.82) into (4.80) leads to a preliminary final form of
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the first order energy response. Using the established notation and collecting all remaining
terms yields

𝐸(1)𝛼𝑹𝑖
tot = ∫ 𝑛(𝒓)𝑉 (1)𝛼𝑹𝑖

ext (𝒓)d𝒓 + 𝐸(1)𝛼𝑹𝑖
ii (4.84a)

+ ∑
𝒌𝜈

̃𝑓𝒌𝜈 {⟨ ̃𝜓(1)𝛼𝑹𝑖
𝒌𝜈 |𝐻 − 𝜀𝒌𝜈|𝜓𝒌𝜈⟩ + ⟨𝜓𝒌𝜈|𝐻 − 𝜀𝒌𝜈| ̃𝜓(1)𝛼𝑹𝑖

𝒌𝜈 ⟩ (4.84b)

− ∮
∂𝛼𝑹

[𝜓∗
𝒌𝜈(𝑇 − 𝜀𝒌𝜈)𝜓𝒌𝜈(𝒓)]

IR
̂𝒆𝑟,𝑖d𝑆} (4.84c)

+ ∮
∂𝛼𝑹

[𝑛(𝒓) {𝜀xc[𝑛](𝒓) − 𝑉xc(𝒓)}]SF ̂𝒆𝑟,𝑖d𝑆 (4.84d)

+ ∫
𝛼𝑹

𝑛(𝒓)∇𝑖𝑉eff(𝒓)d𝒓 − ∮
∂𝛼𝑹

[𝑛(𝒓)𝑉eff(𝒓)]IR ̂𝒆𝑟,𝑖d𝑆. (4.84e)

The terms in the last line (4.84e) stem from the remainder of the surface integral in line (4.82b),
after the basis function gradients are canceled and the IR Hamiltonian is separated into the
kinetic energy (4.84c) and potential parts. The present form is i) the FLAPW equivalent to
equation (3.26), ii) very similar to what is derived in the seminal paper on forces in the LAPW
basis [80], and iii) completely variational with respect to the ground state, as all first order
terms that appear are fully analytical and do not depend on the solution of a self-consistency
problem to first order. This is in stark contrast to the second order energy response.

4.3.3 Second Order Energy Derivatives

We can write the terms in lines (4.84b)/(4.84c), that are summed with the occupation
numbers over all states, as coefficients 𝐶(1)𝛼𝑹𝑖

𝒌𝜈 . With this, we find a more concise form for
equation (4.84) in

𝐸(1)𝛼𝑹𝑖
tot = ∫ 𝑛(𝒓)𝑉 (1)𝛼𝑹𝑖

ext (𝒓)d𝒓 + 𝐸(1)𝛼𝑹𝑖
ii (4.85a)

+ ∑
𝒌𝜈

̃𝑓𝒌𝜈𝐶(1)𝛼𝑹𝑖
𝒌𝜈 (4.85b)

+ ∮
∂𝛼𝑹

[𝑛(𝒓) {𝜀xc[𝑛](𝒓) − 𝑉xc(𝒓)}]SF ̂𝒆𝑟,𝑖d𝑆 (4.85c)

+ ∫
𝛼𝑹

𝑛(𝒓)∇𝑖𝑉eff(𝒓)d𝒓 − ∮
∂𝛼𝑹

[𝑛(𝒓)𝑉eff(𝒓)]IR ̂𝒆𝑟,𝑖d𝑆. (4.85d)

To continue, we need to consider how a second perturbation in an atomic perturbation acts on
the existing surface terms to first order. By first transforming the surface integrals to volume
integrals of gradients, executing the second derivative, and finally transforming the inner
derivative back to a surface integral, we can show that

∂
∂𝜏𝛽𝑹′𝑗

∮
∂𝛼𝑹

[𝑋(𝒓)]SF ̂𝒆𝑟,𝑖d𝑆 = ∮
∂𝛼𝑹

[𝑋𝛽𝑹′𝑗(𝒓) + δ𝛽𝛼δ𝑹′𝑹∇𝑗𝑋(𝒓)]SF ̂𝒆𝑟,𝑖d𝑆. (4.86)

Additionally, we keep in mind how the xc energy density transforms under differentiation to
deal with the xc part of the first order energy response (4.85c). From this we can easily find a
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first formulation of the second order energy response. With the equation numbers set in a
way that directly reflects were each terms stems from in the first order form, we derive

𝐸(2)𝛽𝑹′𝑗𝛼𝑹𝑖
tot = ∫ [𝑛(1)𝛽𝑹′𝑗(𝒓)𝑉 (1)𝛼𝑹𝑖

ext (𝒓) + 𝑛(𝒓)𝑉 (2)𝛽𝑹′𝑗𝛼𝑹𝑖
ext (𝒓)] d𝒓 + 𝐸(2)𝛽𝑹′𝑗𝛼𝑹𝑖

ii

+ ∮
∂𝛽𝑹′

[𝑛(𝒓)𝑉 (1)𝛼𝑹𝑖
ext (𝒓)]

SF
̂𝒆𝑟,𝑗d𝑆 (4.87a)

+ ∑
𝒌𝜈

{ ̃𝑓 (1)𝛽𝑹′𝑗
𝒌𝜈 𝐶(1)𝛼𝑹𝑖

𝒌𝜈 + ̃𝑓𝒌𝜈𝐶(2)𝛽𝑹′𝑗𝛼𝑹𝑖
𝒌𝜈 } (4.87b)

− ∮
∂𝛼𝑹

[𝑛(𝒓)𝑉 (1)𝛽𝑹′𝑗
xc (𝒓)]

SF
̂𝒆𝑟,𝑖d𝑆

−δ𝛽𝛼δ𝑹′𝑹 ∮
∂𝛼𝑹

[𝑛(𝒓)∇𝑗𝑉xc(𝒓)]
SF

̂𝒆𝑟,𝑖d𝑆 (4.87c)

+ ∫
𝛼𝑹

[𝑛(1)𝛽𝑹′𝑗(𝒓)∇𝑖𝑉eff(𝒓) + 𝑛(𝒓)∇𝑖𝑉
(1)𝛽𝑹′𝑗
eff (𝒓)] d𝒓

+ ∮
∂𝛽𝑹′

[𝑛(𝒓)∇𝑖𝑉eff(𝒓)]MT ̂𝒆𝑟,𝑗d𝑆

− ∮
∂𝛼𝑹

[𝑛(1)𝛽𝑹′𝑗(𝒓)𝑉eff(𝒓) + 𝑛(𝒓)𝑉 (1)𝛽𝑹′𝑗
eff (𝒓)]

IR
̂𝒆𝑟,𝑖d𝑆

−δ𝛽𝛼δ𝑹′𝑹 ∮
∂𝛼𝑹

[∇𝑗(𝑛(𝒓)𝑉eff(𝒓))]
IR

̂𝒆𝑟,𝑖d𝑆. (4.87d)

This form is the FLAPW equivalent of equation (3.28) and comes with a lot of contributions. A
main effort in the implementation of DFPT in FLAPW was the thorough numerical taming of
this lengthy equation and the subsequent cancellation of terms that appear in it. By multiplying
it with the phase e−i𝒒⋅(𝑹−𝑹′) and summing over the lattice vectors 𝑹(′) we arrive at the Fourier
transformed quantity 𝐸(2)𝛽𝑗+𝛼𝑖−

tot that is needed for the dynamical matrix in equation (3.21).

4.3.4 The Sternheimer Equation in FLAPW

We will not go into further detail here, but rather revisit the second order energy terms and
consequently the dynamical matrix setup in chapter 5. For now, it serves to note that the
coefficients 𝐶(2)𝛽𝑹′𝑗𝛼𝑹𝑖

𝒌𝜈 will necessarily contain non-analytical first order quantities, like
the response of the expansion coefficients. Hence we have to solve an FLAPW-adapted
Sternheimer equation. It can be derived in a similar way to equation (4.82), but coming from
the generalized eigenvalue equation (4.2). In general, it can be written in a form, where the
Hamiltonian/overlap derivative and the basis response come together to constitute a first
order Hamiltonian and overlap:

(𝐻(𝒌 + 𝒒) − 𝜀𝒌𝜈𝑆(𝒌 + 𝒒)) ⋅ 𝒛(1)𝛽𝑹′𝑗
𝒌+𝒒,𝜈 =(𝐻(1)𝛽𝑹′𝑗(𝒌 + 𝒒, 𝒌) − 𝜀(1)𝛽𝑹′𝑗

𝒌𝜈 𝑆(𝒌)

−𝜀𝒌𝜈𝑆(1)𝛽𝑹′𝑗(𝒌 + 𝒒, 𝒌)) ⋅ 𝒛𝒌𝜈. (4.88)

To solve this equation self-consistently, we need to consider several things. Firstly, the matrices
appearing on the right hand side are no longer quadratic, but can become rectangular, as
the number of basis functions for the Bloch vector 𝒌 + 𝒒 is not necessarily the same as for 𝒌
(hence the notation with both vectors). We also need to take all terms, including the basis
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derivative, into account correctly. After some rearrangement and cancellation (writing it in
a form, where the lattice vector sum is carried out as in equation (3.30)) this leads to the
following form for the Hamiltonian and overlap response:

𝐻(1)𝛽𝑗+,MT
𝑮′,𝑮 = ∑

𝛾
⟨𝜙𝒌𝑮′𝒒|𝑉 (1)𝛽𝑗+∇

eff |𝜙𝒌𝑮⟩𝛾 + i(𝐺 − 𝐺′ − 𝑞)𝑗⟨𝜙𝒌𝑮′𝒒|ℋ|𝜙𝒌𝑮⟩𝛽, (4.89)

𝑆(1)𝛽𝑗+,MT
𝑮′,𝑮 = i(𝐺 − 𝐺′ − 𝑞)⟨𝜙𝒌𝑮′𝒒|𝜙𝒌𝑮⟩𝛽, (4.90)

𝐻(1)𝛽𝑗+,IR
𝑮′,𝑮 = ⟨𝜙𝒌𝑮′𝒒|ΘIR𝑉 (1)𝛽𝑗+

eff + Θ(1)𝛽𝑗+
IR 𝑉eff + Θ(1)𝛽𝑗+

IR 𝑇 |𝜙𝒌𝑮⟩Ω, (4.91)

𝑆(1)𝛽𝑗+,IR
𝑮′,𝑮 = ⟨𝜙𝒌𝑮′𝒒|Θ(1)𝛽𝑗+

IR |𝜙𝒌𝑮⟩Ω. (4.92)

This form is numerically convenient, as it once again does not contain any unpaired gradient
terms (which was noted as beneficial before) and groups the IR contributions in a way, that
is very similar to the ground-state calculation. This makes the implementation elegant in
terms of reusing and adapting existing code instead of rewriting or duplicating parts of it.
Next, we need an expression for the first order eigenvalue response expressed through the
matrix responses. Due to the nature of the perturbation, that shifts the Bloch vector of the
basis functions by 𝒒, it will only contribute in the case 𝒒 = 𝟎. Otherwise the dimensions of the
matrices would not match on the right hand side of the Sternheimer equation (4.88) (a more
thorough explanation can be found e.g. in [92]). In the non-vanishing case, the response can
be found by multiplying from the left with the expansion coefficient vector of the same state 𝜈
as on the right. This makes the left hand side of the equation equal 0 and yields

𝜀(1)𝛽𝑗
𝒌𝜈 = 𝜀(1)𝛽𝑗

𝒌𝜈 𝒛†
𝒌𝜈𝑆(𝒌)𝒛𝒌𝜈 = 𝒛†

𝒌𝜈 (𝐻(1)𝛽𝑗+(𝒌, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+(𝒌, 𝒌))) 𝒛𝒌𝜈 (4.93)

The last point is dealing with the inversion of the left hand side of equation (4.88). A numerical
inversion proves very difficult, as the left hand side becomes very large for certain contributions
to the Hamiltonian. This can be seen, when we represent it by its eigenvalue spectrum (written
as a diagonal matrix 𝜀𝒌+𝒒) and the eigenvector matrices 𝑧(†)

𝒌+𝒒:

𝐻(𝒌 + 𝒒) = 𝑧†−1
𝒌+𝒒𝜀𝒌+𝒒𝑧−1

𝒌+𝒒, (4.94)

𝑆(𝒌 + 𝒒) = 𝑧†−1
𝒌+𝒒𝑧−1

𝒌+𝒒. (4.95)

A numerical inversion of the full left hand side term would skim over the fact, that the
subtraction of 𝜀𝒌𝜈 from the eigenvalue matrix can lead to vanishing contributions, that in turn
lead to a singular matrix. We postpone the discussion of how to remedy this until chapter 5
and formally note the solution to the Sternheimer equation as an analytical inversion through
the eigenvalue spectrum:

𝒛(1)𝛽𝑗+
𝒌+𝒒,𝜈 = −𝑧𝒌+𝒒(𝜀𝒌+𝒒 − 𝜀𝒌𝜈)−1𝑧†

𝒌+𝒒 (𝐻(1)𝛽𝑗+(𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+(𝒌 + 𝒒, 𝒌)) ⋅ 𝒛𝒌𝜈.(4.96)

This means, that solving the Sternheimer equation is on a lower level of complexity than
solving the KS eigenvalue equation in the ground-state calculation, as it only constitutes
successive matrix multiplications instead of a diagonalization. This is in contrast to the other
steps of the calculation like the potential response generation and the matrix element setup,
that are very similar to the original calculation. We will investigate the analogy to the ground
state in more detail in chapter 5, that deals with the implementation aspect of the FLAPW-DFPT
framework in FLEUR. We close this chapter with only a brief overview on how the SCF structure
changes in this context.
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4.3.5 The FLAPW-DFPT Self-Consistency Loop

The goal of the DFPT self-consistency workflow is to calculate the dynamical matrix of a lattice
for a phonon of wave vector 𝒒. In practice, this is done for several vectors successively, to
either sample the phonon dispersion at various points or to gain a mesh of q-points, from
which more highly resolved quantities can be interpolated. Either way, this constitutes a first
additional layer as compared to the DFT SCF loop: an outer loop over the q-points. Next we
need to consider the setup of the dynamical matrix. It consists of 3𝑁ion × 3𝑁ion entries, that
in principle are all independent of each other (baring the requirement, that the dynamical
matrix is Hermitian). As before, the indices of the matrix columns are labeled with (𝛼𝑖) for
a displaced atom 𝛼 and Cartesian direction 𝑖, while the rows are labeled (𝛽𝑗). We refer to
this as the perturbation index. As a consequence of the matrix setup, there appear only a
small set of different contributions. There are analytical quantities, like the external potential
response in first and second order, and the ion–ion interaction in second order. These are
only dependent on the atomic positions, the unit cell size, and the setup parameters, making
them fully unrelated to the SCF problem. These quantities can be calculated once for each 𝒒
and then be stored and used repeatedly. The second group of contributions, however, does
directly depend on the SCF cycle. There are contributions from the first order density and
potential responses, as well as state dependent eigenenergy and occupation terms. Fortunately,
in accordance with the 2𝑛 + 1-theorem [45, 152–154], such terms never combine two first
order SCF contributions - neither for the same atom and direction, nor for different ones. That
means each perturbation index can be handled separately and we choose to work through
the rows of the dynamical matrix one after another (this is, however, only a convention - the
opposite case of working through the columns is equally viable). This adds another layer of
3𝑁ion self-consistency loops for each dynamical matrix. Regarding each separate SCF loop,
they make use of the quantities that were calculated in the ground-state run (as well as the
gradients of the respective density and potentials) and the external potential perturbation in
first order to calculate the first guess for the density response. This is done by going through
a modified form of the SCF iteration, where only 𝑉 (1)𝛽𝑗+

ext (𝒓) enters instead of 𝑉 (1)𝛽𝑗+
eff (𝒓).

Aside from this, the SCF procedure for the density response is very similar to that of the
ground-state calculation. The potential generation is replaced by the potential response gen-
eration and the Hamiltonian and overlap setup is replaced by the setup for the corresponding
response matrices. The diagonalization, as mentioned before, is replaced by the solution of
the Sternheimer equation, which involves a series of matrix multiplications. Instead of the
occupation numbers and Fermi energy, their responses are calculated and from them, we
construct a new output density response. The mixing can, in theory, be done the same way
as before, but additional care needs to be taken, because it is no longer guaranteed, that
𝑛(1)𝛽𝑗+(𝒓) is a real-valued quantity. Especially in the MT spheres, where the density and
potentials are expressed in terms of real-valued lattice harmonics, the imaginary part that can
arise needs to be explicitly carried through the calculation as an additional variable. Once
an SCF calculation is finished, the corresponding contribution to the dynamical matrix is
evaluated and the next perturbation index is treated. When this is done for all indices, the
dynamical matrix is fully set up and can be diagonalized, yielding a set of eigenvalues and
eigenvectors. After that, the calculation for the next q-point is started and finally, when all
specified q-points are handled, the results can be evaluated. This lengthy workflow exceeds the
computational effort of the ground-state run by several times, at least by a factor of 3𝑁ion𝑁𝒒,
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which does not yet take into account other factors slowing down the calculation. The resulting
run times and scaling behavior will be discussed in a later chapter. For now, this concludes
the discussion of the DFPT workflow and it is summarized in figure 4.3.

Generate initial response 𝑛(1)𝛽𝑗+,in
1 (𝒓)

Generate gradientsGround-state DFT run

Generate non-SCF quantities

Generate 𝑉 (1)𝛽𝑗+
eff (𝒓)

Set up 𝐻(1)𝛽𝑗+(𝒌 + 𝒒, 𝒌) and 𝑆(1)𝛽𝑗+(𝒌 + 𝒒, 𝒌)

Solve Sternheimer equation

Synthesize { ̃𝑓 (1)𝛽𝑗+
𝒌𝜈 }, 𝐸(1)𝛽𝑗+

F

Synthesize 𝑛(1)𝛽𝑗+,out
𝑚 (𝒓)dist < 𝜀SCF?

Mix 𝑛(1)𝛽𝑗+,in
𝑚+1 = 𝑓(𝑛(1)𝛽𝑗+,out

𝑚 , {𝑛(1)𝛽𝑗+,in
𝑚 }, 𝛼mix)

Final density response 𝑛(1)𝛽𝑗+,in(𝒓) found

Calculate additional converged quantities

Calculate (𝛽𝑗)-row of dynamical matrix

Calculate eigenfrequencies 𝜔2
𝒒 and -vectors 𝑸𝒒

Phonon postprocessing

∀𝒌

∀(𝛽𝑗)

∀𝒒

Yes

No

Figure 4.3: Sketch of the DFPT self-consistency workflow for the FLAPWmethod. The Sternheimer
equation has to be solved for each Bloch vector 𝒌 by setting up the matrix elements
𝐻/𝑆(1)𝛽𝑗+

𝑮′𝑮 (𝒌+𝒒, 𝒌) for the basis set in question, i.e. the LAPW basis. The full procedure
of arriving at a set of dynamical matrices involves solving the equation for each atom
𝛽, each displacement 𝑗, and each phonon wave vector 𝒒 independently.

There are some steps in this workflow, that are not self-explanatory from the knowledge
provided in this chapter and the general terminology established in figures 2.2 and 4.2. ”Gen-
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erate non-SCF quantities” refers to quantities, that are calculated before the Sternheimer
self-consistency loop is started for a specific calculation (𝛽𝑗𝒒). This encompasses the eigenvec-
tors 𝒛𝒌𝒒𝜈′ and eigenvalues 𝜀𝒌𝒒𝜈′ for all occupied and unoccupied states 𝜈′ at the shifted Bloch
vector 𝒌 + 𝒒 as well as the analytical second order quantities 𝑉 (2)𝛽𝑗−𝛼𝑖+

ext (𝒓) and 𝐸(2)𝛽𝑗−𝛼𝑖+
ii ,

which are needed for the second order energy response in equation (4.87) and will be dis-
cussed in more detail in section 5.5. ”Calculate additional converged quantities” highlights
the need to calculate quantities for the second order energy response, that were not needed in
the Sternheimer loop itself and thus need to be calculated once after the density response is
converged. Such quantities will be highlighted in the next chapter. ”Generate initial response
𝑛(1)𝛽𝑗+,in

1 (𝒓)” marks the calculation that needs to be done before we can start the Sternheimer
loop proper. An iteration ”0” of the loop is started for the external potential response instead
of the effective one to gain access to a first set of response matrices, eigenvalues/expansion
coefficients, and finally the desired density response. It is inserted into the SCF cycle as the
first ”true” density response without being mixed (as there is no other density to mix it with).
Finally, ”Phonon postprocessing” covers everything that can be done with the results of a dy-
namical matrix construction and diagonalization. This can range from in-code manipulations
such as the interpolation of a smooth phonon bandstructure or density of states from a set of
sampled q-points, to the graphical output of the resulting data as it is often provided in the
later chapters of this work.
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Chapter 5
Implementing DFPT in the FLEUR Code

5.1 Extending the Potential Generation . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Extending the Matrix Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Handling Degenerate Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Extending the Density Generation . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Calculating the Second Order Energy Terms . . . . . . . . . . . . . . . . . . . 69

5.6 Scaling Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

The implementation of DFPT into the FLAPW method is of the same, if not a higher order
of complexity as the ground-state DFT formalism. As highlighted in the previous chapter,
all the calculation steps get replaced by a similar but different operations, which generally
receive more complex and less symmetric input. The theoretical groundwork for such an
implementation is well established [82, 83, 86, 87], but there is a distinct lack of publications
on the implementation of the formalism, especially in comparison to pseudopotential codes
and other related methods [46, 47, 176, 177]. The implementation in this work is based on
the initial work of Klüppelberg [92], from which Gerhorst developed the juPhon plugin based
on a previous version of FLEUR [93]. The resulting code showed promising first results, but
was limited in a multitude of ways. Basically, due to the implementation as a stand-alone
product with a separate compilation and modules from an old version of the FLEUR code,
the plugin did not outgrow the level of monatomic, spin-degenerate test systems. Moreover,
the divergent nature of the code made it hard to maintain alongside an ever-growing and
constantly evolving electronic structure package like FLEUR. Hence one of the main goals of
this thesis is refactoring the DFPT functionality back into the main code and streamlining it
according to the modern programming philosophy behind it. The main focus in this respect
was on two key aspects. For one, there was the aspect of usability. This means making the
code usable on top of a regular ground-state calculation performed in FLEUR, without the
need to artificially modify the input to an unrecognizable level. An additional aspect in this
context was to provide the necessary input for a DFPT calculation in the regular input file.
The second and more important aspect of the rework is the elimination of redundant code.
This was done by reworking the feature into the existing routines with optional switches
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wherever possible. The advantages of this are threefold. i) It ensures maintainability of the
feature, as it is directly woven into code that is by necessity tested and maintained as long
as FLEUR is in use. ii) Extensions to other functionalities that the code already provides are
more easily accessible. This is used in this thesis to enable the calculation of spin-polarized
materials, polyatomic unit cells, systems with local orbitals, and interfacing the feature to
the libxc [171] library of xc functionals. Each of these steps in and of itself would be a big
effort in a separate code, but their implementation becomes somewhat natural in a code that
already works with these concepts. iii) The parallelizations and optimizations done in the base
code can be easily adapted and used to speed up the DFPT implementation. In summary: The
rework back into the FLEUR code avoids redundancy on each level from implementation, to
maintenance, to usage. The following chapter serves to highlight each computational aspect
that needs to be considered. This covers both adaptions that need to be made and, e.g. for the
dynamical matrix setup, additions to the original code. The concepts, as well as the respective
routines and some pseudocode to highlight the program’s logic are shown. Explicit references
to the subroutines and variables of the code are given. Technical details on the usage of the
feature as well as the version used to produce the results can be found in appendix B. We
begin with the adaption of the potential generation.

5.1 Extending the Potential Generation

The Potential
Components

To generate the potential response in the FLAPW method, we need to look at its three
constituents (the external, Hartree, and xc parts) in equation (3.34). We want to construct
the potential response analogously to the base case, i.e. the Coulomb potential response with
the method developed by Weinert [170] amended with some adaptions and the xc potential
response through the direct evaluation of the xc Kernel on a real space grid, as opposed to the
xc potential itself.

The Coulomb
Potential
Response

The construction of the Coulomb potential response differs from the original potential as
described in section 4.2 in several key ways. The first is a general property of the response
quantities in real space. Looking at equations (4.22)/(4.23), we remark that the first order
density and potentials carry an additional phase factor determined by the phonon wave vector.
This yields

𝑋(1)𝛽𝑗+(𝒓) =
⎧{
⎨{⎩

∑𝑮+𝒒 𝑋(1)𝛽𝑗+
IR (𝑮 + 𝒒)ei(𝑮+𝒒)⋅𝒓, 𝒓 ∈ IR

∑ℓ𝑚 𝑋(1)𝛽𝑗+
𝛾ℓ𝑚 (𝑟𝛾)𝑌 𝑚

ℓ ( ̂𝒓𝛾) 𝒓 ∈ MT𝛾 . (5.1)

for the representation of the density and potential responses in plane waves and spherical
harmonics. This additional phase necessarily influences the Coulomb potential construction as
well. In every formula that contains the reciprocal lattice vectors 𝑮, there will appear a vector
shifted by 𝒒 instead, leading to the following set of modified equations

𝑉 (1)𝛽𝑗+
C,IR (𝑮 + 𝒒) = (1 − δ𝑮+𝒒,𝟎)

4𝜋𝑛ps(𝑮 + 𝒒)
|𝑮 + 𝒒|2

, (5.2)
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𝑉 (1)𝛽𝑗+
C,𝛾ℓ𝑚 (𝑟𝛾) = 4𝜋

2ℓ + 1
∫

𝑅MT𝛾

0
𝑟′2𝑛(1)𝛽𝑗+

𝛾ℓ𝑚 (𝑟′)
𝑟ℓ

<

𝑟ℓ+1
>

⎛⎜
⎝

1 − (
𝑟>

𝑅MT𝛾
)

2ℓ+1
⎞⎟
⎠

d𝑟′ (5.3)

+ (
𝑟𝛾

𝑅MT𝛾
)

ℓ

4πiℓ ∑
𝑮+𝒒≠𝟎

ei(𝑮+𝒒)⋅𝝉𝛾𝑗ℓ(|𝑮 + 𝒒|𝑅MT𝛾)𝑌 𝑚∗
ℓ (𝑮 + 𝒒) 𝑉 (1)𝛽𝑗+

C,IR (𝑮 + 𝒒),

𝑛MT,ps(𝑮 + 𝒒) = δ𝑮+𝒒,𝟎

√
4𝜋
Ω

̃𝑞𝛾
00

+(1 − δ𝑮+𝒒,𝟎)4𝜋
Ω

∑
𝛾ℓ𝑚

(−i)ℓ (2ℓ + 2𝑁 + 3)!!
(2ℓ + 1)!!

𝑗ℓ+𝑁+1(|𝑮 + 𝒒|𝑅MT𝛾)
(|𝑮 + 𝒒|𝑅MT𝛾)𝑁+1 (5.4)

× ̃𝑞𝛾,(1)𝛽𝑗+
ℓ𝑚 e−i(𝑮+𝒒)⋅𝝉𝛾𝑌 𝑚

ℓ (𝑮 + 𝒒) .

Aside from the shift in the vectors and the fact, that the density response can explicitly take
on complex values and thus produce a complex result for the Coulomb potential response, the
formulae remain unchanged. It is worth noting, however, that the special treatment for 𝑮 = 𝟎
will only apply for 𝒒 = 𝟎 now. Any q-point in the first BZ is at most 0.5 in any direction in
internal coordinates, while the reciprocal lattice vectors take integer values, thus the 𝑮+𝒒 = 𝒒
component is constructed in the same way that the coefficients for 𝑮 ≠ 𝟎 were before. The
shift of the vector also influences the (pseudo-)multipole moments in a similar fashion.

The second difference to the ground-state calculation is that due to the position dependence
of the basis set, the Hartree potential response is slightly modified, as highlighted in equa-
tion (4.77). The surface discontinuity term in this equation can be expressed by surface
multipole moments and directly added onto the original ones. This leads to

̃𝑞𝛾,(1)𝛽𝑗+
ℓ𝑚 = 𝑞𝛾,(1)𝛽𝑗+

ℓ𝑚 − 𝑞𝛾,(1)𝛽𝑗+,ps
ℓ𝑚 + 𝑞𝛾,𝛽𝑗+|SF

ℓ𝑚 − 𝑞𝛾,𝛽𝑗+|SF,ps
ℓ𝑚 (5.5)

with the multipole terms

𝑞𝛾,(1)𝛽𝑗+
ℓ𝑚 = ∫

MT𝛾
𝑌 𝑚∗

ℓ ( ̂𝒓𝛾) 𝑟ℓ
𝛾𝑛(1)𝛽𝑗+(𝒓)d𝒓𝛾, (5.6)

𝑞𝛾,(1)𝛽𝑗+,ps
ℓ𝑚 = δ𝑮+𝒒,𝟎δℓ,0

√
4𝜋
3

𝑅3
MT𝛾𝑛(1)𝛽𝑗+

IR (𝟎)

+4𝜋 ∑
𝑮≠𝟎

iℓ𝑅ℓ+3
MT𝛾

𝑗ℓ+1(|𝑮 + 𝒒|𝑅MT𝛾)
|𝑮 + 𝒒|𝑅MT𝛾

𝑛(1)𝛽𝑗+
IR (𝑮 + 𝒒)ei(𝑮+𝒒)⋅𝝉𝛾𝑌 𝑚∗

ℓ (𝑮 + 𝒒) ,(5.7)

𝑞𝛾,𝛽𝑗+|SF
ℓ𝑚 = δ𝛾𝛽𝑅ℓ+2

MT𝛾 ∑
ℓ′𝑚′

𝑛𝛾ℓ′𝑚′(𝑅MT𝛾)
1

∑
𝑚″=−1

𝜁𝑗,𝑚″𝐺𝑚,𝑚′,𝑚″

ℓ,ℓ′,1 , (5.8a)

and

𝑞𝛾,𝛽𝑗+|SF,ps
ℓ𝑚 = δ𝛾𝛽 ∑

ℓ′𝑚′

4πiℓ′ ∑
𝑮

ei𝑮⋅𝝉𝛾𝑛IR(𝑮) (5.8b)

× Y∗
ℓ′𝑚′( ̂𝑮)jℓ′(|𝑮| 𝑅MT𝛾)

1

∑
𝑚″=−1

𝜁𝑗,𝑚″𝐺𝑚,𝑚′,𝑚″

ℓ,ℓ′,1 ,
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where the matrix 𝜁, that links the Cartesian to the natural coordinates has been defined as

𝜁 = √2π
3

⎛⎜⎜
⎝

1 0 −1
i 0 i
0

√
2 0

⎞⎟⎟
⎠

. (5.9)

A last variation on the base formalism is the contribution of the ionic charge 𝑍𝛾. Where it only
contributed to the spherical component before (𝑞𝛾,ext

00 = −𝑍𝛾/
√

4𝜋), it is now related to the
dipole channels with ℓ = 1:

𝑞𝛽𝑗+|𝛾,ext
1𝑚 = −δ𝛾𝛽

3
4𝜋

𝑍𝛾𝜁𝑗,𝑚. (5.10)

As mentioned before, there will be parts of the calculation where responses and gradients of
the same quantity are added together in the displaced MT (cf. equation (4.74)). To make this
numerically accurate for the potentials, their gradients are constructed in the same way as the
response through the potential generation, instead of numerically differentiating them. In
this case, the above formulae hold, but the density response is replaced by the gradient of the
density in each one of them. Additionally, the δ𝛾𝛽 prefactors for the surface elements vanish
and are replaced by a negative prefactor, yielding e.g. for the ionic contribution:

𝑞𝛾,ext
1𝑚 = 3

4𝜋
𝑍𝛾𝜁𝑗,𝑚. (5.11)

In FLEUR, the generation of the Coulomb potential is handled in the subroutine vgen_coulomb.
The analogous nature of the DFPT implementation to the standard DFT one motivates the
usage of the same subroutine, but for different input and slightly different logic. This is
pictured in figure 5.1.

𝑛IR(𝑮) 𝑛𝛾ℓ𝑚(𝑟𝛾)

{ ̃𝑞𝛾
ℓ𝑚}ℓ𝑚𝛾

𝑛ps(𝑮) {𝑞𝛾,ext
00 }𝛾

𝑉C,IR(𝑮)

𝑉C,𝛾ℓ𝑚(𝑟𝛾) ∈ ℝ

𝑛(1)𝛽𝑗+
IR (𝑮 + 𝒒) 𝑛IR(𝑮), 𝑛𝛾ℓ𝑚(𝑟𝛾) 𝑛(1)𝛽𝑗+

𝛾ℓ𝑚 (𝑟𝛾)

{ ̃𝑞𝛾,(1)𝛽𝑗+
ℓ𝑚 }ℓ𝑚𝛾

𝑛ps(𝑮 + 𝒒) {𝑞𝛽𝑗+|𝛾,ext
1𝑚 }𝑚𝛾

𝑉 (1)𝛽𝑗+
C,IR (𝑮 + 𝒒)

𝑉 (1)𝛽𝑗+
C,𝛾ℓ𝑚 (𝑟𝛾) ∈ ℂ

vgen

mpmom

ps
qp

w

vm
ts

dfpt_vgen

mpmom

ps
qp

w

vm
ts

Figure 5.1: Principal workflow of the FLEUR Coulomb potential (response) generation for DFT
(left hand side) and DFPT (right hand side). The dashed areas mark calls to explicitly
named lower level subroutines, which needed to be adapted to the DFPT case.
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The xc Potential
Response

Due to the selection of the LDA for the xc functional, the form of the xc kernel 𝐾xc in
equation (3.35c) becomes very simple. Where the functional derivative of the xc energy
functional became just the partial derivative of the xc energy density with respect to to the
density, the same holds true for the second derivative. This directly gives us

𝑉 (1)𝛽𝑗+
xc (𝒓) = 𝑛(1)𝛽𝑗+(𝒓) (2

∂𝜀xc(𝑛(𝒓))
∂𝑛(𝒓)

+ 𝑛(𝒓)
∂2𝜀xc(𝑛(𝒓))

∂𝑛(𝒓)2 ) . (5.12)

Whereas in the base case, the density was transformed into real space to calculate the xc
potential and then transform it back, the same now has to be done for both the density
and the density response or gradient of the density. The concept, however, remains the
same. The top-level routine governing the calculation is vgen_xcpot, while the real space
transformations and calculations are found in subroutines vis_xc and vmt_xc or dfpt_vis_xc
and dfpt_vmt_xc respectively. The xc calculations are handled by an interface to libxc [171]
in both cases to ensure consistency. The resulting workflow is highlighted in figure 5.2.

𝑛IR(𝑮) 𝑛𝛾ℓ𝑚(𝑟𝛾)

𝑛IR(𝒓) 𝑛𝛾(𝒓)

𝑉xc,IR(𝒓) 𝑉xc,𝛾(𝒓)

𝑉xc,IR(𝑮) 𝑉xc,𝛾ℓ𝑚(𝑟𝛾) ∈ ℝ

𝑛(1)𝛽𝑗+
IR (𝑮 + 𝒒), 𝑛IR(𝑮) 𝑛(1)𝛽𝑗+

𝛾ℓ𝑚 (𝑟𝛾), 𝑛𝛾ℓ𝑚(𝑟𝛾)

𝑛(1)𝛽𝑗+
IR (𝒓), 𝑛IR(𝒓) 𝑛(1)𝛽𝑗+

𝛾 (𝒓), 𝑛𝛾(𝒓)

𝐾xc,IR(𝒓) 𝐾xc,𝛾(𝒓)

𝑉 (1)𝛽𝑗+
xc,IR (𝒓) 𝑉 (1)𝛽𝑗+

xc,𝛾 (𝒓)

𝑉 (1)𝛽𝑗+
xc,IR (𝑮 + 𝒒) 𝑉 (1)𝛽𝑗+

xc,𝛾ℓ𝑚 (𝑟𝛾) ∈ ℂ

vgen

vis_xc vmt_xc

dfpt_vgen

dfpt_vis_xc dfpt_vmt_xc

Figure 5.2: Principal workflow of the FLEUR xc potential (response) generation for DFT (left hand
side) and DFPT (right hand side). The dashed areas mark calls to explicitly named
lower level subroutines, which needed to be adapted to the DFPT case.

Finalization StepsAfter the Coulomb and xc steps, we found the potential response/gradient expressed in Fourier
coefficients and radial functions. In a normal potential calculation, the IR part would now be
convoluted with the step function by transforming both onto the real space grid, multiplying
them, and transforming back. In the code, the initial potential is designated as the variable pw
in the potden data type for density and potentials, while the warped part (i.e. the convolution
of the potential and the step function) is saved as pw_w. This is done, because the evaluation
of integrals in the IR always involves taking the step function into account, e.g. when the
matrix elements are calculated. As we have already noted in equation (4.91), the IR matrix
Hamiltonian has terms combining the potential and step function to first order. To work in
analogy to the base case, we thus combine the potential response and step function with
the potential and step function response in real space and transform the resulting sum back

5.1 Extending the Potential Generation 61



into Fourier coefficients. We save this combined quantity into the pw_w part of the potential
response potden variable. This will become handy in the next step of the calculation.

5.2 Extending the Matrix Setup

In the ground-state calculation, the Hamiltonian and overlap matrices are Hermitian and
are constructed by evaluating the Hamiltonian operator (or unity for the overlap) from both
sides with the same set of basis function at Bloch vector 𝒌. This symmetry breaks down for
the DFPT use case. The left basis functions are evaluated at a shifted vector 𝒌 + 𝒒, which
makes the response matrices rectangular (in general) and necessitates the modification of the
routines used by optional input. The basic logic is to use the same routines to evaluate the
numerous contributions as before, but to provide the second set of basis functions and, based
on its existence, calling the subroutines in a different fashion. Especially, since the routines
usually only have to calculate the lower triangle of the Hamiltonian and overlap matrices
(they are Hermitian), the calculation of the upper part needs to be actively enforced. This will
be highlighted in the following.

The Interstitial
Matrix Response

The interstitial matrices get three contributions. The warped potential and the kinetic energy
with the step function are evaluated for the Hamiltonian and the step function alone is
evaluated for the overlap. The response matrices get three analogous contributions, but the
input differs. Aside from the two sets of basis functions, the pw_w part of the potential is
replaced by that of the potential response as described in the previous chapter (equation (4.91))
and each occurrence of the step function is replaced by its response. It can be directly derived
from equation (4.9) and has the Fourier coefficients

Θ̂(1)𝛽𝑗+(𝑮 + 𝒒) = i(𝑮 + 𝒒)𝑗
4π𝑅3

MT𝛽

Ω
𝑗1(|𝑮 + 𝒒|𝑅MT𝛽)

|𝑮 + 𝒒|𝑅MT𝛽
e−i(𝑮+𝒒)⋅𝝉𝛽. (5.13)

With this, the IR and Hamiltonian can be quickly written down as

𝐻(1)𝛽𝑗+,IR
𝑮′,𝑮 (𝒌 + 𝒒, 𝒌) = ̃𝑉 (1)𝛽𝑗+

eff (𝑮 − 𝑮′) +
|𝒌 + 𝑮′ + 𝒒|2 + |𝒌 + 𝑮|2

4
Θ(1)𝛽𝑗+

IR (𝑮 − 𝑮′), (5.14)

𝑆(1)𝛽𝑗+,IR
𝑮′,𝑮 (𝒌 + 𝒒, 𝒌) = Θ(1)𝛽𝑗+

IR (𝑮 − 𝑮′). (5.15)

In FLEUR, the evaluation step is programmed into hs_int_direct, while the respective control
routines that provide the correct input and variables are hs_int and dfpt_hs_int. The main
effort in implementing DFPT for this area is applying the correct logic to the 𝑮(′) selection in
the evaluation step. The two different sets of reciprocal lattice vectors are chosen according to
|𝒌 + 𝑮′ + 𝒒| < 𝐾max and |𝒌 + 𝑮| < 𝐾max, respectively. dfpt_hs_int is tasked with passing
both sets into hs_int_direct, whereas hs_int passes two copies of the same set.

The Muffin-Tin
Matrix Response

The same necessity of passing two sets of reciprocal lattice vectors arises for the MT contribu-
tion, but there is more to be taken into consideration. For one, in the base case calculation,
the MT Hamiltonian is separated into the spherical and non-spherical contribution. For the
evaluation of the potential response, such a separation is not necessary and the evaluation
is done by constructing the matrix 𝑡 as described in equation (4.48), but for the potential
response and for ℓ″ ≥ 0. In contrast to the ground-state setup, this matrix is not Hermitian
even for a spin-degenerate system, where usually some computation time can be saved by
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using only its upper triangular part in constructing the matrix elements. There is also no
separate spherical part or kinetic energy term. The contribution to the matrix response is

𝑉 (1)𝛽𝑗+,MT
eff,𝑮′,𝑮 (𝒌 + 𝒒, 𝒌) = ∑

𝛾
𝒂𝒌+𝑮′+𝒒,𝛾† ⋅ 𝑡(1)𝛽𝑗+,𝛾 ⋅ 𝒂𝒌+𝑮,𝛾. (5.16)

Additionally, the unperturbed Hamiltonian and overlap elements for the displaced atom are
calculated and added onto the respective response matrices. E.g. for equation (4.89), first
the matrix element ⟨𝜙𝒌𝑮′𝒒|ℋ|𝜙𝒌𝑮⟩𝛽 is calculated in the same way as for the base case and
then subsequently multiplied with the imaginary prefactor i(𝐺 − 𝐺′ − 𝑞)𝑗 and added onto the
Hamiltonian response. For each of the contributions above, local orbitals have to be taken
into account as well. The analogous control routines to the IR case are hsmt and dfpt_hsmt,
while the routines called for the particular contributions are hsmt_sph, hsmt_nonsph, and
hsmt_lo. The matrix setup of the radial terms is handled by tlmplm, which is called with the
necessary logic either by tlmplm_cholesky or dfpt_tlmplm.

5.3 Handling Degenerate Eigenvalues

Solving the
Sternheimer
Equation

The solution of the Sternheimer equation (4.96) is represented by a series of consecutive
matrix multiplications, that transform the ground-state expansion coefficients of the wave
functions to the corresponding response. The response matrix setup in the previous chapter
serves to set up the solution in analogy to the eigenvalue problem of the base case calculation.
The analytical inversion of the ground-state matrices will lead to additional problems for
degenerate eigenvalues in the reciprocal energy difference, as such terms would become
singular if they are not dealt with separately. Preceding works [92, 93] opted to drop the
contributions to the expansion coefficients for energy differences below 10−7 Ha and set
them to 0. In this work, we want to go beyond this neglect. Instead, to analyze and avoid
this problem, we look at the equation in the space of eigenstates, meaning we evaluate the
rightmost matrices for the states at 𝒌 and 𝒌 + 𝒒 and look at the expansion vectors coefficient
wise, to find

𝒛(1)𝛽𝑗+
𝒌𝑮𝒒,𝜈 = − ∑

𝜈′

𝑧𝒌𝑮𝒒𝜈′

𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌)
𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈

. (5.17)

The key to making the reciprocal term less volatile is looking at how this equation is used. It
most importantly enters the calculation of the first order density response and secondly gives
a contribution to the dynamical matrix through the terms 𝐶(2)𝛽𝑹′𝑗𝛼𝑹𝑖

𝒌𝜈 in equation (4.87). We
look at the first use case first and write

𝑛(1)𝛽𝑗+(𝒓) = ∑
𝒌𝜈

2 ̃𝑓𝒌𝜈𝜓∗
𝒌𝒒𝜈(𝒓)𝜓(1)𝛽𝑗+

𝒌𝜈 (𝒓)

= ∑
𝒌𝜈

2 ̃𝑓𝒌𝜈𝜓∗
𝒌𝜈(𝒓) ∑

𝑮
𝑧(1)𝛽𝑗+

𝒌𝑮𝒒𝜈 𝜙𝒌𝑮𝒒(𝒓)

= − ∑
𝒌𝜈

2 ̃𝑓𝒌𝜈𝜓∗
𝒌𝜈(𝒓) ∑

𝜈′

𝜓𝒌𝒒𝜈′(𝒓)(𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈)−1×

(𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌)) , (5.18)
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neglecting the basis correction and occupation number response for now. We insert a factor
of 1 = 1 − ̃𝑓𝒌𝒒𝜈′ + ̃𝑓𝒌𝒒𝜈′ into the rightmost sum and look at the resulting term, that contains
both occupation numbers (without the prefactors):

𝑎(1)𝛽𝑗+ = ∑
𝒌𝜈𝜈′

̃𝑓𝒌𝜈
̃𝑓𝒌𝒒𝜈′𝜓∗

𝒌𝜈(𝒓)𝜓𝒌𝒒𝜈′(𝒓)(𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈)−1×

(𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌)) (5.19)

Under the assumption of time reversal or inversion symmetry (cf. the density response genera-
tion in section 3.5), this term can be reformulated for a pair of occupied states. The derivation,
which is very similar to early considerations in [82], hinges on the manipulation of the k-point
and state sums. We first identify the shifted Bloch vector 𝒌 + 𝒒 as another 𝒌′. Then we factor
out a negative sign from the resulting (shifted) Bloch vectors and apply the symmetry that we
required above. Finally, we once again identify a new Bloch vector (written as the original
one) in 𝒌 = −𝒌′. As a chain of equations, this yields

∑
𝒌𝜈𝜈′

̃𝑓𝒌𝜈
̃𝑓𝒌𝒒𝜈′𝜓∗

𝒌𝜈(𝒓)𝜓𝒌𝒒𝜈′(𝒓)(𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈)−1×

(𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌))
𝒌′=𝒌+𝒒= ∑

𝒌′𝜈𝜈′

̃𝑓𝒌′−𝒒,𝜈
̃𝑓𝒌′𝜈′𝜓∗

𝒌′−𝒒,𝜈(𝒓)𝜓𝒌′𝜈′(𝒓)(𝜀𝒌′,𝜈′ − 𝜀𝒌′−𝒒,𝜈)−1×

(𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌′, 𝒌′ − 𝒒) − 𝜀𝒌′−𝒒,𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌′, 𝒌′ − 𝒒))

= ∑
𝒌′𝜈𝜈′

̃𝑓−(−𝒌′+𝒒),𝜈
̃𝑓−(−𝒌′)𝜈′𝜓∗

−(−𝒌′+𝒒),𝜈(𝒓)𝜓−(−𝒌′)𝜈′(𝒓)(𝜀−(−𝒌′),𝜈′ − 𝜀−(−𝒌′+𝒒),𝜈)−1×

(𝐻(1)𝛽𝑗+
𝜈′𝜈 (−(−𝒌′), −(−𝒌′ + 𝒒)) − 𝜀−(−𝒌′+𝒒),𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (−(−𝒌′), −(−𝒌′ + 𝒒)))
sym= ∑

𝒌′𝜈𝜈′

̃𝑓−𝒌′+𝒒,𝜈
̃𝑓−𝒌′𝜈′𝜓∗

−𝒌′+𝒒,𝜈(𝒓)𝜓−𝒌′𝜈′(𝒓)(𝜀−𝒌′,𝜈′ − 𝜀−𝒌′+𝒒,𝜈)−1×

(𝐻(1)𝛽𝑗+
𝜈′𝜈 (−𝒌′, −𝒌′ + 𝒒) − 𝜀−𝒌′+𝒒,𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (−𝒌′, −𝒌′ + 𝒒))
𝒌=−𝒌′

= ∑
𝒌𝜈𝜈′

̃𝑓𝒌+𝒒,𝜈
̃𝑓𝒌𝜈′𝜓∗

𝒌+𝒒,𝜈(𝒓)𝜓𝒌𝜈′(𝒓)(𝜀𝒌,𝜈′ − 𝜀𝒌+𝒒,𝜈)−1×

(𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌, 𝒌 + 𝒒) − 𝜀𝒌+𝒒,𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌, 𝒌 + 𝒒)) = 𝑏(1)𝛽𝑗+. (5.20)

We identify this reformulation as a new coefficient 𝑏(1)𝛽𝑗+, that looks very similar to the 𝑎(1)𝛽𝑗+

we defined in equation (5.19), up to a negative sign and a switch of the indices 𝜈′ and 𝜈. The
latter is arbitrary and can be lifted by renaming the states, which yields

𝑏(1)𝛽𝑗+ = − ∑
𝒌𝜈𝜈′

̃𝑓𝒌𝜈
̃𝑓𝒌𝒒𝜈′𝜓∗

𝒌𝜈(𝒓)𝜓𝒌𝒒𝜈′(𝒓)(𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈)−1×

(𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌+𝒒,𝜈′𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌)) = 𝑎(1)𝛽𝑗+. (5.21)

Replacing the initial term 𝑎(1)𝛽𝑗+ by the arithmetic mean of it and the reformulation 𝑏(1)𝛽𝑗+,
the reciprocal energy difference can be canceled out and the Hamiltonian term vanishes,
which gives us

𝑎(1)𝛽𝑗+ = 𝑎(1)𝛽𝑗+ + 𝑏(1)𝛽𝑗+

2
= ∑

𝒌𝜈𝜈′

̃𝑓𝒌𝜈
̃𝑓𝒌𝒒𝜈′𝜓∗

𝒌𝜈(𝒓)𝜓𝒌𝒒𝜈′(𝒓)
𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌)
2

. (5.22)
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We want to provide this as a modified expansion coefficient response 𝒛(1)𝛽𝑗+
𝒌𝑮𝒒,𝜈. To do so we need

to reintroduce the neglected prefactors, cover the remaining portion 1 − ̃𝑓𝒌𝒒𝜈′ of the factor we
introduced, and look only at the part, that does not come from the density construction itself.
If we write the coefficients as a contraction of the unperturbed expansion coefficients at 𝒌 + 𝒒
and a band representation of the responses,

𝒛(1)𝛽𝑗+
𝒌𝑮𝒒,𝜈 = − ∑

𝜈′

𝑧𝒌𝑮𝒒𝜈′𝑧(1)𝛽𝑗+
𝒒𝜈′,𝒌𝜈 , (5.23)

the result can be written as a modification of the band part. First, however, we additionally
look at the case of vanishing energy differences. In that case (or when the energy difference is
at least negligibly small) we can follow an analogous derivation without inserting the factor
first, to find a complementary result. Summing up the results, we can write

𝑧(1)𝛽𝑗+
𝒒𝜈′,𝒌𝜈 =

⎧
{{{
⎨
{{{
⎩

𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌)/2, 𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈 = 0
1− ̃𝑓𝒌𝒒𝜈′

𝜀𝒌+𝒒,𝜈′−𝜀𝒌𝜈
(𝐻(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌))

+ ̃𝑓𝒌𝒒𝜈′𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌)/2, occ-occ

(𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈)−1 (𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌)) , else

(5.24)

and thus arrive at the desired form. The modification corresponds to the elimination of
occupied-occupied combinations, which are reduced to an overlap term. This can be seen
from the factor 1 − ̃𝑓𝒌𝒒𝜈′ in the occ-occ case. Moving on to the second use of the coefficients,
the contribution to 𝐶(2)𝛽𝑗−𝛼𝑖+

𝒌𝜈 that is related to them can be transformed as well. The relevant
contribution (that once again makes use of the same symmetry as before) is

𝐶(2)𝛽𝑗−𝛼𝑖+
𝒌𝜈 = ... + 2 ∑

𝑮′𝑮
𝑧(1)𝛽𝑗+∗

𝒌𝑮′𝒒,𝜈 {i(𝐺 − 𝐺′ − 𝑞)𝑖(𝐻𝛼
𝑮′,𝑮(𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆𝛼

𝑮′,𝑮(𝒌 + 𝒒, 𝒌))

+⟨𝜙𝒌𝑮′𝒒|Θ(1)𝛼𝑖+
IR (ℋ − 𝜀𝒌𝜈)|𝜙𝒌𝑮⟩Ω}𝑧𝒌𝑮𝜈. (5.25)

Summing up to ∑𝒌𝜈
̃𝑓𝒌𝜈𝐶(2)𝛽𝑗−𝛼𝑖+

𝒌𝜈 and writing the evaluated matrix elements as a pseudo
Hamiltonian and overlap, we can do a similar derivation as before. For an analogous coefficient
to that in equation (5.19) that corresponds to the use case of the DM, we find the identity

𝑎(2)𝛽𝑗−𝛼𝑖+
DM = ∑

𝒌𝜈𝜈′

̃𝑓𝒌𝜈
̃𝑓𝒌𝒒𝜈′(𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈)−1(𝐻(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌))

∗
×

(𝐻̃𝜈′𝜈(𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈
̃𝑆𝜈′𝜈(𝒌 + 𝒒, 𝒌))

= − ∑
𝒌𝜈𝜈′

̃𝑓𝒌𝜈
̃𝑓𝒌𝒒𝜈′(𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈)−1(𝐻(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌+𝒒,𝜈′𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌))

∗
×

(𝐻̃𝜈′𝜈(𝒌 + 𝒒, 𝒌) − 𝜀𝒌+𝒒,𝜈′ ̃𝑆𝜈′𝜈(𝒌 + 𝒒, 𝒌)) . (5.26)

Using the same mean as before and rearranging some terms gives a form, that is very reminis-
cent of the transformation for the density case, but has an additional contribution that needs
to be evaluated for the final iteration of the SCF cycle:

𝑎(2)𝛽𝑗−𝛼𝑖+
DM = ∑

𝒌𝜈𝜈′

̃𝑓𝒌𝜈
̃𝑓𝒌𝒒𝜈′{

𝑆(1)𝛽𝑗+∗
𝜈′𝜈 (𝒌 + 𝒒, 𝒌)

2
(𝐻̃𝜈′𝜈(𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈

̃𝑆𝜈′𝜈(𝒌 + 𝒒, 𝒌))(5.27a)

+(𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌+𝒒,𝜈′𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌))
∗ ̃𝑆𝜈′𝜈(𝒌 + 𝒒, 𝒌)

2
}. (5.27b)
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The same analogy holds for a contribution with vanishing energy difference, and we can write
the second part (5.27b) as an additional expansion coefficient that must be calculated. Its
band resolved form reads

𝑧(1)𝛽𝑗+
𝒒𝜈′,𝒌𝜈,DM =

⎧{{
⎨{{⎩

(𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌)) /2, 𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈 = 0
̃𝑓𝒌𝒒𝜈′ (𝐻(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌+𝒒,𝜈′𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌)) /2, occ-occ

0, else

.(5.28)

With this, we gained a numerically stable form that avoids the division by small energy
differences. In practice, it is not applied at a difference of 0, but tied to a cutoff parameter
eDiffcut, below which the correction is applied. It can be set in the juPhon tag of the input
file and is set to 10−7 Ha by default. The importance of such a modification is shown in
chapter 6, where it massively influences the dispersion relation of fcc Ne. The necessary
logic of equations (5.24) and (5.28) is implemented in the dfpt_eigen subroutine and the
workflow is elucidated for a specific k-point in algorithm 1.

Aside from the expansion coefficient response, we need the response of the eigenenergies and
of the occupation numbers. The eigenenergy calculation is resolved before the division over
the energy difference is done and hence does not need to be modified from equation (4.93).
Similarly, the calculation for ̃𝑓 (1)𝛽𝑗+

𝒌𝜈 does not need to be modified from equations (3.38)
and (3.39), as there are no additional corrections from the use of the FLAPW method. We
do, however, keep in mind that the eigenenergies are only perturbed to first order for 𝒒 = 𝟎,
which translates to the Fermi energy and occupation numbers.
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Algorithm 1: Selection logic for the calculation of the first order expansion coefficients
for a specific k-point.

1 Input: 𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌), 𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌), 𝜀𝒌+𝒒,𝜈′, 𝜀𝒌,𝜈

2 Output: 𝑧(1)𝛽𝑗+
𝒒𝜈′,𝒌𝜈 , 𝑧(1)𝛽𝑗+

𝒒𝜈′,𝒌𝜈,DM, 𝜀(1)𝛽𝑗
𝒌𝜈

3 for 𝜈 do
4 if 𝒒 = 0 then
5 eigs1(𝜈) ←(𝐻(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌));

6 else
7 eigs1(𝜈) ←0;
8 end if
9 for 𝜈′ do

10 if 𝒒 = 𝟎 and 𝜈′ = 𝜈 then
11 tempMat2(𝜈′) ←0;
12 if Sternheimer converged then
13 tempMat3(𝜈′) ←0;
14 end if
15 else if 𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌,𝜈 < eDiffcut then
16 tempMat2(𝜈′) ←𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌)/2;
17 if Sternheimer converged then
18 tempMat3(𝜈′) ←(𝐻(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌)) /2;

19 end if
20 else if 𝜈′, 𝜈 occupied then

21 tempMat2(𝜈′) ← 1− ̃𝑓𝒌𝒒𝜈′

𝜀𝒌+𝒒,𝜈′−𝜀𝒌𝜈
(𝐻(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌));

22 tempMat2(𝜈′) ←tempMat2(𝜈′)+ ̃𝑓𝒌𝒒𝜈′𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌)/2;

23 if Sternheimer converged then
24 tempMat3(𝜈′) ← ̃𝑓𝒌𝒒𝜈′ (𝐻(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌+𝒒,𝜈′𝑆(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌)) /2;

25 end if
26 else
27 tempMat2(𝜈′)

←(𝜀𝒌+𝒒,𝜈′ − 𝜀𝒌𝜈)−1 (𝐻(1)𝛽𝑗+
𝜈′𝜈 (𝒌 + 𝒒, 𝒌) − 𝜀𝒌𝜈𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌));
28 if Sternheimer converged then
29 tempMat3(𝜈′) ←0;
30 end if
31 end if
32 end for
33 {𝑧(1)𝛽𝑗+

𝒒𝜈′,𝒌𝜈}𝜈′ ←tempMat2;

34 {𝑧(1)𝛽𝑗+
𝒒𝜈′,𝒌𝜈,DM}𝜈′ ←tempMat3;

35 end for
36 𝜀(1)𝛽𝑗

𝒌𝜈 ←eigs1
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5.4 Extending the Density Generation

The Interstitial
Response

With the expansion coefficient and occupation number responses covered, we have all the in-
gredients to deal with the first order density response. Here, we again separate the calculation
into the IR and MT contributions. The interstitial case is very similar to the ground-state cal-
culation, only that both the expansion coefficients and their responses need to be transformed
into real space, where the density response can then be constructed from equation (3.33)
with the same scheme as described along equations (4.52) and (4.53). The only thing to
keep in mind, is that we operate at a shifted Bloch vector 𝒌 + 𝒒 for one of the wave functions
and 𝑮 + 𝒒 for the density response Fourier coefficients. For this we adapt the routine pwden,
that contains calls to the FLEUR FFT interface. The MT response proves to be a bit more
complicated to implement.

The Muffin-Tin
Response

For this part, we want to construct the response by first summing up all matching and expansion
coefficients into a coefficient, that only depends on the (ℓ″𝑚″)-channel of the radial function
𝑛(1)𝛽𝑗+

𝛾ℓ″𝑚″(𝑟𝛾) and the orbital quantum numbers ℓ, ℓ′ and orders (⋅), (⋅)′ of the radial functions it
is multiplied with. This can then be evaluated exactly like equation (4.55). The FLAPW-DFPT
specific correction in this procedure affects the construction of the coefficient 𝑑𝒌𝛾

ℓ′ℓℓ″(⋅)′(⋅). It will
contain the response of both the expansion and the matching coefficients and the occupation
numbers, and thus have extra terms for the displaced MT. Furthermore, the density gradient
part of the basis response in equation (4.70) is compounded into one term that represents the
gradient of the density. All in all, this yields for the representation of the density response in
the MT

𝑛(1)𝛽𝑗+
𝛾ℓ″𝑚″(𝑟𝛾) = ∑

𝒌
∑
ℓ′(⋅)′

ℓ(⋅)

𝑑(1)𝛽𝑗+,𝒌𝛾
ℓ′ℓℓ″(⋅)′(⋅)

(⋅)′

𝑢
𝛾

ℓ′(𝑟𝛾)
(⋅)
𝑢

𝛾
ℓ (𝑟𝛾) − δ𝛾𝛽 (∇𝑗𝑛)

𝛾ℓ″𝑚″ (𝑟𝛾). (5.29)

In it, we defined the adjusted d-coefficients

𝑑(1)𝛽𝑗+,𝒌𝛾
ℓ′ℓℓ″(⋅)′(⋅) = ∑

𝜈

̃𝑓𝒌𝜈 ∑
𝑚′,𝑚

𝐴𝒌𝜈𝛾∗
ℓ′𝑚′(⋅)′𝐴

(1)𝛽𝑗+,𝒌𝜈𝛾
ℓ𝑚(⋅) 𝐺𝑚,𝑚″,𝑚′

ℓ,ℓ″,ℓ′

+ ∑
𝜈

̃𝑓 (1)𝛽𝑗+
𝒌𝜈 ∑

𝑚′,𝑚
𝐴𝒌𝜈𝛾∗

ℓ′𝑚′(⋅)′𝐴
𝒌𝜈𝛾
ℓ𝑚(⋅)𝐺

𝑚,𝑚″,𝑚′

ℓ,ℓ″,ℓ′ (5.30)

and the corresponding adjusted matching coefficients

𝐴(1)𝛽𝑗+,𝒌𝜈𝛾
ℓ𝑚(⋅) = ∑

𝑮
2𝑧(1)𝛽𝑗+

𝒌𝑮𝒒𝜈 𝑎𝒌+𝑮+𝒒,𝛾
ℓ𝑚(⋅) + δ𝛾𝛽𝑧𝒌𝑮𝜈i(𝒌 + 𝑮)𝑗𝑎

𝒌+𝑮,𝛾
ℓ𝑚(⋅) . (5.31)

The program logic is identical to the base case, only with additional optional parameters
passed through the subroutines. The calculation of the d-coefficients is contained in a group
of routines rho(n)mt(lo), while the final summation of the coefficients and radial functions
is found in cdnmt. It is used in the same way as it was for the ground-state calculation, aside
from providing the adjusted d-coefficients as input, constructing the imaginary part of the
density response as well, and skipping the calculation of some output that is meaningless for
the DFPT case, but not for the ground state.

Density Response
Mixing

Themixing procedure remains largely unchanged by the switch from the density to its response.
One thing to keep in mind, however, is the imaginary part of the MT part. Where the density
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was expanded into real-valued lattice harmonics, doing so for the density response necessitates
the creation of a second MT variable that stores the information of the imaginary part as a
real variable as well. This leads to more separate terms in the calculation of equation (4.67).
When the mixvector is set up, the components add to its length and must not be neglected.
Their metric is the same as for the real part coefficients.

5.5 Calculating the Second Order Energy Terms

Rearranging and
Evaluating the
Second Order
Energy

In principle, we have already established a closed form for the second order response of the
total energy in equation (4.87). With the previous sections, we already provided most of the
necessary quantities to evaluate it, but there are certain problems yet to be addressed. i)
The state dependent coefficients 𝐶(2)𝛽𝑗−𝛼𝑖+

𝒌𝜈 were only alluded to in the section on expansion
coefficients, but contain many more terms than were pictured there. ii) A closed form for the
calculation of Hellmann–Feynman terms, i.e. the second order in the external potential and
ion-ion interaction needs to be derived. iii) There appear gradient terms of response quantities
and, e.g. for 𝑉 (2)𝛽𝑗−𝛼𝑖+

ext (𝒓), double gradient terms, that proved to be numerically unwieldy
in testing. All these problems will lead to some reformulations and cancellations of specific
terms to make the resulting scheme for the dynamical matrix as numerically stable as possible.

State Dependent
Coefficients

The contributions to the second order energy derivative can be broadly grouped into three
types. There is Hellmann–Feynman contribution, that contains only the density (responses)
and the external potential (responses) and would appear as well in a method with no position
dependence of the basis. There are also additional terms, that contain the xc and full effective
potential in the integrals and stem form the corrections due to the FLAPW basis. The third
group is the sum of state dependent coefficients, that are multiplied with the occupation
numbers and their responses. To derive the required second order coefficients, we first look at
a rearranged and 𝑮-resolved form of the first order terms,

𝐶(1)𝛼𝑖+
𝒌𝜈 = ∑

𝑮′𝑮
𝑧∗

𝒌𝑮′𝒒,𝜈{i(𝐺 − 𝐺′ − 𝑞)𝑖⟨𝜙𝒌𝑮′𝒒|𝐻 − 𝜀𝜈𝒌|𝜙𝒌𝑮⟩𝛼

+⟨𝜙𝒌𝑮′𝒒|Θ(1)𝛼𝑖+(𝑇 − 𝜀𝜈𝒌)|𝜙𝒌𝑮⟩Ω}𝑧𝒌𝑮𝜈

= ∑
𝑮′𝑮

𝑧∗
𝒌𝑮′𝒒,𝜈(𝐻̃𝑮′𝑮(𝒌 + 𝒒, 𝒌) − 𝜀𝜈𝒌

̃𝑆𝑮′𝑮(𝒌 + 𝒒, 𝒌))𝑧𝒌𝑮𝜈, (5.32)

where we grouped Hamiltonian- and overlap-like terms in the last line and explicitly defined
them as matrices 𝐻̃ and ̃𝑆. Differentiating this equation to second order involves taking
the derivative of every component involved, i.e. of the Hamiltonian terms, the overlaps, the
eigenenergies, and the expansion coefficients. We start from the left with the expansion
coefficients. Differentiating them on both ends of the equation leads to a pair of complex
conjugate terms with the expansion coefficient response and the matrix part left unchanged. In
the same vein as the density response being reduced from equation (3.31) to equation (3.33),
they are grouped together by exploiting symmetry to find

𝐶(2)𝛽𝑗−𝛼𝑖+
𝒌𝜈,z1 = 2 ∑

𝑮′𝑮
𝑧(1)𝛽𝑗+∗

𝒌𝑮′𝒒,𝜈 (𝐻̃𝑮′𝑮(𝒌 + 𝒒, 𝒌) − 𝜀𝜈𝒌
̃𝑆𝑮′𝑮(𝒌 + 𝒒, 𝒌))𝑧𝒌𝑮𝜈, (5.33)

which was already discussed in section 5.3, where it takes a slightly different form due to
the modified expansion coefficients. For the overlap part, taking the second derivative is the
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same as adding another prefactor and a selection of the displaced MT, as can be seen from
e.g. equation (5.13). The terms stem from the first order step function and basis correction
terms in the MT, that both give a prefactor of the reciprocal lattice vectors and the imaginary
unit. Only the already displaced MT can give another contribution due to the derivative of the
structure factor. This yields

𝐶(2)𝛽𝑗−𝛼𝑖+
𝒌𝜈,S = − ∑

𝑮′𝑮
𝑧∗

𝒌𝑮′𝒒,𝜈(𝜀𝜈𝒌
̃𝑆(1)𝛽𝑗−
𝑮′𝑮 (𝒌, 𝒌) + 𝜀(1)𝛽𝑗−

𝜈𝒌
̃𝑆𝑮′𝑮(𝒌, 𝒌))𝑧𝒌𝑮𝜈, (5.34)

̃𝑆(1)𝛽𝑗−
𝑮′𝑮 (𝒌, 𝒌) = δ𝛽𝛼i(𝐺 − 𝐺′)𝑗

̃𝑆𝑮′𝑮(𝒌, 𝒌). (5.35)

A similar form translates directly to the Hamiltonian part, albeit with the kinetic energy term
added in. Additionally, the effective potential response appears from the direct differentiation
of the Hamiltonian matrix. We find

𝐶(2)𝛽𝑗−𝛼𝑖+
𝒌𝜈,H = ∑

𝑮′𝑮
𝑧∗

𝒌𝑮′𝒒,𝜈𝐻̃(1)𝛽𝑗−
𝑮′𝑮 (𝒌, 𝒌)𝑧𝒌𝑮𝜈, (5.36)

𝐻̃(1)𝛽𝑗−
𝑮′𝑮 (𝒌, 𝒌) = δ𝛽𝛼i(𝐺 − 𝐺′)𝑗𝐻̃𝑮′𝑮(𝒌, 𝒌) + i(𝐺 − 𝐺′)𝑖𝑉

(1)𝛽𝑗−,MT
eff,𝑮′𝑮 (𝒌, 𝒌). (5.37)

With these equations and the insights from section 5.3, we can finally write down the full
form of the state dependent dynamical matrix contributions as

𝐸(2)𝛽𝑗−𝛼𝑖+
state = ∑

𝒌𝜈
{ ̃𝑓 (1)𝛽𝑗−

𝜈𝒌 𝐶(1)𝛼𝑖+
𝒌𝜈 + ̃𝑓𝜈𝒌𝐶(2)𝛽𝑗−𝛼𝑖+

𝒌𝜈 } (5.38)

with the second order coefficients

𝐶(2)𝛽𝑗−𝛼𝑖+
𝒌𝜈 = ∑

𝑮′𝑮
{ 𝑧(1)𝛽𝑗+∗

𝒌𝑮′𝒒,𝜈 (𝐻̃𝑮′𝑮(𝒌 + 𝒒, 𝒌) − 𝜀𝜈𝒌
̃𝑆𝑮′𝑮(𝒌 + 𝒒, 𝒌)) (5.39)

+𝑧∗
𝒌𝑮′,𝜈 [𝐻̃(1)𝛽𝑗−

𝑮′𝑮 (𝒌, 𝒌) − 𝜀𝜈𝒌
̃𝑆(1)𝛽𝑗−
𝑮′𝑮 (𝒌, 𝒌) − 𝜀(1)𝛽𝑗−

𝜈𝒌
̃𝑆𝑮′𝑮(𝒌, 𝒌)]} 𝑧𝒌𝑮𝜈.

Regrouping
Non-HF Integral

Terms

We look next at the integral terms, that are not related to the external potential. Specifically, the
MT integrals of the effective potential in equation (4.87d) are of interest. We can reformulate
the loose MT surface integral to find a form, that only contains terms with canceled gradient
character:

∫
𝛼

[𝑛(1)𝛽𝑗−(𝒓)∇𝑖𝑉eff(𝒓) + 𝑛(𝒓)∇𝑖𝑉
(1)𝛽𝑗−
eff (𝒓)] d𝒓 + ∮

∂𝛽
[𝑛(𝒓)∇𝑖𝑉eff(𝒓)]MT ̂𝒆𝑟,𝑗d𝑆

=∫
𝛼

[𝑛(1)𝛽𝑗−∇(𝒓)∇𝑖𝑉eff(𝒓) + 𝑛(𝒓)∇𝑖𝑉
(1)𝛽𝑗−∇
eff (𝒓)] d𝒓. (5.40)

The first term appearing is numerically stable, while the second one contains the gradient of a
potential response. We want to recast this into a form, where the gradient instead applies to
the density:

∫
𝛼

𝑛(𝒓)∇𝑖𝑉
(1)𝛽𝑗−∇
eff (𝒓)d𝒓

=− ∫
𝛼

(∇𝑖𝑛(𝒓))𝑉 (1)𝛽𝑗−∇
eff (𝒓)d𝒓 + ∮

∂𝛼
[𝑛(𝒓)𝑉 (1)𝛽𝑗−∇

eff (𝒓)]
MT

̂𝒆𝑟,𝑖d𝑆. (5.41)

We keep this form in mind and move on to the surface integral terms containing the xc potential
in equation (4.87c). We want to recast them according to the identities in equation (4.73), to
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obtain integrals of the step function response and benevolent MT (surface) integrals. They
are rewritten as

− ∮
∂𝛼

[𝑛(𝒓)𝑉 (1)𝛽𝑗−
xc (𝒓)]

SF
̂𝒆𝑟,𝑖d𝑆 − δ𝛽𝛼 ∮

∂𝛼
[𝑛(𝒓)∇𝑗𝑉xc(𝒓)]

SF
̂𝒆𝑟,𝑖d𝑆 (5.42)

=− ∮
∂𝛼

[𝑛(𝒓)𝑉 (1)𝛽𝑗−∇
xc (𝒓)]

MT
̂𝒆𝑟,𝑖d𝑆 − ∫ Θ(1)𝛼𝑖+

IR (𝒓)𝑛(𝒓) [𝑉 (1)𝛽𝑗−
xc (𝒓) + δ𝛽𝛼∇𝑗𝑉xc(𝒓)] d𝒓.

Finally, we look at the preexisting interstitial surface elements in equation (4.87d), that
contain the effective potential. They can be reformulated into step function response terms as
well, to yield

− ∮
∂𝛼

[𝑛(1)𝛽𝑗−(𝒓)𝑉eff(𝒓) + 𝑛(𝒓)𝑉 (1)𝛽𝑗−
eff (𝒓)]

IR
̂𝒆𝑟,𝑖d𝑆 − δ𝛽𝛼 ∮

∂𝛼
[∇𝑗(𝑛(𝒓)𝑉eff(𝒓))]

IR
̂𝒆𝑟,𝑖d𝑆

=∫ Θ(1)𝛼𝑖+
IR (𝒓)𝑛(𝒓) [𝑉 (1)𝛽𝑗−

eff (𝒓) + δ𝛽𝛼∇𝑗𝑉eff(𝒓)] d𝒓

+∫ Θ(1)𝛼𝑖+
IR (𝒓) [𝑛(1)𝛽𝑗−(𝒓) + δ𝛽𝛼∇𝑗𝑛(𝒓)] 𝑉eff(𝒓)d𝒓. (5.43)

The resulting terms now all have a very similar form and can be grouped into an integral
contribution to the dynamical matrix. In doing so, some terms cancel out and we finally arrive
at

𝐸(2)𝛽𝑗−𝛼𝑖+
int = ∫

𝛼
[𝑛(1)𝛽𝑗−∇(𝒓)∇𝑖𝑉eff(𝒓) − (∇𝑖𝑛(𝒓))𝑉 (1)𝛽𝑗−∇

eff (𝒓)] d𝒓

+ ∮
∂𝛼

[𝑛(𝒓)𝑉 (1)𝛽𝑗−∇
C (𝒓)]

MT
̂𝒆𝑟,𝑖d𝑆

+ ∫ Θ(1)𝛼𝑖+
IR (𝒓)𝑛(𝒓) [𝑉 (1)𝛽𝑗−

C (𝒓) + δ𝛽𝛼∇𝑗𝑉C(𝒓)] d𝒓

+ ∫ Θ(1)𝛼𝑖+
IR (𝒓) [𝑛(1)𝛽𝑗−(𝒓) + δ𝛽𝛼∇𝑗𝑛(𝒓)] 𝑉eff(𝒓)d𝒓. (5.44)

The Hellmann–
Feynman
Contribution

The final dynamical matrix terms to be discussed are the contributions from the external
potential responses. They prove tricky to deal with, due to the ion-ion interaction term explicitly
prohibiting particular combination of atoms in the summation. There are different ways to
mitigate this, one being the Ewald summation [178], that is used e.g. in the ABINIT code [57,
179]. Another way is the construction through the FLAPW-adjustedWeinert construction [170],
that was developed in part for exactly the purpose of being an alternative to the Ewald
summation. This was implemented and tested against the ABINIT results in [93]. The
corresponding usage for the total energy was discussed already in section 4.2 and is based on
reference [173]. For this work, we investigate an analogous construction for the second order
Hellmann–Feynman energy terms, that in opposition to the implementation described in [93]
directly handles both the second order external potential and the ion-ion term. We start from

𝐸(2)𝛽𝑗−𝛼𝑖+
HF = ∫ [𝑛(1)𝛽𝑗−(𝒓)𝑉 (1)𝛼𝑖+

ext (𝒓) + 𝑛(𝒓)𝑉 (2)𝛽𝑗−𝛼𝑖+
ext (𝒓)] d𝒓

+𝐸(2)𝛽𝑗−𝛼𝑖+
ii + ∮

∂𝛽
[𝑛(𝒓)𝑉 (1)𝛼𝑖+

ext (𝒓)]
SF

̂𝒆𝑟,𝑗d𝑆, (5.45)

∫
Ω

𝑛(𝒓)𝑉 (2)𝛽𝑗−𝛼𝑖+
ext (𝒓)d𝒓 = −δ𝛽𝛼 ∑

𝑹
𝑍𝛼∇𝑗∇𝑖𝑉H(𝒓)|𝒓=𝝉𝛼𝑹

, (5.46)

5.5 Calculating the Second Order Energy Terms 71



and

𝐸(2)𝛽𝑗−𝛼𝑖+
ii = −δ𝛽𝛼 ∑

𝑹
∑

𝛾𝑹″≠𝛼𝑹
𝑍𝛼∇𝑗∇𝑖𝑉

𝛾𝑹″

ext (𝒓)|𝒓=𝝉𝛼𝑹
(5.47)

+ ∑
𝑹′𝑹

e−i𝒒⋅(𝑹′−𝑹)(1 − δ𝛽𝛼δ𝑹′𝑹)𝑍𝛼∇𝑗∇𝑖𝑉
𝛽𝑹′

ext (𝒓)|𝒓=𝝉𝛼𝑹
.

The second order potential term can be grouped with the q-independent part of the ion-ion
interaction. Doing so yields a form that is very akin to the Madelung potential in [173],
i.e. it represents the energy of a point charge in the second derivative of the Coulomb po-
tential without its own charge contributing. Explicitly defining this as a Madelung term
−δ𝛽𝛼𝑍𝛼𝑉 (2)𝛼𝑗𝑖

M (𝝉𝛼) we find

−δ𝛽𝛼 ∑
𝑹

𝑍𝛼∇𝑗∇𝑖𝑉H(𝒓)|𝒓=𝝉𝛼𝑹
− δ𝛽𝛼 ∑

𝑹
∑

𝛾𝑹″≠𝛼𝑹
𝑍𝛼∇𝑗∇𝑖𝑉

𝛾𝑹″

ext (𝒓)|𝒓=𝝉𝛼𝑹

=−δ𝛽𝛼𝑍𝛼∇𝑗∇𝑖𝑉
\𝛼
C (𝒓)|𝒓=𝝉𝛼

= −δ𝛽𝛼𝑍𝛼𝑉 (2)𝛼𝑗𝑖
M (𝝉𝛼). (5.48)

This term can be evaluated directly through the same method applied to the Madelung
potential in [173]: The second derivative of the full Coulomb Potential is evaluated on the
boundary of the MT of atom 𝛼 and then solved for its origin by a boundary value problem.
The second derivative of the atom itself has to be subtracted, but its spherical average is 0.
Sticking to the notation of the original paper, this gives

𝑉 (2)𝛼𝑗𝑖
M (𝝉𝛼) = 1

𝑅MT𝛼
[𝑅MT𝛼𝑆0(𝑅MT𝛼) − ⟨∇𝑗∇𝑖𝑛(𝒓)⟩

𝛼
] + ⟨1

𝑟
∇𝑗∇𝑖𝑛(𝒓)⟩

𝛼
. (5.49)

For this, the standard potential generator can be used, provided we supply it with the second
order density derivative instead of the density itself and modify the multipole moments of the
ions accordingly. The latter will now contribute for ℓ = 2 instead of ℓ = 1 (potential response)
or only ℓ = 0 (potential). Combining the terms in such a way leaves the q-dependent part of
the ion-ion term. It can be split into the cases where the evaluation is at the same atom 𝛽 = 𝛼
and where they are different. For the first case another Madelung term for a q-dependent
second potential derivative can be constructed, while for the latter we only need said derivative
evaluated at a point, where it is non-singular. This gives

∑
𝑹′𝑹

e−i𝒒⋅(𝑹′−𝑹)(1 − δ𝛽𝛼δ𝑹′𝑹)𝑍𝛼∇𝑗∇𝑖𝑉
𝛽𝑹′

ext (𝒓)|𝒓=𝝉𝛼𝑹

= δ𝛽𝛼𝑍𝛽𝑉 (2)𝛼𝑗𝑖+
M (𝝉𝛼) + (1 − δ𝛽𝛼)𝑍𝛽𝑉 (2)𝛼𝑗𝑖+

M (𝝉𝛽), (5.50)

where we defined the q-dependent Madelung term

𝑉 (2)𝛼𝑗𝑖+
M (𝒓) = ∑

𝑹
ei𝒒⋅𝑹∇𝑗∇𝑖𝑉 𝛼𝑹

ext (𝒓). (5.51)

This potential can again be constructed with the Weinert method, keeping in mind the
additional q-dependency as was the case for the calculation of the potential response in
section 5.1. As was the case for the multipole moments there, the ions contribute modified
coefficients dependent on the atomic charge and a transformation 𝝌 between the natural
and Cartesian coordinates, that now depends on two directional indices instead of one. This
makes it a tensor with three indices and yields

𝑞𝛼𝑗𝑖+|𝛾,ext
2𝑚 = −δ𝛾𝛼

5
4𝜋

𝑍𝛾𝜒𝑗,𝑖,𝑚. (5.52)
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Once again, for the case of the q-independent second potential derivative, the δ𝛾𝛼 vanishes.
The full matrix can be found in appendix C.

The Numerical
Reality

The Weinert construction for the ion-ion interaction and second order external potential that
was described above is analytically sound and an elegant way to describe these two terms as a
unified contribution to the dynamical matrix. It turns out, however, that the corresponding
implementation runs into two problems. First off, the second numerical derivative of the
density that is needed is not the most stable quantity and thus not well suited to produce
accurate results. For the 𝑉 (2)𝛽𝑗−𝛼𝑖+

ext part of the Hellmann–Feynman terms, it is better to
use partial integration to remove one gradient from the external potential and shift it to the
density instead. This produces a set of surface integrals, whose interstitial contribution can be
reformulated in the same way as before:

∫
Ω

𝑛(𝒓)𝑉 (2)𝛽𝑗−𝛼𝑖+
ext (𝒓)d𝒓 = ∫

Ω
𝑛(𝒓)δ𝛽𝛼 ∑

𝑹
∇𝑗∇𝑖𝑉 𝛼𝑹

ext (𝒓)d𝒓 (5.53)

= − ∫
Ω

𝑛(𝒓)δ𝛽𝛼∇𝑗𝑉
(1)𝛼𝑖𝟎
ext (𝒓)d𝒓 (5.54)

= ∫
Ω

(∇𝑗𝑛(𝒓))δ𝛽𝛼𝑉 (1)𝛼𝑖𝟎
ext (𝒓)d𝒓 (5.55)

− ∑
𝛾

∮
∂𝛾

[𝑛(𝒓)𝑉 (1)𝛼𝑖𝟎
ext (𝒓)]

SF
̂𝒆𝑟,𝑗d𝑆. (5.56)

Secondly, implementing the pure ion-ion part showed, that 𝑉 (2)𝛽𝑗𝛼𝑖𝟎
ext did not correctly repro-

duce the second order numerical derivative in the interstitial region for the Cartesian diagonal
contributions in a monatomic material. I.e. we found

𝑉 (2)𝛼𝑖𝛼𝑖𝟎
ext (𝑮) ≠ −𝐺2

𝑖 𝑉ext(𝑮), (5.57)

which should hold as an analytical relation. This is akin to something already observed in [93],
where a set of theoretically sound diagonal terms lead to discrepancies in the previous form of
the ion-ion interaction. At the moment, we still do not know why a correction needs to be
done here, but it can be handily implemented as one line of code by adding the following
term to the pseudodensity, from which the potential response is constructed:

𝑛ps(𝑮) ⟶ 𝑛ps(𝑮) + 𝑍𝛾
(2𝑁 + 7)!!

3Ω
ei𝑮⋅𝝉𝛾

𝑗𝑁+3(𝐺𝑅𝛾)
𝐺𝑁+1 . (5.58)

Just as with the previous implementation, this term suffices to correct the pseudodensity. 𝑁 is
the Weinert convergence parameter associated with the angular quantum number ℓ = 2. If
this method is used to calculate the second spatial derivative of the potential, it needs to be
added for each atom. For the external potential response, it only appears for the displaced
atom.

5.6 Scaling Behavior

The DFPT algorithm comes on top of a ground-state calculation for which a detailed discus-
sion can be found in [76]. Its scaling behavior is dominated by the diagonalization of the
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Hamiltonian for each k-point to solve the generalized eigenvalue problem in equation (4.2).
Since the diagonalization scales with the third power of the matrix size (i.e. the number of
basis functions 𝑁B as determined by 𝐾max), this step of the algorithm is of the order 𝒪(𝑁𝒌𝑁3

B )
in computational effort. The analogous runtime determining step of the DFPT algorithm
is the iterative solution of the Sternheimer equation (5.17) for each wave vector 𝒒, for all
three Cartesian coordinates of the displacement perturbation, all 𝑁ion atoms in the unit cell,
and all 𝑁𝒌 k-points in the BZ. In practice, this is done by a series of matrix multiplications
and thus the computational effort is bounded by the largest among them. This is already
the first one, where we multiply the perturbed Hamiltonian and overlap matrices (𝑁B × 𝑁B)
with the matrix of unperturbed expansion coefficients in the occupied subspace (𝑁B × 𝑁o),
where 𝑁o is the number of occupied states. The order of operations for this multiplication
is at most 𝒪(𝑁o𝑁2

B ). It should be noted, that this is for the most naive approach, while
matrix multiplication algorithms have long been optimized to below 𝒪(𝑁2.5) for quadratic
𝑁 × 𝑁 matrices [180, 181]. The other matrix multiplications are of the same order, as the
dimension of the occupied subspace gets passed on with each product, and there is no proper
matrix inversion necessary for the initial Hamiltonian and overlap, as we use the spectral
representation for a quasi-analytic inversion. This is of the order 𝒪(𝑁o𝑁B).

Summarizing, the runtime of the DFPT algorithm scales as ∝ 3𝑁𝒌𝑁ion𝑁o𝑁2
B for each wave

vector 𝒒. Since the number of occupied states as well as the number of basis functions
scale with the number of atoms, the DFPT has a volume scaling (i.e. scaling with respect
to the number of atoms) of 𝒪(𝑁4

ion) and the precision scaling is of 𝒪(𝑁𝒌𝑁2
B ) in the number

of basis functions. Although in the DFPT approach, the volume scaling is worse than for
the conventional DFT self-consistency cycle (∝ 𝑁3

ion), in the FLAPW method the number of
occupied states are only a fraction of all 𝑁B, e.g. in fcc Ne we find 4 occupied states for
162 to 177 states overall (depending on the k-point). This is at most 2.5%. In general we
expect a maximum occupancy in the order of 5-10%. Thus, 𝑁o produces a prefactor that is a
fraction of 𝑁𝐵 and an iteration of the Sternheimer loop is faster than that of a conventional DFT
calculation with no symmetry. Currently we use all available unoccupied states (𝑁B−𝑁o ≃ 𝑁B)
in calculating the band-resolved response matrices 𝐻/𝑆(1)𝛽𝑗+

𝜈′𝜈 (𝒌 + 𝒒, 𝒌) and the subsequent
multiplications. Investigating the influence of high-lying unoccupied states and introducing the
cutoff on the number of them we take into account can further reduce the time consumption
of the matrix multiplication steps. Such a move is planned to further improve the DFPT
implementation, but has as of yet not been executed. The memory requirement, as opposed
to the ground-state calculation, is more than tripled. This is due to the necessity of not only
keeping the occupied unperturbed eigenvalues 𝜀𝒌𝜈 and eigenvectors 𝒛𝒌𝜈 in storage, but also
the full set of unperturbed 𝜀𝒌+𝒒,𝜈′ and 𝒛𝒌+𝒒,𝜈′, as well as the occupied perturbed quantities
𝜀(1)𝛽𝑗

𝒌+𝒒,𝜈 and 𝒛(1)𝛽𝑗
𝒌+𝒒,𝜈. The q-dependent quantities, however, can be deleted once a specific q-point

calculation is finished.
Parallelization Due to the increased computational complexity of DFPT as opposed to the ground-state

DFT calculation, the method is an excellent target for strong parallelization efforts. Due
to the software engineering approach of weaving DFPT calculations into the ground-state
code, it can make full use of already established parallelization schemes. This means that
especially the calculations for different k-points can be handled independently, reducing the
load on a single node and drastically speeding up the algorithm. Additionally, a top-level
parallelization of the displaced atoms, displacement directions, and q-points is quite natural.
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The k-point parallelization in FLEUR is handled by an MPI interface and is currently the only
form implemented for DFPT parallelism, aside from low-level OMP loops in the subroutines it
shares with the main code.

Reducing the
Computational
Effort

Currently, the implementation of DFPT in FLEUR is very naive in the sense, that it has the
maximumpossible computational effort for the calculation of each q-point. Although the system
may hold certain symmetries, that make sets of displacements or k-points equivalent, these
symmetries are currently only used to reduce the BZ of q-points into a smaller irreducible set.
As stated in section 3.2, there is a lot that can still be exploited here, but these considerations
are postponed to future work with the DFPT implementation. This thesis serves to document
the working basic implementation, which will be explored in the next chapter.
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The implementation of DFPT in the FLEUR code [90, 91] as it stands today has gone through
a lot of development and several reiterations of key routines. It evolved from a standalone
program based on the output of a legacy version of the code, to a plugin that relied a lot on
redundant code, to a full part of the latest code versions. Consolidating the current state-of-
the-art, including refactoring and the tricks highlighted in chapter 5, was only possible due
to the meticulous study of a select group of test materials, for which the DFPT results were
benchmarked against those from FD calculations with the phonopy code [149, 150]. This
chapter serves to illuminate the full workflow from the ground-state calculation in a crystal
to the adaptations that need to be done for the supercell and DFPT runs. Subsequently, the
DFPT results are validated against the formalism based on force calculations, which have been
implemented before [80, 81].

6.1 Calculation Schemes and Computational Details

Notes on the
Ground-State
Run

To ensure comparable phonon calculations from the two methods, some things need to be kept
in mind with respect to the ground-state calculation, as there are limitations to the materials
that can be investigated. Section 2.7 lists a plethora of extensions to the basic DFT formalism,
that are partially implemented in the FLEUR code, but are not all adapted to the DFPT formalism.
Such as the implementation of non-collinear magnetism, the spin-orbit interaction, DFT+U
and related schemes, and the usage of hybrid functionals. Moreover, due to the direct way of
calculating the xc potential response from the density response (equation (5.12)), only LDA
functionals are correctly applicable at the moment. Choosing a material that does not rely
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on these extensions provides a valid candidate to use the DFPT implementation. Before the
actual phonon run, the material has to be fully optimized with respect to its ground-state
energy. That means the lattice constant 𝑎latt needs to be optimized by finding the equilibrium
value, that minimizes the crystals energy as expressed in an equation of states (EOS), such
as that of Birch and Murnaghan [182]. Additionally, if the system has any free parameters,
such as the z-position of certain atoms in a layered system, these will have to be optimized
to find the actual minimum of the energy landscape and thus the ground state the system
will assume. Only from such an optimized system can a phonon calculation be started, as it
relies on the harmonic approximation to the energy landscape around a minimum. We set
a convergence threshold of 𝜀SCF = 10−5 𝑎−3

0 for the distance (as defined in section 4.2) in
all ground-state calculations in the validation set. It applies to the ground-state EOS runs,
the supercell ground-states for the force calculations, and the DFPT density perturbations
(unit: 𝑎−4

0 ) as well.
Common

Parameters and
Calculation

Profile

The space of tuneable parameters in the FLAPW method is vast. To restrict it to a manageable
size for our purposes, we opted to use the capability of using preset profiles in FLEUR, that set
most parameters for us. When no profile is used, the code automatically adjusts the cutoff
parameters for the systems according to its constituents and a set of hard coded default data.
We created the dfpt_01 profile, that sets the plane-wave cutoff 𝐾max to 4.5 𝑎−1

0 and the density
and potential cutoff 𝐺max to 3𝐾max, and reduces the predetermined MT radii, that are chosen
as big as possible without making the spheres overlap, to 95% of its original value. This is
done to avoid overlapping the MT as soon as we chose a slightly smaller lattice constant in the
EOS calculation. In each of the inputs, the xc functional is chosen to be that of Vosko, Wilk,
and Nusair [109] (VWN) and the Fermi smearing energy is 𝑘𝐵𝑇 = 0.001 Ha.

Generating the
Supercell Input

As mentioned before, we rely on the phonopy code for the FD phonon calculation steps that
are not directly related to a FLEUR run. We programmed an interface for phonopy, that allows
it to read the FLEUR input file and extend it into a supercell input, that can again be read by
FLEUR. For this, the input needs to have a specific form. While there is a multitude of ways to
specify the basic input file for the input generator (inpgen) in FLEUR, the interface searches
for specific tags in it and the file thus has to take the following form:

Comment l i n e

xxx yyy zzz ! a1
xxx yyy zzz ! a2
xxx yyy zzz ! a3
sca l e0
sca lexxx sca l eyyy s ca l e z z z

n ! num atoms
Z1 x y z
Z2 x y z
. . .

&exco xctyp='vwn' /

Specifically, the interface searches for the tags that follow the exclamation marks. The set of
floats xxx/yyy/zzz represents the lattice vectors of the crystal. It is globally scaled by the float
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scale0 and each column has another specific scaling factor. n represents the number of atoms
in the unit cell. The numbers Z1,Z2... represent the atomic numbers of the constituents and
x/y/z their coordinates in terms of the lattice vectors. The exco tag at the bottom of the file
ensures, that the VWN functional will be used. A specific example for this kind of input will
be given in appendix B. From this, we invoke phonopy with a command line, that specifies
the construction of a supercell input with displaced atoms. It is specified by a supercell matrix
𝑀𝑆, that relates the unit cell Bravais matrix 𝐴𝑢 to that of the supercell by 𝐴𝑆 = 𝑀𝑆𝐴𝑢. For a
2 × 2 × 2 supercell to be constructed, the command line for phonopy with a unit cell input file
input.in would look like

phonopy --fleur -c input.in -d --dim=”2 0 0 0 2 0 0 0 2”,

where the rightmost command represents the supercell matrix. From this, new input files
supercell-XXX.in will be generated according to the minimum amount of necessary dis-
placements to accurately describe the full phonon spectrum. While the lattice vectors, scales
and atom list are transformed and extended according to the supercell matrix, the lowermost
input is simply copied over, so that the other system parameters stay the same.

Running the
Force
Calculations

For each of the displaced supercells, additional FLEUR calculations have to be performed.
They start with a ground-state run of each supercell, followed by a force calculation. For
this, the FLEUR input file inp.xml file has to be modified. The tag l_f is set to "T" to enable
force calculations and a tag f_level="0" [81] is added to generate the necessary output.
Specifically, it creates an output file FORCES_SORT that contains a list of the forces acting on
all atoms (instead of only for the representative atom for each symmetrized atom group) and
is sorted in the same way the atoms in the supercell input file were. The last relevant tag
in this context is the force convergence threshold epsforce in units of Ha/𝑎0. In the force
calculation, FLEUR keeps repeating the SCF loop and calculating the forces in each iteration.
Once their difference between two steps falls below the threshold, the converged force is
written out. The convergence parameter is set to 𝜀force = 10−5 Ha/𝑎0 for all FD calculations.
Once this is done for all supercells, the main part of the calculation is finished.

Evaluating the
Phonon
Spectrum

To begin the post-processing of the force files, they have to be read by the interface. With a
command line

phonopy --fleur -f FORCES_SORT_001 FORCES_SORT_002 ...

a file FORCE_SETS is generated. This file serves as the starting point for all thermodynamical
calculations with phonopy. We are specifically interested in the phonon dispersion and can
thus invoke the program with a path to follow for the phonon band structure. It takes the form
of a list of 3-tuples that represent the internal coordinates of the phonon wave vectors. At and
between those vectors the dispersion relation is calculated. For our previous example input
(with a shorthand notation for the diagonal supercell matrix) and a set of high-symmetry
points {(0 1/2 1/2)𝑇 , (0 0 0)𝑇 , (1/2 1/2 1/2)𝑇} we write

phonopy --fleur -c input.in --dim=”2 2 2” -p --band=”0 1/2 1/2 0 0 0 1/2 1/2 1/2”,

representing e.g. the 𝑋 − 𝛤 − 𝐿 path in an fcc crystal. The output is written into a file
bands.yaml, that can then be read and plotted using a simple output program. There are many
parameters that can be set individually to influence the calculation, such as the amplitude of the
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atomic displacement. We chose to keep it at the default size of 0.02 𝑎0 hard coded into the in-
terface. We do, however, directly provide a conversion factor of --factor=5140.48767176083
to change the unit of the frequencies into cm−1. It should also be noted, that phonopy applies
the acoustic sum rule by default, which means that the forces on all atoms are summed up
and the residual force is subtracted [81] from each single one. This results in three clean
acoustic modes with a frequency of 0 cm−1 at the 𝛤-point.

DFPT Input For the DFPT calculation, the same input that was provided for the FD supercell generation can
be used. When running it through the input generator, we additionally provide the argument
-nosym to generate an inp.xml that does not make use of the crystal symmetries. Otherwise,
the response quantities would not be accurately calculated, as they do not adhere to the same
symmetries as the ground state (cf. section 3.2). We also have to generate an additional
k-point set, that is ensured to be a regular mesh and contain the 𝛤-point. We modify the
input file to use the new k-point set and set the xc functional to VWN from libxc [171] (to
have access to the functional derivative) and converge the ground-state calculation. The other
parameters, like the cutoffs and convergence threshold, stay the same as in the ground-state
run. Afterward, we modify the input to calculate and save all states in the KS eigenvalue
equation, as they are needed to solve the Sternheimer equation, and add a list of q-points that
are to be calculated.

Running and
Evaluating the

DFPT
Calculations

The result of each SCF loop in the DFPT calculation is a converged set of response quantities.
The expansion coefficients, density, and potential responses form the building blocks of the
dynamical matrix and each run will write exactly one row of it into an output file. After all rows
of a single q-point are calculated, the dynamical matrix is diagonalized and the eigenvalues
and eigenvectors are written to the output file as well. Plotting the output of these files takes
little effort and overlaying the data points with the interpolated curves from the FD simulation
gives us a great tool to judge the quality of the DFPT implementation. The validation results
are the subject of the next section.

6.2 Monatomic Materials

Analytical
Solution

We start the investigation with the most simple case: a single atom that is repeated in each
unit cell. For such a system, we can make certain predictions. There are exactly three (possibly
degenerate) acoustic phonon branches that have zero frequency at the 𝛤-point. Aside from
this being a physical reality, it can be directly inferred from the Sternheimer equation and the
constituents of the dynamical matrix by finding its analytical solution [93]. It takes the form

𝒛(1)𝛽𝑗
𝒌𝑮,𝜈 = −i(𝒌 + 𝑮)𝑗𝒛𝒌𝑮,𝜈. (6.1)

This analytical expression, when applied to the wave function, directly causes the prefactor
term in the sole MT sphere to be canceled out, while being exactly equivalent to the gradient
of the wave function in the interstitial. Hence, we find for the wave function and density
responses:

𝛹 (1)𝛽𝑗
𝒌𝜈 (𝒓) = −∇𝑗𝛹𝒌𝜈(𝒓), (6.2)

𝑛(1)𝛽𝑗(𝒓) = −∇𝑗𝑛(𝒓). (6.3)
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Working through the potential response generation, it can also be found, that

𝑉 (1)𝛽𝑗
eff (𝒓) = −∇𝑗𝑉eff(𝒓). (6.4)

A last thing to keep in mind, is that this kind of system will not exhibit any response of the
eigenenergies at 𝛤. This is due to the fact, that displacing a single atom in each unit cell by
the same amount does not create any relative displacement between them. Thus, the energy
of each state is unaffected. Consequently, the occupation numbers are not changed. Using all
this information and inserting it into the dynamical matrix constituents in section 5.5 neatly
cancels all of them [93] and thus gives a matrix of zeros and the desired acoustic modes
starting at 0 cm−1, hence making them gapless Goldstone modes [183]. The accuracy with
which this analytical requirement is fulfilled gives us a good measure for the quality of our
DFPT implementation.

fcc NeThe first test system in our validation efforts is fcc Ne. While this at first seems to be an
unorthodox choice, seeing how exotic noble gas lattices are, it is a proper test case if we can
construct it in a ground-state run. It is

i) monatomic,

ii) isolating,

iii) nonmagnetic,

iv) not heavy enough to make spin-orbit interactions relevant, and

v) does not require any core-tail or LO corrections, as the electrons are strongly bound to
the ion.

Additionally, fcc Ne has a large lattice constant due to it being bound by van der Waals
forces [184]. This gives us phonon frequencies on a small scale, where numerical problems
become easily visible. We investigate the system with the aforementioned common input and
find the following set of parameters for the equilibrium lattice constant:

Table 6.1: Overview of the specific calculational parameters of fcc Ne. Parameters not contained
in the table are kept at the FLEUR default or are explicitly mentioned in section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT 𝑑𝑥 𝑎latt

16 11 8 803 2.43 𝑎0 0.014 7.536 𝑎0

Aside from parameters that were already mentioned and explained in section 4.1, we denote
the number of k-points along each reciprocal lattice vector as 𝑁𝑘𝑥/𝑦/𝑧

, the number of radial grid
points as 𝑁MT, and the logarithmic increment of the radial grid as 𝑑𝑥. The FD calculation for
this simple system requires only one displacement in a 2×2×2 supercell. The DFPT calculation
is also relatively tame, taking at most 10 iterations for any q-point and displacement direction.
Table 6.2 summarizes the Goldstone modes for both cases to assess their precision.

The values are in such close proximity to 0 cm−1, that there is no need to enforce the acoustic
sum rule and correct the DFPT dispersion curve by them. They are less than 0.2% of the
dispersion curve maximum and thus negligible on the created energy scale. The relevant
high-symmetry points for the dispersion curve aside from 𝛤 are given in internal coordinates
by 𝑋 = (0, 1/2, 1/2)𝑇, 𝑋′ = (1/2, 1/2, 1)𝑇, and 𝐿 = (1/2, 1/2, 1/2)𝑇. Another relevant
intermediary point is 𝐾 = (3/8, 3/8, 3/4)𝑇. We look at the high-symmetry paths 𝛤 − 𝑋,
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Table 6.2: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for fcc Ne. No frequency exceeds
an absolute value of 0.2 cm−1 (or 0.025 meV | 0.006 THz, respectively).

𝜔1 𝜔2 𝜔3

FD 1.36 × 10−1 1.36 × 10−1 1.36 × 10−1

DFPT −1.59 × 10−1 −1.59 × 10−1 −1.59 × 10−1

𝑋′ − 𝛤, and 𝛤 − 𝐿 which are parallel to the wave vector directions (1, 0, 0)𝑇, (1, 1, 0)𝑇, and
(1, 1, 1)𝑇 in Cartesian coordinates. For the first path, we expect two degenerate transversal
branches (associated to the y-/z-direction for the chosen point) and one longitudinal branch.
The second path is non-degenerate and the third path should once again show the same 2+1
splitting as the first one.

Figure 6.1: Phonon dispersion for fcc Ne. The red dashed curve shows the FD reference (denoted
as ”sc” for supercell) and the blue squares show the DFPT data. Additionally, there are
points on the 𝛤 −𝑋 path, that highlight separate calculations where corrections (5.24)
and/or (5.28) are not applied with green crosses and a black plus, respectively.

During the study of fcc Ne, some peculiarities were observed in certain modes that spurred a
lot of investigation into the behavior of degenerate states and how they need to be treated.
Particularly, there was a steep increase of the longitudinal phonon mode (uppermost branch)
towards the 𝛤-point, instead of a smooth linear descent to 0, and the slope of the degenerate
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transversal lower branches going towards the high-symmetry point X. Moreover, investigating
both problems for denser and denser k-point sets and q-point paths revealed, that the latter
slope was actually a jump from a smooth curve to a point shifted slightly upwards. Both
problems decreased in magnitude with the denser choice of reciprocal lattices and were a
major factor in motivating the development of the correction terms in equation (5.24) and
furthermore in equation (5.28) (DM correction). Having said this, the resulting phonon
dispersions with and without both corrections can be found in figure 6.1, where they are
plotted against the phonopy FD curve, neatly highlighting the original problems and their
solution. The curve shows good agreement between the phonons calculated by both methods.
It is also a good benchmark for their precision, as it exhibits frequencies of only slightly above
100 cm−1. Considering the results as a whole, they show the overall form that is to be expected
for fcc materials, which can be solved analytically [185] and only depends on the nearest
neighbor force constant due to the system’s symmetry. This is a satisfying result and allows us
to move on to the next material.

fcc CuFor the next validation, we chose fcc Cu. It is a transition metal with a rather full outer
electron shell, which means it lifts restriction (ii) as opposed to fcc Ne, but without a need to
supplement it with LOs, making it a logical next step. Table 6.3 summarizes the parameter set
for the equilibrium lattice constant.

Table 6.3: Overview of the specific calculational parameters of fcc Cu. More parameters in
section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT dx 𝑎latt

16 10 8 741 2.24 𝑎0 0.017 6.647 𝑎0

Compared with fcc Ne, the lattice is a bit more densely packed, motivating higher overall
phonon frequencies. This reflects in the Goldstone modes of the DFPT phonons, as shown in
table 6.4.

Table 6.4: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for fcc Cu. No frequency exceeds
an absolute value of 0.4 cm−1 (or 0.050 meV | 0.012 THz, respectively).

𝜔1 𝜔2 𝜔3

FD −4.78 × 10−6 −1.70 × 10−6 1.12 × 10−6

DFPT −3.16 × 10−1 −3.14 × 10−1 −3.10 × 10−1

In contrast to the previous calculation, there is a large difference between the magnitude of the
FD and DFPT Goldstone modes. While the latter sit at roughly the same size in relation to the
maximum frequency (figure 6.2), the FD modes are several orders of magnitude smaller. This
result, however, seems rather arbitrary and is solely dependent on how good the subtraction
of residual forces works in the phonopy interface. Previous results for a different set of
parameters [94] show the same behavior for fcc Ne and it seems to be sensitive to the exact
choice of cutoffs and precision parameters. We keep the evaluation of the mode quality for all
further investigated materials in mind and discuss the full spectrum of fcc Cu in figure 6.2.

As was the case for fcc Ne, we find good agreement between the phonon dispersions of both
methods. Looking at the iteration count that is needed to converge the calculation, it is worth
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Figure 6.2: Phonon dispersion for fcc Cu. The red dashed curve shows the FD reference and the
blue squares show the DFPT data.

noting that the maximum number of required density response SCF cycles was 13, which is
only slightly more than for fcc Ne. We will use the good agreement in this realistic material
as a baseline for further investigations at the end of the chapter and continue with the last
candidate in the monatomic material group.

fcc Ni fcc Ni constitutes the first (ferro-)magnetic material in our investigation. This means the
calculation becomes spin polarized, which constitutes an added layer of complexity. The
Sternheimer equation, like the Kohn–Sham equations for the ground-state run, are solved for
each spin independently and increase the space of eigenstates by a factor of 2. Additionally,
Ni is supplemented with LOs in FLEUR, although their impact is rather low when compared to
an alkaline metal or other materials with nearly empty shells. Thus, we lift the additional
restrictions (iii) and (v). As for the other materials, we first look at the collected input data in
table 6.5.

Table 6.5: Overview of the specific calculational parameters of fcc Ni. More parameters in sec-
tion 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT dx 𝑎latt

16 10 8 701 2.12 𝑎0 0.017 6.472 𝑎0
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The values are similar to those of fcc Cu, which is to be expected given it is directly adjacent to
fcc Ni in the periodic table and chemically very similar. Its metallic character comes to mind,
especially. The added complexity does affect the iteration number, though. For q-points close
to 𝟎, where we expect the convergence to be most tricky due to the diverging nature of the
potential terms, we need up to 27 iteration steps, far exceeding the values for fcc Ne and Cu.
Next, we look at the Goldstone modes in table 6.6.

Table 6.6: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for fcc Ni. No frequency exceeds
an absolute value of 0.3 cm−1 (or 0.037 meV | 0.009 THz, respectively).

𝜔1 𝜔2 𝜔3

FD 5.64 × 10−2 5.64 × 10−2 5.64 × 10−2

DFPT −2.55 × 10−1 −2.54 × 10−1 −2.52 × 10−1

Figure 6.3: Phonon dispersion for fcc Ni. The red dashed curve shows the FD reference and the
blue squares show the DFPT data.

They are once again very close to 0 cm−1, showing again the quality of both methods. We
note, that the FD modes are once again of another order of magnitude as compared to the
previous cases. There does not seem to be a discernible pattern that links the input parameters
to the quality of the FD Goldstone mode. We will not investigate this matter further, as
the upper bound for the three test systems is less than 0.5 cm−1, but keep this threshold in
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mind when we look at more complicated materials. Figure 6.3 shows the resulting phonon
dispersion. The curves have a similar extent to those of fcc Cu, which is as expected. There are
once again no significant outliers (albeit a slight deviation for the longitudinal 𝛤 − 𝑋 branch
exists), validating the method for monatomic ferromagnets as well. So far, we restricted the
investigation to fcc materials, which all have very similar dispersion with respect to their overall
shape. Over the course of the DFPT implementation effort, there were also several tests with
bcc crystals [94], that also showed overall good agreement with the FD benchmarks, but had
some peculiarities that were not seen for the fcc case. Two of these materials will be discussed
in the next chapter, where they serve as the object of convergence studies with respect to
several parameters in the calculation. Together with the content of this section, these five
materials serve as a reliable benchmark of the implementation and its quality. Checking even
more monatomic materials is not instructive, which is why we continue with the discussion of
several atoms per unit cell, where some of the restrictions we mentioned at the beginning of
this section are lifted.

6.3 Polyatomic Materials

Relevant Terms
for Polyatomic

Materials

We started our discussion of monatomic materials with the requirement, that the Sternheimer
equation has an analytical solution, that makes the dynamical matrix vanish at 𝒒 = 𝟎. This
went along with the physical argument, that the eigenenergy response has to vanish, as the
atoms are not shifted against each other. Both these observations are no longer valid when
more atoms come into play. To find a valid set of Goldstone modes, the dynamical matrix now
has to show specific symmetries instead of straight up vanishing, which is more demanding
on our algorithm. Moreover, in materials that are conductive, the existence of eigenenergy
responses also makes the occupation number responses finite. To test the relevance of both
terms separately, we choose a semiconductor and a metal as our next objects of investigation.
We also look at an example of a semiconductor made up of different types of atoms.

Si Si in a diamond structure is one of the most studied materials in density functional theory due
to its relevance in modern technology and its relative accessibility. Its experimental lattice
constant is closely matched by LDA functionals in both plane wave and FLAPW frameworks.
Due to this, there is a lot of data to compare our results to, both on the theoretical and on the
experimental side. We use Si as a test material to lift restriction (i). As there are, however, two
identical atoms in the material, we do not gain additional parameters and can still summarize
them in an equivalent table 6.7 as before.

Table 6.7: Overview of the specific calculational parameters of Si. More parameters in section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT dx 𝑎latt

16 9 7 677 2.05 𝑎0 0.017 10.207 𝑎0

Starting from these parameters, the FD and DFPT calculations were started in the same way
as before. We note, that the DFPT run now takes quite a bit longer due to the increased extent
of the dynamical matrix. It requires six Sternheimer SCF calculations instead of only three
and the loop over both atoms also increases the runtime marginally at several points in the
internal workflow. Furthermore, the FD calculation becomes more involved. While a single
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displaced supercell calculation is still enough to calculate all relevant forces, a simple 2 × 2 × 2
setup now already yields a 16 atom supercell. Tests have also shown, that the FD phonon
dispersion that can be interpolated from this setup does not match the DFPT data nicely. We
opted to analyze, whether this is a fault of the FD simulation. We found that the interpolated
spectrum changes when we choose a 4 × 4 × 4 supercell instead and the bigger cell leads
to a significantly better agreement. This means we have to regard the supercell size as a
convergence parameter of the FD calculation. In table 6.8 we show the resulting Goldstone
modes from this setup.

Table 6.8: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for Si. No frequency exceeds an
absolute value of 0.1 cm−1 (or 0.012 meV | 0.003 THz, respectively).

𝜔1 𝜔2 𝜔3

FD 8.16 × 10−2 8.16 × 10−2 8.16 × 10−2

DFPT −7.20 × 10−2 −3.54 × 10−2 2.88 × 10−2

As opposed to the previous cases, the DFPT modes are slightly closer to 0 cm−1 than those
from the FD run. This shows, that enforcing the acoustic sum rule in phonopy by subtracting
the residual force is by no means an exact solution. Considering the number of iterations
needed to converge the Sternheimer SCF runs, they go up to 15 at most. This is similar to
the value for fcc Cu, indicating that the increased number in fcc Ni is due to either the spin
polarization or the use of LOs.

Figure 6.4 shows the Si phonon dispersion. Aside from the internal consistency of FD and
DFPT, for the often benchmarked Si we show experimental data as well. It was taken from
three sources [186–188] that, when combined, give a sufficiently dense set of data along the
high-symmetry lines. Additionally, we add a data point for a DFPT calculation at the second
𝛤-point, that neglects the emergence of eigenenergy responses (e1; cf. equation (5.39)),
leading to a noticeable shift in the frequencies. While the FD frequencies are thrice degenerate
at around 515.5 cm−1, the DFPT run without the eigenenergy responses gives 526.5 cm−1

and including them gives a better fit of 518.0 cm−1, marking the importance of evaluating
the terms. Finally, we refer to reference [189] for a comparison to calculations done with
norm conserving pseudopotentials in the ABINIT code [57, 70, 179]. The calculations were
converged to an accuracy of better than 1 cm−1 and were done with the Ceperley–Alder LDA
functional [105]. The dispersion shows overall good agreement between the FD interpolation,
the sampled DFPT values and the experimental data points. Especially in the acoustic modes
towards the high-symmetry point 𝐿, the experimental and theoretical points form a continuous
line that neatly overlays with the FD background. The agreement is slightly worse on the path
that crosses 𝐾, being suppressed with respect to the experiment and differing between FD and
DFPT in the degenerate transversal modes. The disagreement gets larger in the optical modes,
where the theoretical predictions largely underestimate the experimental data and do not
fully agree with each other as well. Considering the pseudopotential data [189], the match
is also very good, in that we find a similar maximum frequency and dispersion shape. The
overall scale of mismatch is tolerable and especially for the theoretical validation, increasing
the cutoff parameters in both calculations and supercell size in the FD run might lead to
further convergence. A more in-depth analysis of the latter aspect will be shown in the next
chapter.
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Figure 6.4: Phonon dispersion for Si. The red dashed curve shows the FD reference and the blue
squares show the DFPT data. The green cross at the second 𝛤-point highlights the
modified result in the absence of eigenenergy response terms. The black diamonds,
brown upward triangles, and yellow downward triangles belong to experimental data
from references [186], [187], and [188] respectively.

hcp Co From the semiconducting Si, we move on to the ferromagnetic hcp Co. This not only serves as
a test of the occupation number response (3.38), but also marks the first material in our test
set, that does not crystallize in an fcc lattice (with a basis). Thus we implicitly test the validity
of DFPT for different structures. In hcp lattices, the extent of the unit cell in one dimension is
different from that of the hexagonal basis and enters as an additional parameter. The choice
of parameters is summarized in table 6.9.

Table 6.9: Overview of the specific calculational parameters of hcp Co. More parameters in
section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT dx 𝑎latt 𝑐latt

24/24/16 10 8 717 2.17 𝑎0 0.017 4.606 𝑎0 7.356 𝑎0

Due to the non-cubic choice of lattice, it also becomes necessary to adapt the k-point density
along each axis to reflect the difference between the in-plane and out-of-plane axes. We opted
to increase the density in the former instead of reducing it in the latter to avoid a loss of
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accuracy in comparison to the other calculations. The other parameters were optimized/taken
as the FLEUR default like before. As with Si, the 2 × 2 × 2 supercell configuration proved
insufficient to match the DFPT sample points and thus a 4 × 4 × 4 supercell was used instead.

Table 6.10: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for hcp Co. No frequency exceeds
an absolute value of 1.7 cm−1 (or 0.211 meV | 0.051 THz, respectively).

𝜔1 𝜔2 𝜔3

FD −7.88 × 10−6 1.28 × 10−1 1.28 × 10−1

DFPT −6.46 × 10−1 1.64 × 100− 1.65 × 100−

Figure 6.5: Phonon dispersion for hcp Co. The red dashed curve shows the FD reference and the
blue squares show the DFPT data. The green cross at the second 𝛤-point highlights
the modified result in the absence of eigenenergy response terms and the black plus
neglects occupation number responses.

The resulting Goldstone modes are shown in table 6.10. There are several things to note. On
the one hand, the degeneracy of the modes is lifted with one being clearly distinct from the
other two. This one can be identified with the out-of-plane oscillation, i.e. a displacement of
the Co atoms in the z-direction. On the other hand, the DFPT modes are farther from zero
than those in the FD case by at least an order of magnitude and all the values constitute the
least clean Goldstone modes of all materials that were studied thus far. This is not surprising,
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as the dynamical matrix now takes on a more involved form and matching specific entries to
cancel each other out in the eigenvalue calculation becomes numerically more difficult. The
maximum iteration count reaches a new high of 39 cycles.

Figure 6.5 shows the resulting phonon dispersion. As was the case for Si, we explicitly show
the data points that change, when the eigenenergy responses (e1, cf. equation (5.39)) and
now additionally the occupation number responses (f1, equation (3.38)) are set to 0, which
affects both the first order density response through equation (3.33) and the dynamical matrix
through (5.39). The overall agreement of the curve and the samples is once again good. As
with Si, the optical branches are harder to match. At the 𝛤-point, the impact of the eigenenergy
responses on the optical in-plane (middle) mode is visible, while that of the occupation number
responses is negligible. Both terms are of lower impact in the out-of-plane (uppermost) mode.
In numbers, the in-plane FD reference value lies at around 167.5 cm−1, the ones missing the
e1/f1 terms lie at 189.0 cm−1 and 188.5 cm−1, respectively, and the full DFPT value gives
176.0 cm−1. The latter still does not fully match the FD value, but serves to continuously
connect the dispersion sample values around 𝛤 on the path 𝑀 − 𝛤 − 𝐴, making it a valid
correction.

SiC The last material for this section serves to study the behavior of a polyatomic material in which
the atoms are not all of the same element. To have a fluent transition from previous to new
knowledge, we chose the semiconductor (3C) SiC in a zinc blende structure. This also means,
that for each atomic parameter we now have two different values for the different atoms and
the FD run needs two different displaced supercells and force calculations.

Table 6.11: Overview of the specific calculational parameters of SiC. For the atomic parameters,
there are two values given each time representing the Si/C atom respectively. More
parameters in section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT dx 𝑎latt

16 8/7 6/5 585/507 1.77/1.53 𝑎0 0.019/0.020 8.183 𝑎0

Once again, calculating clean Goldstone modes for the DFPT case proves difficult. The
asymmetry of the lattice does not lend itself well to perfectly symmetric dynamical matrix
elements and enforcing the acoustic sum rule in the FD case also becomes a little less precise.
That said, the dispersion relation boasts the highest maximum values yet that are on a scale of
over 900 cm−1, making a Goldstone mismatch of around 1 cm−1 still negligible. The modes
are summarized in table 6.12.

Table 6.12: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for SiC. No frequency exceeds an
absolute value of 1.1 cm−1 (or 0.136 meV | 0.033 THz, respectively).

𝜔1 𝜔2 𝜔3

FD 1.36 × 10−1 1.36 × 10−1 1.36 × 10−1

DFPT −1.06 × 100− −9.75 × 10−1 −9.49 × 10−1

Unlike before, on the energy scale present in the SiC dispersion, neglecting the e1 terms in
equation (5.39) do not make a significant difference. The FD value for the optical mode is
a thrice degenerate 801.0 cm−1, while DFPT values give around 791.0 cm−1 and 795.0 cm−1
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with and without the terms, respectively. The modes match quite closely, but a significant
problem becomes appearent when we look at the full dispersion in figure 6.6.

Figure 6.6: Phonon dispersion for SiC. The red dashed curve shows the FD reference and the blue
squares show the DFPT data. The green cross at the second 𝛤-point highlights the
modified result in the absence of eigenenergy response terms.

The maximum iteration count is 15. The FD calculations were done with a 4 × 4 × 4 supercell
as for the previous polyatomic cases. While the acoustic modes match excellently between
the two methods, the optical modes paint a different picture. The transversal optical modes
are of similar quality as in Si, but the longitudinal one shows a completely different behavior
the closer it gets to 𝛤. This is due to the fact that SiC is polar i.e. it has an asymmetric charge
distribution. This can induce dipole terms and cause the harmonic description of the force
constant/dynamical matrix to no longer be sufficient. The need to take long-range effects into
account arises [190]. These are usually taken into account by a non-analytical term correction
(NAC) [191, 192], which can handily be evaluated in phonopy and lifts the degeneracy of the
modes. For that, we need the so called Born effective charges and the static dielectric constant.
Both of these quantities can either be calculated through Berry phase calculations [193],
elaborate FD calculations with varying external electric fields [194], or similarly to the initial
dynamical matrix from DFPT [176]. The correction is both needed to correct the DFPT result
at 𝛤 as well as that of the FD route in the vicinity of 𝒒 → 𝟎 [195], which is exactly what we
see in the dispersion we calculated. As no method of calculating the necessary quantities
is implemented in FLEUR at this point, we do not take the gap in the otherwise continuous
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dispersion as a gap in knowledge, but rather postpone the necessary implementation for this
understood problem to a later point.

6.4 Using the q-point Interpolation

Beyond DFPT
Data Points

The previous chapters served to highlight the current capabilities and limitations of the DFPT
implementation by benchmarking calculations for specific q-points against FD results based on
a well established force formalism and an external pre-/postprocessing tool. The more natural
way in the context of a DFT ground-state calculation is sampling the Brillouin zone with a set
of q-points and interpolating the phonon dispersion in the same way as it is done for the band
structure with the underlying k-point set. This procedure becomes feasible with the symmetry
considerations in section 3.2, that allow us to express the dynamical matrix at an unfolded
q-point through one at an irreducible representative, the symmetry rotation matrix, and a
phase factor, reducing the actual computational effort to an irreducible wedge of the BZ.

Calculation Setup The setup for an interpolated phonon calculation is different from the single shot runs we
described before. First of all, while the actual files for which the calculation is done still need
to be without symmetry, we have to generate additional .xml files through the input generator,
that do not have the -nosym option but instead an added prefix created by the parameter
-add_name fullsym. In the actual inp.xml used for the phonon calculation, we add a pa-
rameter qmode="1" to the juPhon tag, that reads the k-point set from fullsym_kpts.xml
(selected in the fullsym_inp.xml tag kPointListSelection) and uses it as a list of q-points
instead of the one provided in inp.xml. Once the DM files for this list are written, we change
the input file again. We add the parameters l_scf="F" and l_band="T" to juPhon and set
the k-point list in the file to a path provided in kpts.xml. A file JUDFT_WARN_ONLY has to be
created as well to bypass the warning, that the list of k-points for the band is not suitable for
an SCF calculation. We then start the calculation again. FLEUR will read the DM files, unfold
the symmetry onto each point of the full BZ, transform the set of DMs into real space (i.e. the
space of lattice vectors, creating a force constant matrix several unit cells across), and finally
transform it back for each q-point on the band path provided.

Testing with fcc
Cu

To test the band interpolation, we once again turn to fcc Cu, that delivered favorable results
before. We want to use the basic same input to (i) do single shot calculations and sample
the phonon bandstructure with a density of 1/16 in reciprocal space and (ii) interpolate the
bandstructure from the IBZ of a set of 8 × 8 × 8 q-points. If we overlay the interpolated curve
with the sampled points, we can judge the quality of the interpolated curve. Figure 6.7 shows
the resulting picture.
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Figure 6.7: Phonon dispersion for fcc Cu. The red curve shows the interpolated 8×8×8 reference
and the blue squares show the DFPT data sampled from 16 × 16 × 16.

The quality of the interpolation is basically perfect. While each second sample point is part
of the interpolation set anyway and is thus well described by construction, the intermediary
sixteenths are also very well matched by the interpolated curve. Near the 𝛤-point there
is a slight waviness that we assume to be an artifact of the interpolation. This quality of
interpolation also allows us to use it for a different purpose.

Phonon DOSHaving the possibility to calculate the full BZ of q-points at a fraction of the cost and being
able to interpolate any other q-point from it consequently also allows us to interpolate a much
denser grid of points than the one we started with. For example, from an 8 × 8 × 8 IBZ
sampling we can interpolate a full set of 16 × 16 × 16 or even more points, making for a very
dense q-point sampling. Such a dense sampling can be used to calculate the phonon density
of states (DOS) without relying on large smearing parameters. Moreover, the tetrahedron
method [196–198] can be used to gain a crisp curve that does not rely on a smearing at all.

Phonon DOS
Calculation Setup

The FD phonopy part of the DOS calculation is very straight-forward based on the calculations
we have already done. With the FORCE_SETS file created, all we have to do is invoke

phonopy -p mesh.conf --factor=5140.48767176083

from the console for a configuration file mesh.conf we prepared and the suitable factor to
give the DOS in units of cm−1. For the comparisons we show later on, we provide the atom we
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work on, the dimensions of the supercell, the number of mesh points on which to interpolate
in each Cartesian direction, and the range and interval of energy values to write out. We use
one file (with an additional smearing factor 𝜎) for a smeared histogram approach to the DOS:

ATOM_NAME = Cu
DIM = 2 2 2
MP = 16 16 16
SIGMA = 5
DOS_RANGE = 0 300 0.1

Figure 6.8: Phonon density of states for fcc Cu with the histogram method. The red curve shows
the FD reference and the blue curve shows the DFPT data.

The energy values provided have to be given in the same units as the --factor argument
calculates. For the DFPT side of the calculation, we start from the same interpolation set as
before, but rather than setting l_band="T", we set l_intp="T" and l_dos="T". We work
with a 16 × 16 × 16 k-point list to interpolate the IBZ into. This set needs to be chosen in
the kPointListSelection tag in inp.xml, while the sample set is set in the same way as for
the bandstructure in fullsym_inp.xml. Additionally, we provide parameters for the DOS in
the bandDOS tag: for the histogram method we choose minEnergy="0", maxEnergy="300",
sigma="5", and numberPoints="3001". The energy limits and smearing are given in cm−1
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These settings give a smooth dispersion with one broad growing plateau and a sharp peak at
high energies, as shown in figure 6.8. This general structure is universal for the fcc crystal,
just like the bandstructure was [185]. It is evident, that the DFPT calculation gives a neat
match to the FD reference result, albeit with a slightly higher amount of fine structure, i.e.
more local extrema. This can be due to the exact way in which the smearing factor is applied.
It has a profound impact on the amount of oscillations in the curve. Too small smearing with a
sparse k-point set can lead to many very sharp peaks that do not form a continuous curve. Too
much smearing in contrast blurs out features of the curve. The smearing is thus a parameter
that should be fine tuned. We chose to tune it for the FD phonon DOS and apply the same
parameter for the DFPT calculation. The overall match of the curves extent is very good
and the slight shift of the maximum directly relates to the phonon dispersion in figure 6.2,
where the maximum values of the DFPT data fall ever so slightly below that from the FD case.
The shape also gives a good fit to the general structure of fcc phonon DOS derived from the
continued fraction method in [199].

Figure 6.9: Phonon density of states for fcc Cu with the tetrahedron method. The red curve shows
the FD reference and the blue curve shows the DFPT data.

For a calculation, whose comparability is not influenced by the smearing factor 𝜎, we turn to
the tetrahedron method of BZ integration. For this we need to remove the SIGMA tag from
the FD configuration file, explicitly telling phonopy not to use the histogram method. In
the FLEUR input, we reduce the smearing to a minuscule value and set mode="tetra" in the
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bzIntegration tag. This is done, because FLEUR also allows a smearing parameter to be
used in the tetrahedron method to smooth out the very crisp DOS and be able to compare to
experimental results, which we do not want here.

The result is shown in figure 6.9. The good agreement between both methods becomes more
nuanced here. In the low energy regime, where the DFPT data points neatly reproduced the
FD dispersion curve in figure 6.2, the curves overlay excellently. Towards higher energies, the
overall shape of the curve remains very similar, albeit shifted slightly downwards for the DFPT
case. Both curves exhibit the same linearly building peak in the middle of the curve, drop and
valley following it, and the same global maximum. We are very pleased with these results and
count the phonon DOS capability of the FLEUR code as validated for future use.

6.5 Takeaways from the Validation

We presented a study of several test systems that represent different classes of materials
and different problems that can arise in their DFPT treatment. An overall good agreement
was obtained across all calculations, with some notes to be made. While for the monatomic
crystals it sufficed to use fairly small 2 × 2 × 2 supercells, the polyatomic materials required
bigger ones to obtain the same level of agreement. The phonon dispersion relations for the
polyatomic systems are more complex and this complexity is not necessarily covered well by a
description with small supercells. We thus take the convergence of the FD phonon spectrum
with respect to the supercell size as a requirement to produce accurate results. Aside from this
agreement, we judge the quality of the DFPT calculation itself as excellent. In no case have
the Goldstone modes, that are supposed to have exactly zero frequency, exceeded a relative
value of 1% of the maximum value of the dispersion. Considering the iteration count, even for
the smallest absolute q-points it took less than 30 iterations to converge the self-consistent
Sternheimer equation below a tight threshold. We see a failure of the method in SiC, but
this was to be expected considering existing knowledge about the phonon spectra of polar
systems. Finally, the interpolation from a set of sample q-points to a continuous band structure
on the relevant high-symmetry paths and the evaluation of the phonon density of states
was successful. With these investigations finished, we turn to a more in-depth look at the
parameters in the calculation to try and figure out, which have the most impact and which
are of lesser importance.
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Chapter 7
Convergence Studies in bcc Metals

7.1 Supercell Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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In the previous chapter, our main concern was to explore the extent to which the DFPT
implementation can be applied to different classes of materials. There was always either a
good agreement from the start or it could be achieved by increasing the size of the supercell
used for the FD calculation. There are several valid questions, that arise in this context. First
of all, are there materials that refuse to give accurate results with the current implementation
and are not understood, as opposed to the case of SiC? How exactly does the FD phonon
spectrum converge with respect to the size of the supercell? Which parameters are linked to
the accuracy of the phonon dispersion and which have a lower impact? Especially the last
question can be a guide to lowering the computational effort of the phonon calculation in
FLEUR. For the convergence studies, we turn to another monatomic metal we have not tested
yet: bcc Fe. It showed slight problems when it was last investigated [94] and we want to
study it further to see, how these problems emerged.

7.1 Supercell Convergence

Initial ResultWe begin with a procedure similar to the last chapter. We take the parameters determined
for bcc Fe by the DFPT profile in FLEUR and optimize the lattice constant with a fit to the
Birch-Murnaghan EOS. The resulting values are collected in table 7.2.

Table 7.1: Overview of the specific calculational parameters of bcc Fe. Parameters not contained
in the table are kept at the FLEUR default or are explicitly mentioned in section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT 𝑑𝑥 𝑎latt

16 10 8 711 2.15 𝑎0 0.017 5.220 𝑎0
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In addition to these parameters, the threshold for the modified coefficients from section 5.3
was increased to 10−5 Ha. The initial results are those for an FD reference with a 2 × 2 × 2
supercell, which proved sufficient for the previous monatomic materials. Considering the level
of complexity, bcc Fe falls into the same category as fcc Ni. Hence, in principle, we expect a
similarly good quality for the calculation. This is confirmed, when we look at the Goldstone
modes in table 7.2.

Table 7.2: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for bcc Fe. No frequency exceeds
an absolute value of 0.2 cm−1 (or 0.025 meV | 0.006 THz, respectively).

𝜔1 𝜔2 𝜔3

FD −5.81 × 10−6 −4.61 × 10−6 −3.26 × 10−6

DFPT 1.28 × 10−1 1.29 × 10−1 1.31 × 10−1

As was the case for all previous calculations, the Goldstone frequencies are of negligible
magnitude, assuming the dispersion is once again in the regime of a few hundred cm−1. To
verify this, we opted to use the q-point interpolation to gain access to a full phonon dispersion
and density of states. We can then directly compare the full breadth of phonon information
between the FD and DFPT case, to find areas of good and bad agreement. The special points
on the path are the high-symmetry points 𝐻 = (−1/2, 1/2, 1/2)𝑇 and 𝑁 = (0, 0, 1/2)𝑇 in
internal coordinates and the intermediary point 𝑃 = (1/4, 1/4, 1/4)𝑇.

Figure 7.1: Phonon dispersion and DOS for bcc Fe. The red curves show the FD reference and the
blue curves show the DFPT data.
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For the same DOS parameter set as in section 6.4 (and using the tetrahedron method), this
results in figure 7.1, where the DOS is plotted next to the phonon bands in a standard
electronic structure fashion. The comparison of the data shows, that the match between both
calculations highly depends on the high-symmetry path and mode we look at. For example,
there is an excellent agreement for the lowermost acoustic branch at and around 𝑁 and the
path from 𝛤 to 𝑁 manifests very similarly regardless of the calculation (with a slight deviation
of the uppermost acoustic mode). The other special points, however, take on completely
different values and especially the behavior around 𝐻 is fundamentally different. Where
the FD calculation finds a flat maximum for the longitudinal mode, the DFPT curve has a
peak to the left of the high-symmetry point and instead forms a valley. As opposed to fcc
materials [185], the curve shape in bcc crystals is directly influenced by both the nearest and
next-nearest neighbor force constants. Their ratio determines e.g. whether such a peak exists
and how pronounced it is. The mismatch indicates, that the ratio of the next-nearest to nearest
neighbor force constants is larger in the DFPT result. The differences of course also translate
to the DOS, where the high energy FD peak is sharper than for DFPT and the lower energy
broad peak is higher in the latter case. This can be either due to a bad description of the
dispersion by FD not being able to capture a structure with many peaks through interpolation
or a bad result from the DFPT run.

Figure 7.2: FD Phonon dispersions for bcc Fe and different supercell configurations. The red solid
curve shows the 2 × 2 × 2 supercell result, while the blue dash-dotted curve represents
3 × 3 × 3 and the fully dashed green one 4 × 4 × 4.

Convergence
Behavior

Both arguments are equally valid, but since we already observed a difference in the dispersions
for different supercell sizes (cf. [94] and section 6.3), we first want to investigate such
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trends more systematically and see, whether the match to the DFPT results becomes better
or the results converge to a completely different curve. Specifically, we do so by looking at
the phonon dispersions of the same bcc Fe system, but for supercells of sizes 𝑁 × 𝑁 × 𝑁
for 𝑁 ∈ {2, 3, 4, 5, 6, 7, 8}. These calculations become costly very fast, because they inflate
the monatomic unit cell to a supercell with 𝑁3 atoms, respectively. This means if a good
convergence does not emerge for some of the smaller supercells, even a badly optimized DFPT
calculation quickly becomes more efficient than the FD approach. We first look at the smaller
supercells from 2 to 4 copies in each direction (figure 7.2). It is immediately visible, that while
some parts of the dispersion remain practically the same in all three cases (lowest branch
from 𝛤 to 𝑁), there is some improvement towards the DFPT results. The valley at 𝐻 emerges,
consequently making the peak on the path from 𝛤 to 𝐻 visible. The band crossing at 𝑃 is
shifted downward, to a value similar to the one the DFPT results showed (a concrete overlay
will be shown later). Interestingly, the uppermost mode at 𝑁 differs between the 𝑁 = 2 and
𝑁 = 3 cases, but returns to its original value for 𝑁 = 4. Since it is a high-symmetry point
and therefore is associated to a phonon with a two cell periodicity, it stands to reason that
such a frequency can be best described when the supercell size is also a multiple of two. This
line of reasoning would also explain the improvement of the value at 𝑃, as it represents a
four cell periodic phonon. To clarify such notions, we look at the next set of supercell sizes in
figure 7.3.

Figure 7.3: FD Phonon dispersions for bcc Fe and different supercell configurations. The red solid
curve shows the 4 × 4 × 4 supercell result, while the blue dash-dotted curve represents
5 × 5 × 5 and the fully dashed green one 6 × 6 × 6.
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The results are not quite what we would have expected. The special point 𝑃 and the maximum
at 𝑁 remain very stable throughout all three sizes, dispelling the notion that the phonon wave
has to ”fit” neatly into the supercell to describe it best. At 𝐻 on the other hand, the 5 × 5 × 5
supercell jumps back to a higher value, reducing the extent of the peak before it. Such a jump
can also be seen at 𝑁 and on the path from 𝐻 to 𝑁 in the middle mode. So overall, it seems we
can at least quantify the supercell convergence as being better for even numbered supercells,
with the odd numbered supercells deviating from the trend that was set. As our interpolations
for the DFPT calculation is done on a reduced set of q-vectors representing an 8 × 8 × 8 grid,
we assume that the same quality of interpolation should be achievable with a supercell of
the same size, which constitutes a ground-state and force calculation for 512 atoms. This
is completely disproportional to the monatomic system for which we want to calculate the
dispersion and is not practicable for repeated calculations. For the sake of completeness and
being thorough, we still present results for the next two supercell sizes and compare them to
6 × 6 × 6 in figure 7.4.

Figure 7.4: FD Phonon dispersions for bcc Fe and different supercell configurations. The red solid
curve shows the 6 × 6 × 6 supercell result, while the blue dash-dotted curve represents
7 × 7 × 7 and the fully dashed green one 8 × 8 × 8.

For the odd supercell with 7 repetitions in each direction, we find a similar behavior to the
previous ones. It deviates from the high-symmetry points that were already properly captured
by small, even-numbered supercells. It does notably keep a very similar peak shape left of
𝐻, which can be understood in terms of divisions of the Brillouin zone. For even supercells,
all high-symmetry points should get at least a moderately good description, because they
represent supercells with a cell periodicity of 2. For odd supercells, this is not the case and
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they instead should give the best description of the curve in fractions that correspond to their
extent. That means, if we understand the points 𝛤 and 𝐻 as 0 and 1/2, the odd supercell can
give a good description of the curve at e.g. 3/7, which lies in close vicinity to the peak. We look
at the biggest supercell size next. Disappointingly, it does not stick to the trend of the previous
even supercells in keeping the high-symmetry points stable and refining the curve shape in
between. Rather, it deviates at the highlighted points, but keeps the peak stable as did the
7 × 7 × 7 calculation (3/8 is close to the peak as well). We have no concrete explanation for
this phenomenon, but there are some ideas that can come into play. First, the large supercell
might make the single small displacement that we chose so insignificant for distant atoms,
that the resulting forces become indistinguishable from numerical noise. In fact, analyzing the
force file reveals that the biggest contributions of several mHa/𝑎0 occur only on the displaced
atom, with some in the range of 10−4 Ha/𝑎0 and 10−5 Ha/𝑎0. This already constitutes the
limit of this calculation, as the force convergence threshold was set to the latter value. It stands
to reason, that setting a lower threshold and thus allowing for more accuracy can change the
resulting picture, but this would only make the calculation even more costly and even less
feasible for repeated usage. It is also not guaranteed, that the convergence down towards
higher force accuracy is smooth and easily achieved. For this specific case, we checked that
further force convergence (10−8 Ha/𝑎0) does not yield a visible difference. Another factor
that might come into play is the sampling of the Brillouin zone of the calculation itself. With
growing supercell size, the number of k-points used is reduced subsequently according to the
default choices of the FLEUR code, as it is reasonable to choose a sparser sampling when the
unit cell itself and thus the number of wave functions is already large. For 6×6×6, this results
in a set of 8 k-points, that notably still contain the high-symmetry points. At 8 × 8 × 8, the cell
has become so large, that only the 𝛤-point is found anymore. While we cannot directly infer a
link between the lack of high-symmetry points in the k-point set and them being lackluster in
the phonon dispersion, this is at least something worth mentioning and the reduction of the
BZ onto only 𝛤 might not be entirely enough to correctly describe the electronic structure of
the extensive cell. Testing this hypothesis would once again necessitate an even more involved
calculation. Since the main time consumption of the calculation in such large systems happens
in the diagonalization, increasing the k-point count by a factor of 8 (or rather by 4 due to
symmetry) nearly translates to a factor 4 onto the runtime. Considering that this is just a
hypothesis, the 512 atom system is much to big to experiment with for something we can
much more easily achieve with a DFPT calculation - however unoptimized it may still be with
respect to runtime. To avoid wasting computational resources, we instead focus on other
means of improving the match between the dispersions.

Improved
Supercells

The supercells with the best convergence, namely 4 × 4 × 4 and 6 × 6 × 6, have already become
quite large and the biggest ones defy the notion of convergence altogether, instead deviating
from previously established trends. It stands to reason that there should be a better way
of converging out with respect to their size. One way phonopy offers is the optional --pm
argument for the command line, when the supercell is constructed. When the set of possible
displaced supercells is found and reduced to its utmost minimum, normally displacements
that are directly opposed to each other (like ±𝑥 in one direction) are reduced to a single
displacement. We can prohibit this automatic reduction and see, whether this has an impact
on the accuracy of the dispersion for this specific case. Instead of increasing the number of
atoms and the size of the supercell by a factor of 8, this instead only doubles the calculational
effort and remains quite affordable. The results are shown in figure 7.5.
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Figure 7.5: Phonon dispersions for bcc Fe at different FD supercell configurations and for DFPT.
The red solid curve shows the 2 × 2 × 2 supercell result, the red dotted result has the
± 2 × 2 × 2 supercell and the blue solid curve shows DFPT data.

Considering we created only slightly more computational effort by calculating two displaced
2 × 2 × 2 cells instead of one, the results already look vastly better. The notion of a peak and
valley for 𝐻 can be seen and the middle branch at 𝑁 gives a way better fit than before. In
general, the values for this high-symmetry point now match very nicely to the DFPT result for
the lower two branches. There is, however, no change with respect to 𝑃, which apparently still
necessitates a bigger supercell. From previous experience, we directly turned to the 4 × 4 × 4
case for this and compare all of our top level results against each other. Unfortunately, the new
results do nothing to improve upon the standard 4 × 4× supercell for the DFPT comparison.
We collect the most accurate results in figure 7.6.

The biggest reasonable supercell 6 × 6 × 6 shows a tight fit to the DFPT result for the full 𝛤-𝐻
and 𝛤-𝑃 paths. There is a slight deviation for the upper mode at 𝑁 and a slightly larger one
for the middle mode. Consequently, the path 𝐻-𝑁-𝑃 gives a slight mismatch between the two
methods. The two FD calculations, however, match closely in the aforementioned region, so
it stands to reason that this result is reasonably well converged. Curiously, this mismatch is
opposite to the case of the ± 2 × 2 × 2 supercell, where the middle 𝑁 branch was very well
matched and 𝑃 instead disagreed. It is quite possible, that this is an artifact of the interpolation
from the force constant matrix, but currently we do not know of a straight-forward way to
verify this notion or remedy the problem.

7.1 Supercell Convergence 103



Figure 7.6: Phonon dispersions for bcc Fe at different FD supercell configurations and for DFPT.
The red solid curve shows the ± 4 × 4 × 4 supercell result, the green dashed result
has the 6 × 6 × 6 supercell and the blue solid curve shows DFPT data.

Furthermore, as the main focus of this work is not the investigation of FD results, where they
only serve as a benchmark for the DFPT results, we conclude this section. We take the 4×4×4
supercell to be a good middle ground between the convergence of the FD results and the
necessity to have accessible benchmarks whose computational effort does not vastly outweigh
their usefulness.

7.2 DFPT Convergence Parameters

We showed, that the FD simulations require large supercells to give a good match to the DFPT
data. In a sense, that makes DFPT calculations a lot cheaper for a desired accuracy threshold.
This difference in computational cost will only become more prominent for a better optimized
DFPT process, where time is saved as opposed to the current implementation. We leave the
further optimization of the procedure as a future task and look at the problem in a different
way. We have set several parameters in the calculation, like the plane wave cutoff, to quite
high values to ensure the quality of the dispersion results. In this section we want to evaluate
for some parameters, whether we could settle for less and still get a decent result with less
time-consuming calculations. We stick with bcc Fe as our test material, as its wavy dispersion
structure already gave a good challenge for the supercell investigation.
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7.2.1 Distance Threshold Convergence

The standard convergence threshold in the FLEUR code is 𝜀SCF = 1×10−5 𝑎−3
0 (and consequently

𝜀SCF = 1 × 10−5 𝑎−4
0 for DFPT). For all previous calculations, we have kept this threshold fixed,

leading to the iteration counts noted for each material. We investigated, how this parameter
influences the dispersion curve. For this we fine tuned the threshold from 1 × 100 𝑎−4

0 to
1 × 10−8 𝑎−4

0 in a logarithmic fashion, i.e. reducing the cutoff by a factor of 10 each step (with
0.5 × 10−𝑥 𝑎−4

0 in between each time). The resulting data points do not directly correspond
to a calculation that has exactly the convergence threshold as its final distance, but rather
to one with a distance below it. Since the density response can converge with bigger steps
than are captured by our grid, this can lead to several data points with the same value back to
back. Additionally, a smaller absolute q-vector results in much bigger values for the potential
and consequently much larger initial and overall distances. This naturally means a lot more
iterations happen for such a q-point and the point, at which actual convergence is achieved in
relation to the distances, can be reached faster. The results are plotted in figure 7.7.

Figure 7.7: Phonon dispersions for bcc Fe at different DFPT convergence thresholds. The black
dashed curve shows the 4 × 4 × 4 supercell result, while the red, green, and blue lines
show the three phonon modes for specific q-points with respect to the thresholds.

The different convergence thresholds are shown as a small graph at each of the q-points
sampled for the curve. On the scale of the full dispersion, these graphs appear flat aside from
some small deviations at the starting point for certain modes. In line with the reasoning, that
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the same distance for a smaller q-point means an already better convergence, the deviations
are only visible to the naked eye for the larger q-vectors and 𝛤. For the latter, the convergence
behavior can be best associated with that of the ground-state run, as there is no component of
the potential that acquires large values due to a small wave vector. The small inlets in the
plot zoom in on the convergence behavior of the high-symmetry points 𝛤 and 𝐻. At 𝛤, we
see the largest deviations from our reference values, where there is an uncertainty of up to
3 cm−1 when the density response is not fully converged. On the other hand, the values at
𝐻 are converged to an accuracy of less than a tenth of that for even the largest thresholds.
Carefully checking all the data points shows, that none of them (except for the ones at 𝛤) have
a convergence margin of more than 1 cm−1, meaning that if we take such an uncertainty (less
than 0.3%) as accurate enough, we can save several iterations for each q-point and drastically
reduce the computation time.

We can set up a similar but inverse parameter test by looking at the phonon dispersion for a
fixed maximum number of iterations. The result is plotted in figure 7.8.

Figure 7.8: Phonon dispersions for bcc Fe for different maximum numbers of iteration in the
Sternheimer SCF cycle. The black dashed curve shows the 4 × 4 × 4 supercell result,
while the blue dotted lines show the three phonon modes for specific q-points with
respect to the iterations.

The convergence plot for each mode and q-point is visualized as a dotted line. The range
goes from 5 iterations to 15, yielding 11 data points each. For smaller iteration counts, the
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results diverge to wildly to show a coherent plot. While for higher modes, corresponding
mostly to larger absolute q-points, the dotted curves form continuous lines, the single points
are clearly distinct for small ones. This means the small q-point need some more iterations to
converge. This is a somewhat complementary statement to the one from the previous plot,
where the same convergence threshold means a different amount of iterations for different
sizes of the q-point. We want to quantify this notion by plotting the first iteration distance of
the Sternheimer cycles for each Cartesian direction 𝑗 against the corresponding component 𝑞𝑗
of the q-point in figure 7.9.

Figure 7.9: First iteration distances of the Sternheimer SCF-loop for bcc Fe plotted against the
Cartesian q-point component parallel to the displacement. The y-axis is given on a
logarithmic scale.

Aside from a few outliers, there is a clear trend towards smaller distances for larger q-
components. The lowest values at 𝑞𝑗 = 0 belong to the 𝛤-point. The higher values at 𝑞𝑗 ≈ 0.6
belong to the intermediary point 𝑃 and the lower ones to the high-symmetry point 𝑁. The
values at 𝑞𝑗 ≈ 1.2 stem from 𝐻. So the most obvious outliers are related to special points in
the BZ, while the rest shows a rather clear downwards trend. We can summarize the insights
from the threshold/iteration convergence by relating them to the requirement, that the second
order energy response has to be variational. We see clearly, that only a few iterations (or
conversely a large threshold) suffice to achieve well-converged results for the dispersion, in
spite of very large first iteration distances at small q-points. I.e. a badly converged set of
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wave functions yields a sufficient end result. This observation can be carried over to other
parameters.

7.2.2 Basis-Set Cutoff Convergence

The next parameter whose influence we want to investigate is the plane wave cutoff 𝐾max. It
is of central importance in any DFT calculation, as it determines the set of reciprocal lattice
vectors 𝑮 that are constructed for each k-point, thereby determining the size of the basis
set and their maximum kinetic energy. In the LAPW framework, this also influences the MT
spheres indirectly through the sets of matching coefficients. As a rule of thumb, it is usually
wise to choose ℓ𝛾

max ≈ 𝐾max𝑅
𝛾
MT [133]. Here, we deviate from this rationale and vary the

plane wave cutoff from 3.5 𝑎−1
0 to the reference result of 4.5 𝑎−1

0 in steps of 0.1 𝑎−1
0 , all the

while keeping the angular cutoff and MT radius fixed at the values in table 7.1. Otherwise we
would have to establish which of these we would have to change by how much. Keeping them
fixed can also have an influence on the lattice constant, which we choose to ignore to avoid
additional EOS runs for every 𝐾max chosen. The results are shown in figure 7.10.

Figure 7.10: Phonon dispersions for bcc Fe at different plane wave cutoffs. The black dashed
curve shows the 4 × 4 × 4 supercell result, while the blue dotted lines show the
phonon frequencies for specific q-points with respect to the cutoffs.
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The LAPW basis cutoff has a more significant impact than the convergence threshold had. To
the naked eye, there is a visible curve shape for the data points, which converge towards the
value of the original cutoff. The largest ranges of values are found for the largest frequency
values, where a convergence span of up to 5 cm−1 can be observed. For the specified range of
cutoff parameters, this is still somewhat small and can likely be attributed to the fact, that we
would technically have to reoptimize the system for each of them. This reinforces the notion,
that the formalism is variational, as the basis cutoff also influences the quality of the wave
functions and thus their convergence. We therefore keep in mind that choosing a lower value
of 𝐾max can be a valid way to cut down on the calculation time, as it significantly reduces
the time spent on diagonalizing the Hamiltonian for each k-point (cf. the scaling aspect in
section 5.6).

7.2.3 k-point Set Convergence

Figure 7.11: Phonon dispersions for bcc Fe at different k-point meshes. The black dashed curve
shows the 4×4×4 supercell result, various data points show the phonon frequencies
for specific q-points with respect to the sets.

We established in section 6.4, that it is most instructive to calculate the dynamical matrices
for a set of q-points that cover the IBZ of the crystal lattice, e.g. we showed that the fcc
Cu dispersion interpolated on the 29 points needed for an 8 × 8 × 8 q-point grid suffice to
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reproduce the sampled q-points of the 16 × 16 × 16 grid. In general, in a calculation with
an 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 k-point grid, all q-points {𝑙/𝑁𝑥, 𝑚/𝑁𝑦, 𝑛/𝑁𝑧}(𝑙,𝑚,𝑛)∈ℤ3 can be calculated
directly without an interpolation. This means, that we can sample the phonon dispersion with
a high density of q-points for different k-point grids to see, how the data points converge with
respect to the density of the BZ sampling and its parity (odd/even).

This was done in the debugging phase of the project for a reciprocal energy cutoff (cf. sec-
tion 6.4) of 10−7 Ha, yielding the data shown in figure 7.11. There are several things to note
about this plot. First and foremost, there are several sections and modes of the dispersion,
where the data from all k-point sets shows excellent agreement with the FD reference. These
branches, like the 𝛤-𝑃 path and the uppermost and lowermost modes of 𝛤-𝑁, are therefore
very stable with respect to changing the k-point set and easily converged at quite a sparse
mesh of 8 × 8 × 8. The same cannot be said for the middle branch and everything around the
high-symmetry point 𝐻. There, two key points are of note. The denser sets tend to converge
better towards the reference (note for example the 8 × 8 × 8 marker at 𝐻 as compared to that
of 16 × 16 × 16), but there are some notable outliers. The odd numbered markers closest to
𝐻 vary wildly in quality with no clear trend of convergence with higher grid densities. This
can be due to the fact, that the energies close to it can be near-degenerate to those of 𝒒 = 𝟎,
which means a higher cutoff on them might be in order. As we do not plan on using these
types of k-point sets for the other calculations in this work, such a study is beyond its scope.
We now try to apply the knowledge we gained from this section to another bcc test system.

7.3 The Case of bcc Mo

Experiences with
bcc Metals

As we already mentioned, in the group of monatomic materials there was not as good an
agreement between DFPT and FD calculations for the bcc as for the fcc case [94]. This could,
however, be remedied by turning to bigger supercell sizes and the convergence behavior was
explicitly highlighted for the case of bcc Fe in section 7.1. But there was one material that
consistently resisted an acceptable degree of agreement, in that certain features of the DFPT
data could by no means be reproduced in the FD approach.

bcc Mo The material in question is bcc Mo. It is a transition metal that is usually supplemented
with local orbitals in FLEUR and in this case, the supplementation is more important than for
fcc Ni or bcc Fe, as there are relevant semicore states with high lying energies, that are not
well described as confined to the core. Aside from this, it does not exemplify a new class of
materials and should be treatable in the same way the other test materials have. We begin, as
always, by giving the parameter set and optimized structure for the system in table 7.3.

Table 7.3: Overview of the specific calculational parameters of bcc Mo. Parameters not contained
in the table are kept at the FLEUR default or are explicitly mentioned in section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT 𝑑𝑥 𝑎latt

16 11 8 793 2.15 𝑎0 0.016 5.884 𝑎0

Initial testing of this system done in [93] revealed problems with the imaginary parts of the
eigenvectors, that needed to be projected onto the real axis to ensure the inversion symmetry
of the system. Further testing in the scope of this work showed, that these problems are
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related to the fact that there is a discrepancy between the numerical gradient of the effective
potential and the analytical form that is constructed in the DFPT workflow, specifically in the
Coulomb part. The gradient of the density shows significant noise near the nucleus and the
standard integrator (6-point Simpson scheme) used in the Poisson solver of FLEUR propagates
this towards the edge of the MT. A similar problem was observed in [200], where the Poisson
solver had trouble with the divergence of the magnetic field, that was used as its input density.
Such fringe cases required the implementation of a 4-point spline integrator [201, 202], that
is able to smooth over such noise. Without the spline the dispersion showed inflated values on
some branches and a lot of soft modes of similar extent. Using the spline integration scheme
was sufficient to fix the most auspicious problems the DFPT data had. The resulting Goldstone
modes are summarized in table 7.4.

Table 7.4: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for bcc Mo. No frequency exceeds
an absolute value of 0.07 cm−1 (or 0.009 meV | 0.002 THz, respectively).

𝜔1 𝜔2 𝜔3

FD 6.93 × 10−6 7.11 × 10−6 7.55 × 10−6

DFPT −6.50 × 10−2 −6.01 × 10−2 −4.31 × 10−2

Figure 7.12: Phonon dispersion and DOS for bcc Mo. The red curves show the FD reference and
the blue curves show the DFPT data.

The frequencies are once again very close to 0 and fall within the range we specified in the
conclusion of the previous chapter. The maximum iteration count was 16. The curiosities of
bcc Mo arise when we look at other high-symmetry points. For the initial results of the full
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dispersion, we show once again the interpolated DFPT curve and the FD results for a 2 × 2 × 2
(plus/minus displacement) supercell alongside the phonon DOS in figure 7.12. The areas of
agreement and disagreement are quite similar to the previous case of bcc Fe. While some lines
neatly align, in FD there is a distinct lack of features close to the high-symmetry points, like
the small bump on the lowermost branch close to 𝑁 on 𝛤-𝑁, that converge toward the same
value. Especially the points 𝐻 and 𝑃 are also heavily mismatched. While the band crossing
in 𝑃 can be seen in both curves, the FD reference shows a significantly higher value. At 𝐻,
the DFPT data falls steeply into a minimum for all branches, while the FD calculation makes
it look more like a saddle point - the upper mode goes into a minimum and the degenerate
lower modes into a maximum. The value is also shifted upwards. These mismatches directly
translate to the phonon DOS. Both calculations give two distinct broad peaks, but in the FD
case the valley between them is more than double the size of the DFPT one.

Convergence and
Stability

Due to the stark mismatch of the two calculations, we have made various attempts to tune
the results by adjusting parameters and workflows in both cases. On the FD side, there was a
significant influence on the curve when a 4 × 4 × 4 supercell was used instead. Calculating
this same supercell with two separate opposing displacements did not yield any noteworthy
change anymore, just as it was the case for bcc Fe. We use this as the new reference curve.

Figure 7.13: Phonon dispersion and DOS for bcc Mo. The red curves show the FD reference
and the blue curves show the DFPT data. The black pluses show experimental data
from [203].

For DFPT, on the other hand, we tried to further converge the calculation by drastically
increasing some cutoff parameters. The plane wave cutoff 𝐾max did not have a significant
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impact when increased above values of 4.5, which is already moderately big. The same goes
for the density cutoff 𝐺max. Finally, we checked the influence of the k-point set by drastically
increasing the number of points in each Cartesian direction from 16 to 40 for the 𝛤-𝑁 branch.
Doing so did not make the bump in the lowest branch disappear, but rather showed it in
smooth way with higher resolution. So, in summary, the DFPT curve was very stable against
the parameter changes we made. Thus, we consider it converged. The question is: if both
curves are converged to their final form and still disagree - which calculation type yields the
more accurate results. Since the ground-state calculation gives us an optimized system with a
lattice constant very close to the experimental one (3.114 vs 3.142 [204]) despite using LDA, it
stands to reason that our results should be able to replicate experimental data for the phonon
dispersion very well.

To verify this, we used the data from [203]. The results of the 4 × 4 × 4 supercell and the
16 × 16 × 16 k-point DFPT calculation are shown alongside the measurements in figure 7.13.
Comparing both curves to each other and to the experimental data gives the clear impression,
that DFPT delivers a better match. Both the minimum at 𝐻 and the slight buckle before 𝑁
are visible in the data points, cementing our view that the DFPT calculation has reproduced
features, that the FD approach is not able to capture easily. This is in equal parts confusing
and easily explainable. Considering the mismatch of features close to high-symmetry points,
they represent phonons that only become commensurate with a supercell when we look at
many wavelengths. In contrast, a high-symmetry point is commensurate with the 2 × 2 × 2
supercell already. This is also neatly confirmed by the fact, that 𝑃 is well described with the
4 × 4 × 4 supercell. The one thing that is hard to explain is the mismatch at 𝐻. We would
expect a good agreement of the point itself and then some deviations around it with respect
to the peak structure. But that is not the case - the point itself is mismatched and does not
dramatically improve with the supercell size.

We still attribute the good fit of the DFPT curve to a matter of convergence in the interpolation:
The direct calculation of the IBZ interpolation points is done with a high-accuracy k-point grid
and the interpolation is done on 8 × 8 × 8 q-points. Again, it stands to reason that this is twice
as accurate as the present supercell approach and an 8 × 8 × 8 supercell would fare better.
This, however, constitutes a ground-state and force calculation for a system of 512 atoms,
which is utterly wasteful for the calculation of such an inherently small (monatomic) system.
Additionally, it turns out that such a large supercell calculation does not come without its
flaws either, as we already observed for bcc Fe in section 7.1 and is shown again in figure 7.14
for bcc Mo.

The resulting curve for the big supercell only locally improves upon the smaller one and has a
noticeable drop in quality in other branches. On the upside, the upper mode of 𝑁 now gives a
tight fit to the DFPT curve. The drop towards a local minimum in 𝐻 also finally emerges. The
problems lie mostly in the lower branches. The lower 𝑁 mode shrinks so significantly, that it
drastically alters the dispersion on the 𝛤-𝑁 and 𝐻-𝑁-𝑃 paths. There is also a distinct waviness
to the curve, that is likely an artifact of the large cell. After all, more repetitions in each
direction allow more freedom in the Fourier interpolation, which does not necessarily translate
to a strict improvement. The convergence behavior of bcc Mo with respect to supercell size thus
proves rather erratic. Furthermore, as stated before, calculations on this scale are anything but
worth it and the DFPT approach is validated as a less cost intensive, more accurate solution
to calculate the phonon dispersion. This holds true for this specific material and is backed
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Figure 7.14: Phonon dispersion and DOS for bcc Mo. The red curves show the FD 4 × 4 × 4
supercell, the dashed green line 8 × 8 × 8, and the blue curves show the DFPT data.

up by the previous knowledge from the bcc Fe calculations, but is to be taken with a grain of
salt when we move to polyatomic crystals of interest, where the DFPT calculation time grows
quickly.
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Chapter 8
Phonons in Magnetic Materials

8.1 Phonon Dispersions of Elemental Magnets . . . . . . . . . . . . . . . . . . . . 115

8.2 Interplay of Magnetism and Phonons in Magnetic Lanthanides . . . . . . . . . 125

In the zoo of DFT codes, each one has its advantages and disadvantages. Due to the relative
simplicity of the basis, big parts of the plane wave formalism are less complicated than the LAPW
basis, at the cost of losing access to information about properties near the core like the electric
field gradients. This is due to the replacement of the Coulomb singularity and inner-shell
electrons by a smooth pseudopotential. The main drawback is, that these pseudopotentials are
not universal and new ones can become necessary for specific elements and specific properties
under consideration. In the FLAPW formalism, where no such replacement is made, the basis
formalism is a lot more involved, but the all-electron nature is fully contained and there is in
principle no restriction as to what elements can be described well. At its core, the identity of
the FLEUR code is that of a high-precision property calculator for 2D and 3D materials that
contain complex magnetism. Electrons for both spins are explicitly treated in the KS equations
for any collinear calculation and advanced features like non-collinear magnetism, spin-orbit
interaction, and spin spirals [205] are available to properly describe a multitude of different
magnetic configurations. As the adaptation of these more involved capabilities to the DFPT
formalism is beyond the scope of this work, the investigations in this chapter are limited to
collinear ferro- (FM) and antiferromagnets (AFM).

8.1 Phonon Dispersions of Elemental Magnets

In section 6.3 and chapter 7, we investigated the phonon dispersions of the elemental FM
hcp Co and bcc Fe with both the FD and the DFPT implementation. The results showed good
agreement between both methods, but there was no further investigation into the ramifications
of the magnetic structure for the phononic one. I.e., there was no investigation as to what
influence the FM nature has on the dispersion and whether an AFM setup, which is optimized
to a different lattice constant, shows significant differences. For this we first did an EOS run
for the bcc Fe and hcp Co systems with an AFM setup to find the corresponding ground-state

115



configuration. The parameters were directly adopted from tables 7.1 and 6.9, aside from the
lattice constant that we want to find a new value for. All reciprocal energy cutoffs for the
DFPT runs (cf. section 5.3) are set to 10−5 Ha.

bcc Fe To set up a bcc Fe system that can become AFM, it is advantageous to set it up as a simple
cubic crystal with a two atom basis. This results in a mapping of the bcc q-vectors onto those
of the simple cubic cell, where the six resulting frequencies are either degenerate or represent
the modes of two different bcc q-points mapped onto the same simple cubic one. To find the
necessary set of sample points, we derived

𝒒sc
!= 𝒒bcc (8.1)

⇔ 𝒒𝑇
sc,int ⋅ 𝐵sc = 𝒒𝑇

bcc,int ⋅ 𝐵bcc (8.2)

⇔ 𝒒𝑇
sc,int = 𝒒𝑇

bcc,int ⋅ 𝐵bcc𝐵
−1
sc = 𝒒𝑇

bcc,int ⋅
⎛⎜⎜⎜⎜
⎝

0 1 1
1 0 1
1 1 0

⎞⎟⎟⎟⎟
⎠

. (8.3)

The EOS run shows that bcc Fe is not stable in an AFM configuration with the chosen LDA
functional and rather converges to a ground state with no magnetization. Thus, the first
comparison we can make is between the FM and nonmagnetic (NM) state. The resulting lattice
constant is roughly 5.099 𝑎0, so about 97.7% that of the FM case with a magnetic moment of
2.055 𝜇𝐵 per MT sphere. The resulting phonon dispersions are shown in figure 8.1.

The data points from the different cases differ greatly. While the FM shows a fully stable
dispersion, several branches of the NM calculation have significantly negative values, i.e.
imaginary frequencies and thus instabilities. This means the associated phonon eigenvectors
do not represent the direction of an atomic oscillation, but rather a direction into which the
lattice wants to relax to form a new structure. Looking at the path from 𝑁 to 𝛤 specifically,
the values nearly match the positive extent of the dispersion in the FM case. A point to
note here, is that the halfway point on this path was very hard to converge in the DFPT run
and to make it feasible, the convergence parameter was turned up to 5 × 10−4 𝑎−4

0 , which
it still took many iterations to fall below. At 𝑁, the eigenvectors of the soft modes reveal
that there are two energetically more preferable structure relaxations, that are degenerate to
each other. It amounts to shifting the atoms at (0, 0, 0) and (1/2, 1/2, 1/2) into the direction

̂𝒆 = (− ̂𝒆𝑥 + ̂𝒆𝑦)/
√

2 and ̂𝒆 = (+ ̂𝒆𝑥 − ̂𝒆𝑦)/
√

2 respectively with a periodicity of two unit cells.
This is tantamount to shifting the (110) planes of the lattice against each other, moving the
system towards a close packed structure. This is very nice in a sense, because it is common
knowledge that LDA predicts NM fcc Fe to be the ground state of elemental iron [206]. This
shortcoming is neatly reproduced by the soft modes in our dispersion.

As we added a second atom to properly describe the different magnetic configurations, the
phonon dispersion is modified from the pure bcc lattice in that it shows optical modes from a
backfolding of branches or rather more than one bcc q-point that maps to the same one in
the simple cubic cell. This is especially visible on the fully symmetric 𝛤-𝐻 and 𝐻-𝑃 paths. To
validate the new setup against the one from chapter 7, we map select paths from figure 7.1
onto the new dispersion, which results in figure 8.2.

The overall agreement of the dotted line and the new samples of DFPT data is very good. A
noticeable shortcoming, however is the deviation of the optical mode at the high symmetry
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Figure 8.1: DFPT phonon dispersions for bcc Fe expressed as a simple cubic system with a two
atom basis. The blue data points belong to the FM system and the red points are those
of the NM configuration.

point 𝐻. It is equivalent to the 𝛤-point for this setup and thus subject to special terms that
only apply there. A similar bump can be seen when looking closely at the 𝛤-point of Si in
figure 6.4 and emerges again for more materials later on. This indicates a problem with the
eigenenergy responses that was previously undetected and is subject to future investigations.
Due to the enormous difference between the FM and NM dispersion, we also want to take
a look at the resulting phonon DOS shown in figure 8.3. It was again calculated with the
tetrahedron method.

As it can be expected from the dispersion, the two curves are drastically different. Instead of
showing a two peak structure with a broad one at lower and a sharper one at higher frequencies,
the positive energy regime has only one sharp peak, that is embedded in a plateau limited
by two smaller sub peaks. The sharp peak neatly corresponds to the maximum of the broad
peak from the FM case, while the sharp FM peak is completely missing. The corresponding
modes instead move downwards in energy (partially to the negative regime). This means an
excitation of the system in the corresponding broad energy range would make it relax into a
different state rather than oscillate, which is, again, something that is known for NM bcc iron.
We conclude this small discussion and move on to the next elemental ferromagnet, hcp Co.

hcp CoThe AFM hcp Co setup needs no modification from the FM case, as there are already two atoms
in the unit cell. We only need to initialize the calculation with inverted state occupations for
one of the atoms to generate two magnetic moments that are opposed to each other. As was
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Figure 8.2: DFPT phonon dispersions for bcc Fe. The blue data points belongs to the FM system
expressed as a simple cubic system with a two atom basis and the red dotted lines
correspond to the original bcc crystal with a single atom.

the case for bcc Fe, this setup with the VWN LDA functional yields a nonmagnetic state, which
we compare to the FM one again. The lattice constant shrinks to about 98.8% from the FM
setup with a magnetic moment of 1.553 𝜇𝐵 per MT sphere. Figure 8.4 shows the resulting
comparison.

In contrast to bcc Fe, the nonmagnetic state does not exhibit soft modes. Both the FM
and NM structure show a stable dispersion with a very similar overall form. The NM data
points, however, are generally shifted upwards. There is also a slight change in the form
of the lowermost acoustic mode on 𝑀-𝛤, where the dip towards the high-symmetry point
vanishes for the NM setup. As it was the case for two atomic bcc Fe, we initially found an
outlier for the 𝛤-point, consolidating the notion that there is still something unclear about
the eigenenergy response in polyatomic materials. This outlier could be fixed by turning of
the correction for occupied-occupied band combinations as described in section 5.3 (more
specifically equation (5.24) in the final iteration and equation (5.28)), but this change made
no difference for any other material in this chapter.

Regarding the impact of the magnetic structure on the phonon dispersion, we want to further
clarify the way in which this is expressed. For this we turn to modified structures in the next
section.
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Figure 8.3: DFPT phonon DOS for bcc Fe. The blue curve belongs to the FM system and the red
one is that of the NM state.

8.1.1 Exchanging the Magnetic Textures

Swapping the
Magnetic Setups

The previous calculations showed, that bcc Fe and hcp Co both tend to a nonmagnetic state
when they are initialized with an AFM electron density. The calculated lattice constants
are also different by a slight margin. Considering the differences we noted for the phonon
dispersions of the FM and NM cases, the question arises whether they are due to the difference
in the magnetic structure or the difference of the crystal lattice itself. The latter seems likely
for hcp Co in figure 8.4, where the FM spectrum is overall suppressed in comparison to the NM
one. To investigate these relations, we set up another set of cells, where the lattice parameters
of the FM and AFM setup are interchanged.

bcc FeWe compare the spectrum of FM bcc Fe for the lattice constants optimized in an FM and AFM
(nonmagnetic) setup. The result is shown in figure 8.5.

Both spectra are stable and very similar. They show the same overall trends and curve shapes,
but the FM in the optimized lattice for the nonmagnetic state is generally drawn towards
higher frequencies as opposed to the base FM. This is a direct effect of the smaller predicted
structure. With the same form of magnetism, a smaller lattice constant directly corresponds
to more repulsion of the atoms and thus higher energies and higher oscillation frequencies
when they shift against one another. To draw further conclusions, we look at the opposite
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Figure 8.4: DFPT phonon dispersions for hcp Co. The blue data points belong to the FM system
and the red points are those of the AFM setup that loses its magnetization in the SCF
loop.

case of the NM one in the structure of the FM, which results in figure 8.6. The lattice constant
in this case is big enough to support an actual AFM ground state, where the magnetization is
not lost, so we added the AFM data points as well.

The different NM states shown in the figure are related in the same way as those for the FM
were. The spectrum with the smaller lattice constant (NM) tends to have higher absolute
frequencies both on the positive and negative side. The general structure, especially with
respect to the pronounced soft modes close to 𝑁, is very similar in both lattices, hinting at
preferred structures that are not bcc. The AFM in the FM structure shows the same general
curve shape, but as for the original NM, it had convergence problems. In this case not only at a
singular q-point but for the full curve aside from the high-symmetry points. The convergence
threshold was thus made bigger again. The point 𝒒 = (1/4, 1/4, 0) (in internal coordinates)
itself was not able to converge even with this increased threshold and is thus missing in some
branches (e.g. the soft mode). The convergence problems are likely due to the fact, that the
optimized NM lattice constant lies right in the regime, where the phase change from AFM to
NM happens. The EOS run already proved tricky, which translates to the DFPT calculation.
The NM configuration with the FM lattice constant did not show this problem, but rather
converged nicely (with the same increased cutoff) - the point that is missing in the AFM curve
is present here.

8 Phonons in Magnetic Materials120



Figure 8.5: DFPT phonon dispersions for bcc Fe expressed as a simple cubic system with a two
atom basis. The blue data points belong to the FM system with the lattice constant
𝑎 = 5.220 𝑎0 and the red points are those of the AFM setup (𝑎 = 5.099 𝑎0) with an
FM ground-state density. FMcAFM is a shorthand notation for the FM system in an
AFM lattice constant.

Combining the insights from both plots leads us to the following conclusion: While the lattice
constant and thus the distances between the atoms have a significant impact on the energy and
frequency range, the qualitative behavior is dictated largely by the magnetic configuration.

hcp CoWe look next at the FM and NM hcp Co systems. Figure 8.7 shows the interchanged systems
both in an FM ground-state configuration. We observe the same behavior as for the bcc Fe FM.
Both dispersions are stable and the FM in the NM structure is scaled upwards as expected with
respect to its smaller lattice constant. The relative scaling between the curves is about five to
seven percent. The finer features, like the oscillations on the uppermost mode on 𝛤-𝐴 and the
flattening of the lowermost band near the high-symmetry point 𝑀 on 𝑀-𝛤, are also identical
between the two systems. These features are distinctly different for the NM in figure 8.8.

Again, the curve shapes are virtually identical safe for a scaling factor. The highlighted features
from the FM case are not present. On the path that previously showed an oscillation, there
is now a rather smoothly decreasing curve and near 𝑀 the flattening makes way for a more
parabolic curve shape. The different magnetic structures in the same lattice, while showing
different features, have a very similar extent, in that the maxima of the curves land at roughly
310 cm−1 for the smaller and 345 cm−1 for the larger lattice constant respectively. This
reinforces our previous statement, that the main effect of the lattice size is on the overall
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Figure 8.6: DFPT phonon dispersions for bcc Fe expressed as a simple cubic system with a two
atom basis. The blue data points belong to the NM system with the respective lattice
constant (𝑎 = 5.099 𝑎0) and the red points are those of the FM setup (𝑎 = 5.220 𝑎0)
with an NM ground-state density. The green data points additionally show the AFM
configuration at the FM lattice constant.

scaling of the dispersion, while its exact features are beholden to its magnetic structure. After
further belaying this notion, we want to check it for more demanding magnetic materials.
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Figure 8.7: DFPT phonon dispersions for hcp Co. The blue data points belong to the FM (𝑎 =
4.606 𝑎0, 𝑐 = 7.356 𝑎0) and the red points are those of the NM setup (𝑎 = 4.550 𝑎0, 𝑐 =
7.266 𝑎0) with an FM ground-state density.
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Figure 8.8: DFPT phonon dispersions for hcp Co. The blue data points belong to the NM (𝑎 =
4.550 𝑎0, 𝑐 = 7.266 𝑎0) and the red points are those of the FM setup (𝑎 = 4.606 𝑎0, 𝑐 =
7.356 𝑎0) with a NM ground-state density.
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8.2 Interplay of Magnetism and Phonons in Magnetic Lanthanides

In the introduction to this chapter, we explicitly highlighted the advantages of FLEUR as a tool
to cover materials that are difficult to access in pseudopotential calculations. One such class of
materials is the lanthanide group. The high-energy 4𝑓-electrons are hard to describe in such a
framework, while high-precision FLAPW codes agree nicely on the resulting structures. This
is especially evident in [75], where the WIEN2k [207] code and FLEUR give close to identical
results, while plane wave codes that are benchmarked against their average either diverge
massively with respect to the calculated structure and EOS or give no data at all, because the
required pseudopotentials are not applied. We take this as an opportunity to investigate the
phonon dispersions in two of the magnetic lanthanides, for which the amount of resources
and previous studies is very sparse. We select two 4f elements with zero orbital moments,
Eu and Gd, to avoid the problems of treating the intraatomic Coulomb energy interaction
correctly to obtain the proper orbital moments. Eu crystallizes in the bcc structure and GD in
the hcp structure. This means we can draw comparisons to the two magnetic materials we
already discussed and start with the latter this time.

8.2.1 The Phonon Dispersion of hcp Gd

Gd crystallizes in an hcp structure. It has seven 4𝑓 electrons, which constitutes a half-filled
shell. They are characterized by a very localized nature. In past investigations of hcp Gd with
FLEUR [208] it was noted, that the LDA overestimates the itinerancy of the 4𝑓 electrons. Their
description as valence electrons leads to a bad description of the band structure with low-lying,
near dispersionless minority 4𝑓 bands and additionally leads to the wrong magnetic ground
state, where the AFM configuration is energetically preffered over the FM one. This does not
constitute the correct ground-state for hcp Gd. Both problems can be remedied by treating the
4𝑓 states as fully polarized core electrons as well as a treatment of the system with DFT+U,
explicitly taking the highly correlated nature of the system into account. We opt to use the
first of these two methods, as DFPT+U is as of yet not implemented in the DFPT branch of
FLEUR, and investigate the phonon dispersions of both FM and AFM hcp Gd. Additionally, we
benchmark the results against FD curves as we did in several previous calculations. We start
with the ferromagnetic structure.

(A)FM Structure
and Comparison

For the setup of the hcp Gd system, we stick as closely as possible to the parameter choices
provided in [208], given that the FLEUR code has gone through many iterations and changes
since then. The most significant differences were the replacement of a second energy window
for the 5𝑠 and 5𝑝 electrons by local orbitals (which the code does by default at the moment)
and the setting of both angular momentum cutoffs to the same value, as none is provided for
ℓnonsph and we set it to a slightly higher value to contain odd number contributions to e.g. the
density gradient. The parameters are summarized in table 8.1 for an FM structure with a
magnetization of 6.473 𝜇𝐵 and an AFM structure with ±6.261 𝜇𝐵.

The FD results were calculated for a 4 × 4 × 4 supercell, as (just like in the case of hcp Co)
the smaller 2 × 2 × 2 one did not yield a sufficiently satisfying fit between the FD and DFPT
approach. We begin the discussion of the FM results analogously to those in the previous
chapters 6 and 7 and look at the Goldstone modes of hcp Gd. They are summarized in table 8.2.
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Table 8.1: Overview of the specific calculational parameters of (A)FM hcp Gd. Where the parame-
ters differ for the FM and AFM structure, there are two values given. More parameters
in section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT dx 𝑎latt 𝑐latt

24/24/16 9 9 981 2.8 𝑎0 0.014 6.749/6.734 𝑎0 10.779/10.754 𝑎0

Table 8.2: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for FM hcp Gd. No frequency
exceeds an absolute value of 1.4 cm−1 (or 0.174 meV | 0.042 THz, respectively).

𝜔1 𝜔2 𝜔3

FD −7.15 × 10−2 −7.15 × 10−2 −5.45 × 10−2

DFPT 1.14 × 100− 1.38 × 100− 1.39 × 100−

The modes show the largest values in this thesis so far for the DFPT case. The dispersion takes
on frequencies up to around 120 cm−1, which makes the deviation of the Goldstone modes a
percentile error. While this is worse than the previous materials, it is still sufficiently small for
a good comparison to the FD benchmark. It is also way below some of the uncertainties in the
only set of experimental Gd phonon dispersion data that we found [209]. We show the FD
and DFPT results as well as the experimental data in figure 8.9.

The overall shape of the curve is very reminiscent of that in the case of hcp Co. This is not
surprising, as we also had very similar dispersion across all fcc materials we studied and the
lattice structure has the most significant impact on the ways the atoms can oscillate. The
match between FD and DFPT is good, broadly speaking. The main differences occur at the
high-symmetry points, for example the values at 𝐾 do not align optimally. Furthermore, there
is a significant deviation of the DFPT data at 𝛤 both with respect to the FD benchmark and
the trend that is indicated by the other DFPT samples in its vicinity. We explicitly pointed out
a similar deviation for bcc Fe in a two atom lattice. This points to a leftover problem with the
code or missing correction terms for the 𝛤 point explicitly. As was mentioned before, similar
outliers appeared in hcp Co but could be fixed in that case (cf. section 8.1). The same fix does
not work here, unfortunately. Comparing both the FD and DFPT results to the experimental
data obtained from [209], we do not get all too good of an agreement. The general shape
of our curves towards 𝑀 matches that of the experimental data points, but the values are
significantly too large. This can be attributed to the fact, that the optimized lattice constant
for our setup is around 98.4% of the experimental one, which is given in the literature as
6.858 𝑎0 [210] (close to the result of 98.6% provided in [208]). Better results can be expected,
when the restrictions to the ground state calculation are lifted and a setup that can accurately
reproduce the experimental lattice constant is used. It is a little bit bigger than the provided
LDA setup predicts, which would thus shift the whole spectrum slightly downwards and thus
right towards the experimental data points we show. As a second point of reference we found
an hcp Gd dispersion in[211], which was produced from atomic spin dynamics simulations.
The curve shape and general frequency magnitude (when converted to THz) are similar, but
the degeneracies at the high-symmetry points differ and further similarities are not really
given. For now we postpone further investigations and turn to an analogous study of the AFM
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Figure 8.9: Phonon dispersions for FM hcp Gd. The blue data points belong to the DFPT data and
the red dashed lines represent the FD benchmark. The black crosses are from a set of
experimental data in [209].

hcp Gd setup to highlight possible differences. The Goldstone mode data is summarized in
table 8.3.

Table 8.3: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for AFM hcp Gd. No frequency
exceeds an absolute value of 2.0 cm−1 (or 0.248 meV | 0.060 THz, respectively).

𝜔1 𝜔2 𝜔3

FD −3.20 × 10−6 8.31 × 10−2 8.31 × 10−2

DFPT −1.90 × 100− −1.90 × 100− 1.21 × 100−

The values are of the samemagnitude as in the FM case. Once again, we find the FD frequencies
orders of magnitude smaller. This is in line with the previously compared materials. We
also find the same 2+1 degeneracy as in hcp Co and the FM hcp Gd, e.g. the minuscule
first frequency for the FD case, that is four orders of magnitude smaller than the other two.
Such effects are numerical artifacts produced by the FD formalism and are not found to be
consistent. The full dispersion is shown in figure 8.10.

Both the strengths and shortcomings of the dispersion closely match those of the FM case. We
note the same general quality and the pronounced outliers at 𝛤. Curiously, the values at 𝐾
match more closely, but conversely there is a decrease in quality for the lower optical modes
near 𝛤, even aside from the outlier. We want to study the similarities and differences in the
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Figure 8.10: Phonon dispersions for AFM hcp Gd. The blue data points belong to the DFPT data
and the red dashed lines represent the FD benchmark.

spectra more in-depth by directly plotting the DFPT data of both magnetic configurations
against one another in figure 8.11.

The aforementioned points of comparison are clearly visible in the plot. It is not directly
obvious, how the differences come to pass, considering the slightly different lattice constants
and different magnetism. Previously, we linked the curves extent to the first and the fine
structure to the second effect.

Swapping the
Structures

By again swapping the optimized structure from the FD case with that of the AFM and vice
versa while retaining the respective form of magnetism, we can quantify such considerations.
This is actually easier here than for the simpler magnets bcc Fe and hcp Co, sunce in this case
both magnetic structures are stable at both optimized lattice constants. For the resulting FM
setups, the dispersion curves are shown in figure 8.12.
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Figure 8.11: DFPT phonon dispersions for hcp Gd. The blue data points belong to the FM and
the red points are those of the AFM.

The resulting dispersion curves are practically identical up to a small scaling factor. As
expected from the previous structures, the slightly larger structure (FM) gives slightly smaller
frequencies on the full range of q-points. There is no point at which the fine structures diverge,
which we want to validate for the AFM structures as well in figure 8.13.

The same observations from the previous plot hold for this one as well. In conclusion, the
marginal difference between the FM and AFM lattice constant does not produce a significant
impact on the phonon dispersion, while the difference in magnetic coupling does lead to
visible differences in the curve shape on several of the high-symmetry paths. This is likely due
to the large magnetic moments that are either aligned or directly opposite to each other.

In this case, the effects can be separated cleanly, which motivates further investigations of
the interplay between the magnetic structure and phonon physics in the future. In the case
of hcp Gd, such studies should be postponed to a point, when more powerful functional
classes like the GGA have been adapted to the FLEUR DFPT framework or, even more optimally,
DFPT+U is implemented. Once this is the case, studies of thin Gd films and surfaces [212],
compounds [213], and alloys [214] should also be under consideration. In the latter two
cases, an implementation of the non-analytical term correction can prove necessary as well.
For now, we want to concern ourselves with another material from the lanthanide line, that is
right next to hcp Gd in the periodic table.
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Figure 8.12: DFPT phonon dispersions for hcp Gd. The blue data points belong to the FM and
the red points are those of the AFM setup with an FM ground-state density.

8.2.2 The Phonon Dispersion of Collinear bcc Eu

(A)FM Structure
and Comparison

Bcc Eu is another rare-earth metal with a half-filled 4𝑓 shell. It’s electron configuration
([Xe]4𝑓76𝑠2) is distinct from that in hcp Gd ([Xe]4𝑓75𝑑16𝑠2)in that it does not have the single
5𝑑 electron. Its equilibrium lattice constant at room temperature is around 8.659 𝑎0 [215]
and it forms a spin-spiral ground-state instead of a simple collinear FM or AFM. In the scope
of this work, we nonetheless treat it as such. As opposed to hcp Gd, we do not manipulate
the default electronic structure by putting the 4𝑓 electrons into the core and instead take
the system as is. The parameters are taken from a set of preliminary considerations done
for a publication by Turek et al. [216]. The optimized FM structure exhibits a magnetization
of 6.773 𝜇𝐵 at about 89.7% of the experimental lattice constant and the AFM ±6.710 𝜇𝐵 at
89.9%. So in this case, the FM is bound more strongly than the AFM and both results agree
well with what is noted in reference [216]. The parameters used are found in table 8.4.

Table 8.4: Overview of the specific calculational parameters of (A)FM bcc Eu. Where the parame-
ters differ for the FM and AFM structure, there are two values given. More parameters
in section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT dx 𝑎latt

16/16/16 11 8 827 2.5 𝑎0 0.016 7.770/7.789 𝑎0
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Figure 8.13: DFPT phonon dispersions for hcp Gd. The blue data points belong to the AFM and
the red points are those of the FM setup with an AFM ground-state density.

For these optimized structures of bcc Eu, the FM is energetically slightly preferable with an
energy difference of −3.69 meV. We want to validate the insights about the magnetic effects in
the phonon dispersion from the previous materials and thus provide a comparison of the FM
and AFM results in figure 8.14. We forego the FD benchmark and, since Eu is a very efficient
neutron absorber (atomic mass of 151.97 𝑢 vs 157.25 𝑢 in hcp Gd) that prohibits neutron
scattering measurements, also did not find any experimental data to show.

Considering the frequency range and curve shape, the dispersion is about what we would
expect. Due to the larger in-plane lattice constant than in hcp Gd, the modes are overall
softer. Additionally, the shape is reminiscent of bcc Fe due to the same type of lattice. The
differences of the FM and AFM dispersion emerge in specific sections of the curve, for example
in the transversal acoustic modes of the 𝑁-𝛤 path and 𝐻-𝛤. Other parts only show marginal
differences that are likely linked to the lattice constant once more.

Swapping the
Structures

By now we have a standard procedure to validate such claims. So we once again swap the
structures of both magnets and look at a purely FM and AFM comparison respectively. The
former is found in figure 8.15.
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Figure 8.14: DFPT phonon dispersions for bcc Eu expressed as a simple cubic system with a two
atom basis. The blue data points belong to the FM and the red points are those of
the AFM.

The curves for both lattice constants are nearly indistinguishable. There are no divergent
paths and only minuscule deviations at specific points, which can be due to minimally different
convergence results at the low frequencies the spectrum exhibits. There is nothing more of
note to say, so we move on to the AFM in figure 8.16.
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Figure 8.15: DFPT phonon dispersions for bcc Eu expressed as a simple cubic system with a two
atom basis. The blue data points belong to the FM and the red points are those of
the AFM setup with an FM ground-state density.

Here, the near perfect match between both curves is even more evident. One thing to note
about all curves of bcc Eu, is that the outlier on the 𝛤 point that was present for the other
magnetic metals can also be seen here, where the optical mode would match continuously to
the branches to its left and right for a slightly smaller value.

OutlookThis concludes our discussion of bcc Eu as well as that of the magnetic materials overall. In
hcp Gd, we noted that it will be worthwhile to revisit the material once more powerful xc
functionals for DFPT or DFPT+U are available in FLEUR. In this specific material, it will be
even more instructive to return once the implementations of spin-spirals and DFPT have been
adapted to one another to study the actual ground state that bcc Eu assumes. Moving away
from the elemental structure, there have been investigations into EuO [217], that exhibits
strong electron-phonon coupling and will thus be of interest once the NAC is implemented.
As a summary to this chapter, we were able to both show and distinguish the impact that the
lattice constant and the magnetic configuration have on the phonon dispersion of both two
standard elemental magnets and two rare-earth ones. Though this was done on a crude level
of comparing FM and AFM, this motivates further research into the nature of spin-phonon
and phonon-magnon coupling as the method is developed further.
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Figure 8.16: DFPT phonon dispersions for bcc Eu expressed as a simple cubic system with a two
atom basis. The blue data points belong to the AFM and the red points are those of
the FM setup with an AFM ground-state density.
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Chapter 9
Phonons in 2D Materials

9.1 Pseudo 2D Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.2 2D Film DFPT in the FLAPW Method . . . . . . . . . . . . . . . . . . . . . . . 140

As we already highlighted in the introduction, the phononic properties of 2D materials, like
unsupported monolayers or multilayered systems, have been of particular interest in recent
years. One of the most relevant subclasses in this context are van-der-Waals (vdW) materials,
that are bound in a layered structure by in-plane covalent effects and short-range interlayer
vdW forces. The description of such materials in DFT is usually done by bulk calculations
employing an electronic structure code with periodic boundary conditions and the supercell
concept, also known as the repeated slab model. For monolayer systems, this amounts to
setups with large lattice spacings in the out-of-plane direction. For layered systems, there
exist implementations of different types of vdW interactions, which are also partially extended
to the DFPT formalism [218, 219]. While the base implementation is available in the FLEUR
code, the DFPT terms are not yet available. The first part of this chapter shows first results for
two selected materials in this repeated slab approach.

Film SystemsAside from the bulk approach, the FLEUR code offers an alternative approach to treat mono-
layers or thin film systems. It goes back to the film mode of the LAPW method [220], in
which a 2D slab of periodic atoms is perfectly embedded in semi-infinite vacua. Running the
code in this mode changes the LAPW basis from one periodic in 3 dimensions to one, where
only the in-plane directions are described by the periodic plane waves and the out-of-plane
direction (usually denoted by 𝑧) takes on a different, non-periodic form with a slab (similar to
the interstitial region of the bulk) embedded into a vacuum above and below that are treated
in real space similar to the functions in the muffin-tin spheres. The film mode is of renewed
importance due to the surge of interest in 2D materials, particularly graphene and related
materials like silicene and transition metal dichalcogenides (TMDCs). In contrast to a setup
that embeds a 2D film into a bulk by a supercell with large interlayer distances, the 2D setup
is computationally less demanding, as the large 3D unit cell mandates a large number of
reciprocal lattice vectors and therefore a large number of basis functions. An extension of the
DFPT formalism to this film mode is currently in development and initial results as well as
ongoing problems are highlighted in the second part of this chapter.
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9.1 Pseudo 2D Systems

VSe2 VSe2 is a transition metal dichalcogenide, that crystallizes in a layered 1T structure (a nice
visualization of which can be found in reference [221]) with 3 atoms in the unit cell. It was
shown to have metallic behavior with a charge density wave ground-state at low tempera-
tures [222–224]. It also exhibits strong ferromagnetism as a monolayer on van der Waals
substrate materials [225] at room temperature. This is the magnetic configuration we choose
for our studies in this section. Since the 1T-structure poses the most challenging setup for
our DFPT implementation yet, it gives us a good opportunity to examine its accuracy for a
new upper threshold. The calculation is set up with a hexagonal unit cell with an angle of
120 deg between the in-plane unit vectors. The V atom sits at the origin and the Se atoms
at positions (1/3, −1/3, 𝑧𝑆𝑒) and (−1/3, 1/3, −𝑧𝑆𝑒) with respect to the lattice vectors. The
z-position of the inversion symmetric Se atoms is a free parameter of the system that needs
to be optimized alongside the lattice constants of the crystal. For this we did a simple force
relaxation. The optimization was done in the following order: First, the in-plane lattice
constant was optimized, then the interlayer distance and lastly the Se position. The remaining
calculation parameters of interest are captured in table 9.1, aside from those that are the same
as in all the calculations in chapter 6.

Table 9.1: Overview of the specific calculational parameters of VSe2. For the atomic parameters,
there are two values given representing the V/Se atoms respectively where they differ.
More parameters in section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT dx 𝑎latt 𝑐latt

24/24/16 10 8 661 2.19 𝑎0 0.018/0.019 6.328 𝑎0 11.595 𝑎0

We find a parameter of 𝑧𝑆𝑒 = 0.25657. With this parameter and the optimized lattice constants
in hand, we can once again perform FD and DFPT runs in the same fashion as we did in
chapter 6. The FD calculation was set up with a set of three 2 × 2 × 2 supercells. This is the
minimum amount required to interpolate the phonon dispersion of the three atom system and
mandates three calculations of 24 atom lattices. For the DFPT results, we sampled the same
high-symmetry paths as for hcp Co and hcp Gd, whereby we did not use an interpolation, as
it would require a large amount of q-points, while the k-point density set specified by the grid
already provides us with 32 sample points for evaluation.

We begin the discussion of the results with the Goldstone modes shown in table 9.2.

Table 9.2: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for VSe2. No frequency exceeds an
absolute value of 3.9 cm−1 (or 0.484 meV | 0.117 THz, respectively).

𝜔1 𝜔2 𝜔3

FD −3.38 × 10−2 −3.38 × 10−2 −3.16 × 10−2

DFPT −8.90 × 10−1 3.85 × 100− 3.85 × 100−

While the residual frequencies of the DFPT 𝛤-point acoustic modes mark the highest values
we have encountered yet (likely due to the increased complexity of the unit cell), they are still
on the scale of 1 cm−1, making for only percentile deviations in a dispersion with values two

9 Phonons in 2D Materials136



orders of magnitude larger. A more pressing matter are the optical modes at the same q-point,
summarized in table 9.3.

Table 9.3: Overview of the optical Γ-point modes, 𝜔, in cm−1 for VSe2.

𝜔4 𝜔5 𝜔6 𝜔7 𝜔8 𝜔9

FD 143.91 143.91 193.24 193.24 214.01 338.29
DFPT 139.79 139.79 185.61 185.61 557.87 331.68

The overall agreement between both approaches is acceptable, but there is a significant
discrepancy for the 𝜔8 mode. The DFPT result is more than twice as high compared to the
FD case and far exceeds the other values. Such a single deviation is unlike anything we have
encountered before, e.g. in SiC where the LO-TO splitting cannot be reproduced at the 𝛤-point
due to the missing correction terms from the electric field responses. We turn to the full
dispersion curve in figure 9.1 to see, whether we deal with an isolated problem or a deficiency
of a full band.

Figure 9.1: Phonon dispersion for VSe2. The red curve shows the FD 2 × 2 × 2 supercell and the
blue dots show the DFPT data. A specific 𝛤-point outlier far outside the range of the
other values is visualized as an inlay.
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The plot shows that the discrepancy is an outlier that only affects the 𝛤-point. Otherwise, the
curves continue on smoothly and agree well enough with the small supercell FD result for
the optical branches. The acoustic branches do not agree that well and it stands to reason,
that the calculation needs more refinement with respect to its parameters to improve the fit.
But the problem of the isolated stray mode is more blatant. Since VSe2 is a metal and the FD
curve shows proper splitting of the optical modes, the missed mode cannot be chalked up to
the same mechanisms as in SiC. Instead it stands to reason, that there is a problem with the
calculation of 𝒒 = 𝟎-specific terms like the eigenenergy or occupation number responses, that
has not yet become as prevalent. After all, less pronounced bumps on an otherwise smooth
curve could also be seen for the materials in chapter 8. We want to isolate the possibility of
both options, a discrepancy in either the energies or occupations, by investigating a similar
material without metallic character.

MoSe2 Replacing the 1T unit cell structure by the related 1H [221], that forms trigonal prisms of
Se around the transition metal instead of octahedrons, switching the V atom out for one of
Mo, and looking at an unsupported monolayer in a large supercell repeated in z-direction
gives us MoSe2. The new material is a semiconductor and sees increasing interest in the wake
of 2D material research driven by the established discoveries e.g. in graphene. It is studied
alongside other TMD monolayers for a wide range of applications [50] especially due to the
broad spectrum of band gaps that can be found in this material class, whereas graphene is
a conductor. For our purposes MoSe2 marks a suitable test case, as it is distinguished from
VSe2 by exactly this property. This means in terms of 𝒒 = 𝟎 corrections, there is no longer
any occupation number response term, but still one for the eigenenergies. This term only
contributes directly to the dynamical matrix and thus has no influence on the convergence
of the Sternheimer equation. We restrict our analysis to the phonon frequencies at 𝛤 and
compare the DFPT results to a FD calculation with a 2 × 2 × 1 supercell, which is warranted
due to a large cell extent in the z-direction. The DFPT calculation is set up for a k-point grid
of 24 × 24 × 1 points in the BZ. Table 9.4 summarizes the parameters of the setup.

Table 9.4: Overview of the specific calculational parameters of MoSe2. More parameters in
section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT dx 𝑎latt 𝑐latt

24/24/1 10 8 661 2.23 𝑎0 0.019 6.305 𝑎0 33.909 𝑎0

TheMo atom once again sits at the origin of the unit cell, while the Se atoms sit at (1/3, −1/3, 𝑧𝑆𝑒)
and (1/3, −1/3, −𝑧𝑆𝑒) with an optimized 𝑧𝑆𝑒 = 0.09425 or around 3.196 𝑎0 in absolute coordi-
nates. This represents a tight film that is not symmetric under inversion, but under reflection
with respect to the xy-plane. To check the overall quality of the calculation, we first evaluate
the Goldstone modes as we are used to do.

Table 9.5: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for MoSe2. No frequency exceeds
an absolute value of 2.0 cm−1 (or 0.248 meV | 0.060 THz, respectively).

𝜔1 𝜔2 𝜔3

FD 2.35 × 10−2 3.26 × 10−2 3.26 × 10−2

DFPT −1.98 × 100− −1.95 × 100− −3.36 × 10−1
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The values are in a similar range to those in VSe2, leading to a sufficient quality of the
frequency convergence. Thus, we can look at the optical frequencies, that are our main point
of interest. They are summarized in table 9.6 for calculations both with and without the
energy response contribution to the DM.

Table 9.6: Overview of the optical Γ-point modes, 𝜔, in cm−1 for MoSe2. The first row belongs to
the supercell calculation, the second one to the DFPT run, and the third to a DFPT run,
where the eigenenergy response is neglected.

𝜔4 𝜔5 𝜔6 𝜔7 𝜔8 𝜔9

FD 165.543 165.543 240.022 280.634 280.634 355.68
DFPT 165.863 165.863 383.844 280.334 280.360 357.308
no e1 165.863 165.863 492.240 279.264 279.316 357.308

There are three things of note here. First, the DFPT and FD values agree nicely for all optical
phonon frequencies except one, which is exactly the same pattern as it was for VSe2. Second,
the calculated frequencies agree nicely with results that can be found in the literature [49,
226]. Third, the deactivation of the eigenenergy response term has a profound impact on
exactly this frequency, while the other modes remain largely unchanged. This makes the
initial proposition, that the problem is linked to the 𝛤-specific terms all the more likely. This
observation is currently one of the active points of investigation and no remedy has been found
yet. There are however some things to be noted that came up during the investigation.

Analyzing the
Problem

The dynamical matrix for the TMD systems at 𝛤 takes on a specific form that exhibits some
distinct symmetries, as can be read from the output of the FD simulation. Each of the 9
3 × 3 submatrices of a single atom combination (𝛽, 𝛼) is diagonal, the main diagonal of the
full matrix contains only positive values, and the matrix is of course Hermitian. Both DFPT
results share the symmetries that are proposed by the FD reference and many values are
very similar. But there are two distinct values that are nearly twice as large as they are
supposed to, namely the Se atom combinations of the z-direction. The outlier frequency is
directly linked to these matrix elements. This prompted a small stepped analysis of several
quantities of the Sternheimer loop for the z-displacement of the Se atoms. While it is hard to
say with certainty, when the involved quantities behave right or wrong, one result that is of
note is related to the first density perturbation created for these displacements. It turns out
that the basis correction part makes the unit cell integral of the perturbation non-vanishing,
hence creating a finite change of the charge in the system. This does not happen for the
other displacement atoms and directions and is thus possibly linked to the current problem.
Another quick test we did was to vary the distance of the layer repetition to see whether
there is a convergence effect of the outlier frequency. No such effect was found, but rather
a linear looking decrease of the frequency in question, while the other ones stayed basically
stable. Considering the different contributions to the dynamical matrix, this could be directly
linked to the Hellmann–Feynman terms, that involve derivatives of the external potential.
Further investigation of this particular calculation is warranted. In this specific case, however,
there might be still more at play. In recent studies of 2D materials, that included TMDCs,
it was shwon that the LO-TO splitting breaks down near the 𝛤-point when no dipole-dipole
interaction is taken into account [227–229]. This is once again related to the missing NAC,
that we need to apply for polar materials. Moreover, out-of-plane acoustic (ZA) (also known
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as flexural phonons) oftentimes required more rigorous study [230] to overcome numerical
difficulties. We keep the latter part in mind when we discuss the implementation of true film
DFPT in FLEUR.

9.2 2D Film DFPT in the FLAPW Method

9.2.1 The FLAPW Method for Thin Films

Cell Setup and
Basic Formalism

The formalism that is explained in this chapter largely follows the ideas of Krakauer, Posternak,
Freeman, Wimmer, andWeinert, that were established on paper and subsequently implemented
in their FLAPW code in the late 1970s and early 1980s [73, 170, 173, 220]. The FLEUR code
is a descendant of the original framework that they developed. The method starts from a
modified unit cell setup, that replaces the periodic repetition in one of the Cartesian directions
(we choose the z-axis to be out-of-plane) on both sides of the atoms and the interstitial region
by a vacuum. This transition happens at the points 𝑧 = ±𝐷/2, where 𝐷 is the film thickness
that we specify. We refer to this as the slab. There is a slightly larger second parameter 𝐷̃,
that specifies the extent of a pseudo unit cell that could also be repeated into the z-direction
and is used as the reference to construct the IR plane waves.

𝐷 𝐷̃

Vacuum 1

Vacuum 2

𝝉𝛾

𝝉𝛿𝝉𝛽

𝝉𝛼

IR

Figure 9.2: Sketch of the unit cell setup in the film LAPW method, based on the bulk equivalent in
figure 4.1. The unit cell used to construct the plane wave basis of the IR is highlighted
with dashed lines while the IR-Vacuum transition is marked by the full lines.

Due to the nature of this setup, the z-components of the reciprocal lattice vectors are distin-
guished from the in-plane part and the k-point set used to sample the BZ is reduced to a set of
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2D vectors (or 3D vectors with only vanishing z-component respectively):

𝑮 = 𝑮|| + 𝑮⟂ (9.1)
= 𝐺|| ̂𝒆|| + 𝐺⟂ ̂𝒆𝑧, (9.2)

𝒌 = 𝑘|| ̂𝒆|| = (𝑘𝑥, 𝑘𝑦)𝑇. (9.3)

The vectors 𝑮 for the basis and density/potential expansion are selected in the same way as
they were in the bulk case by the plane wave cutoffs 𝐾max and 𝐺max. While the basis set (and
subsequently the representation of the density and potential) remains the same in the MT
region and IR slab, the vacuum region is now represented by a set of functions

𝑋vac(𝒓) = ∑
𝑮||

𝑋vac(𝑮||, 𝑧)ei𝑮||⋅𝒓||, (9.4)

that are the product of z-dependent terms with no premandated shape and plane waves that
are now projected onto the slab plane.

Here, the vacuum super-/subscript is to be understood both as an indicator and as an index,
because there are two vacuum regions we need to account for, which are not necessarily per-
fectly symmetric. Naturally, in the FLEUR code the representations of the density and potential
are additionally brought into a symmetrized form, that is similar to the star representation of
the interstitial, only with z-dependent coefficients and the set of 𝑁op,2D 2D-symmetries. The
2D stars with indices 𝑠2𝐷 are defined as

𝑓𝑠2𝐷(𝒓) = 1
𝑁op,2D

∑
op,2D

ei(𝑅2D𝑮||,𝑠2𝐷)(𝒓||−𝒕2D), (9.5)

which leads to the density and potential representation

𝑋vac(𝒓) = ∑
𝑠2𝐷

𝑋vac(𝑧, 𝑠2𝐷)𝑓𝑠2𝐷(𝒓). (9.6)

The Vacuum
Basis Set

While the general representation of the vacuum quantities looks very similar to that of the IR,
the actual construction of the basis functions is more reminiscent of the MT region and uses a
lot of the same ideas, that were used to embed the spheres into the plane wave background.
Specifically, the vacuum basis is constructed from z-dependent functions very reminiscent of
the radial functions in the MT, that are the solution to the KS equation for the 𝑮|| = 𝟎 part of
the vacuum effective potential and their respective energy derivatives, leading to a linearized
form that can easily be matched against the plane waves at the vacuum border. The functions
are determined by

ℋvac𝑢vac
𝑮||,𝒌

(𝑧) = (−1
2

∂2
𝑧 + 1

2
(𝑮|| + 𝒌)2 + 𝑉 vac

eff (𝑮|| = 𝟎, 𝑧)) 𝑢vac
𝑮||,𝒌

(𝑧) = 𝐸vac𝑢vac
𝑮||,𝒌

(𝑧)(9.7)

and for the given energy parameter 𝐸vac are normalized according to

1 = ⟨𝑢vac
𝑮||,𝒌

|𝑢vac
𝑮||,𝒌

⟩vac = ∫
vac

𝑢vac
𝑮||,𝒌

(𝑧)𝑢vac
𝑮||,𝒌

(𝑧)d𝑧. (9.8)

The corresponding energy derivatives are found by differentiating equation (9.7) and yield

ℋvac𝑢̇vac
𝑮||,𝒌

(𝑧) = 𝑢vac
𝑮||,𝒌

(𝑧) + 𝐸vac𝑢̇vac
𝑮||,𝒌

(𝑧). (9.9)
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As for their MT equivalents, the energy derivatives are orthogonal to the initial functions and
are not normalized.

From these functions we construct the vacuum part of the LAPW basis functions as

𝜙vac
𝒌𝑮(𝒓) = 1√

𝐴
(𝑎vac

𝒌,𝑮𝑢vac
𝑮||,𝒌

(𝑧) + 𝑏vac𝒌,𝑮𝑢̇vac
𝑮||,𝒌

(𝑧)) ei(𝒌+𝑮||)⋅𝒓||, (9.10)

with a normalization factor that contains the area 𝐴 of the vacuum boundary. The matching
coefficients are found, as was the case for the MT basis, by requiring the basis to be continuous
to 1st order at the boundaries. This leads to a linear system of equations, that is solved by

⎛⎜
⎝

𝑎vac
𝒌,𝑮

𝑏vac𝒌,𝑮

⎞⎟
⎠

= √𝐴
Ω̃

ei𝐺⟂𝑧vac𝑈vac,−1
𝒌,𝑮||

⋅ (
1

i𝐺⟂
) . (9.11)

It is important to note, that the plane waves are normalized by the volume of the extended
slab of size 𝐷̃. The value of 𝑧vac is ±𝐷/2 for the upper and lower vacuum, respectively. The
matrix of boundary values and its inverse are identical in form to those of the MT case and
contain the z-dependent functions, their energy derivatives, and the corresponding derivatives
with respect to 𝑧:

𝑈vac
𝒌,𝑮||

= ⎛⎜⎜
⎝

𝑢vac
𝑮||,𝒌

(𝑧vac) 𝑢̇vac
𝑮||,𝒌

(𝑧vac)
𝑢vac′

𝑮||,𝒌
(𝑧vac) 𝑢̇vac′

𝑮||,𝒌
(𝑧vac)

⎞⎟⎟
⎠

, (9.12)

𝑈vac,−1
𝒌,𝑮||

= 1
𝑊 vac

𝒌,𝑮||

⎛⎜⎜
⎝

𝑢̇vac′

𝑮||,𝒌
(𝑧vac) −𝑢vac′

𝑮||,𝒌
(𝑧vac)

−𝑢vac′

𝑮||,𝒌
(𝑧vac) 𝑢vac

𝑮||,𝒌
(𝑧vac)

⎞⎟⎟
⎠

. (9.13)

The Wronskian of the matrix is constructed from the same functions as their equivalents in
the MT case, but takes on a different value than before due to the different nature of this
boundary. Some manipulation of the equations shows

𝑊 vac
𝒌,𝑮||

= 𝑢vac
𝑮||,𝒌

(𝑧vac)𝑢̇vac′

𝑮||,𝒌
(𝑧vac) − 𝑢̇vac

𝑮||,𝒌
(𝑧vac)𝑢vac′

𝑮||,𝒌
(𝑧vac) = 2 ≠ 0. (9.14)

The Wronskian is therefore once again finite and there can be no asymptote problem, meaning
that the matching of the vacuum basis to that of the IR is always possible. In the same vein as
for the MT matching coefficients, we can handily contract them with the expansion coefficients
to create new matching coefficients

⎛⎜⎜
⎝

𝐴vac
𝒌𝜈,𝑮||

𝐵vac
𝒌𝜈,𝑮||

⎞⎟⎟
⎠

= ∑
𝐺⟂

𝑧𝒌𝑮𝜈
⎛⎜
⎝

𝑎vac
𝒌,𝑮

𝑏vac𝒌,𝑮

⎞⎟
⎠

(9.15)

that are smaller and thus computationally more convenient. Considering the construction of
the Hamiltonian and overlap elements for the vacuum, they are constructed in a way very
reminiscent of the spherical and non-spherical distinction of the MT. The overlap reads

𝑆vac
𝑮′,𝑮(𝒌) = δ𝑮′

||,𝑮||
(𝑎vac∗

𝒌,𝑮′𝑎vac
𝒌,𝑮 + 𝑏vac∗𝒌,𝑮′𝑏vac𝒌,𝑮⟨𝑢̇vac

𝑮||,𝒌
|𝑢̇vac

𝑮||,𝒌
⟩vac) (9.16)
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and is thus reminiscent of the spherical MT part, while the Hamiltonian forms a contraction
of the matching coefficients with a matrix 𝑡 in each of the functions:

𝐻vac
𝑮′,𝑮(𝒌) = ∑

(⋅)′(⋅)
𝑎vac∗

𝒌,𝑮′(⋅)′𝑡
(⋅)′(⋅)
𝑮′

||,𝑮||
𝑎vac

𝒌,𝑮(⋅). (9.17)

The matching coefficients 𝑎, 𝑏 are written here as simply 𝑎 with an index (⋅) that indicates
whether they belong to the z-dependent functions or their energy derivatives. The matrix
elements are comprised of the evaluated potential for the non-vanishing in-plane reciprocal
vectors and by the evaluated Hamiltonian that defined the z-dependent functions in the first
case for 𝑮′

|| = 𝑮||. This leads to

𝑡(⋅)′(⋅)
𝑮′

||,𝑮||
≔ (1 − δ𝑮′

||,𝑮||
)⟨

(⋅)′

𝑢
vac

𝑮′
||,𝒌

|𝑉 vac
eff (𝑮′

|| − 𝑮||, 𝑧)|
(⋅)
𝑢
vac
𝑮||,𝒌⟩vac + δ𝑮′

||,𝑮||
𝑐(⋅)′(⋅)

𝑮||,𝒌
. (9.18)

The factors that correspond to the MT spherical case (in the already symmetrized form) are

𝑐(⋅)′(⋅)
𝑮||,𝒌

=

⎧{{
⎨{{⎩

𝐸vac, (⋅)′(⋅) = 𝑢, 𝑢
1/2, (⋅)′(⋅) = 𝑢, 𝑢̇ or 𝑢̇, 𝑢

𝐸vac ⟨𝑢̇vac
𝑮||,𝒌

|𝑢̇vac
𝑮||,𝒌

⟩
vac

, (⋅)′(⋅) = 𝑢̇, 𝑢̇.
(9.19)

Finally, we can write down the wave functions for the vacuum region in terms of the contracted
matching coefficients and the z-dependent functions to find

𝜓vac
𝒌𝜈 (𝒓) = ∑

𝑮
𝑧𝒌𝑮𝜈𝜙vac

𝒌𝑮(𝒓) = ∑
𝑮||

(𝐴vac
𝒌𝜈,𝑮||

𝑢vac
𝑮||,𝒌

(𝑧) + 𝐵vac
𝒌𝜈,𝑮||

𝑢̇vac
𝑮||,𝒌

(𝑧)) ei(𝒌+𝑮||)⋅𝒓||. (9.20)

The Density
Generation

As the spatial dependence of the density and potential in the vacuum is determined by a
2D plane wave, the coefficients that carry relevant information about these quantities are
the z-dependent functions. They can be found for the vacuum in the same way the radial
density coefficients were found by contracting the matching coefficients over all indices but
the angular quantum numbers ℓ(′) and the k-point, and subsequently multiplying the result
with the solutions to the spherical KS. The angular quantum numbers are replaced by the
in-plane reciprocal lattice vectors and the radial solutions by the z-dependent ones. This leads
to

𝑛vac(𝑮″
|| , 𝑧) = ∑

𝒌𝜈

̃𝑓𝒌𝜈 ∑
𝑮′

||(⋅)
′

𝑮||(⋅)

𝐴vac∗
𝒌𝜈,𝑮′

||(⋅)′

(⋅)′

𝑢
vac

𝑮′
||,𝒌

(𝑧)𝐴vac
𝒌𝜈,𝑮||(⋅)

(⋅)
𝑢
vac
𝑮||,𝒌(𝑧)δ𝑮″

|| ,𝑮||−𝑮′
||
, (9.21)

= ∑
𝒌

∑
𝑮′

||(⋅)
′

𝑮||(⋅)

𝑑𝒌vac
𝑮′

||𝑮||𝑮″
|| (⋅)′(⋅)

(⋅)′

𝑢
vac

𝑮′
||,𝒌

(𝑧)𝑢vac
𝑮||,𝒌

(𝑧). (9.22)

For the sake of completeness, we mention that on top of this valence electron contribution,
there is also one for the core electrons, that is modeled as an exponential tail from the vacuum
boundary outwards.

The Potential
Generation

For the potential generation, we need a scheme that correctly takes into account all three
distinct regions - the MT, the IR and the vacuum - and their respective (pseudo-)densities into
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account. This is trivial for the xc potential, where we only need to correctly transform the
vacuum density into real space and then do the same operations we would do for the real
space MT and IR density in a bulk run. The Coulomb potential calculation is more involved.
As the MT part is fully analogous to a bulk calculation, our main task is to provide a consistent
solution for the vacuum and the IR. For this we look at the defining Poisson equation (4.34),
where we cancel the 2D plane waves out. This leads to a 1D screened Poisson equation for
the potential coefficients:

[∂2
𝑧 − 𝐺2

||] 𝑉𝐶(𝑮||, 𝑧) = −4𝜋𝑛(𝑮||, 𝑧). (9.23)

This equation holds for both the vacuum and the interstitial region. There are two distinct
cases to be considered in solving this equation. We first turn to the arguably easier one of
those.

𝑮|| = 𝟎 In the case of 𝑮|| = 𝟎, the screening term is dropped from the Poisson equation, which
significantly reduces its complexity. We define

𝑛0(𝑧) ≔
⎧{
⎨{⎩

𝑛vac(𝑮|| = 𝟎, 𝑧), 𝒓 ∈ vac,
∑𝐺⟂

𝑛ps(𝑮 = 𝑮⟂)ei𝐺⟂𝑧, 𝒓 ∈ IR
(9.24)

and

𝑉0(𝑧) ≔
⎧{
⎨{⎩

𝑉 vac
C (𝑮|| = 𝟎, 𝑧), 𝒓 ∈ vac,

∑𝐺⟂
𝑉C,IR(𝑮)ei𝐺⟂𝑧, 𝒓 ∈ IR

(9.25)

as a shorthand notation for the density and potential in this case. It is important to note, that
the density in the vacuum part corresponds to the true electron density in this region, while
the IR part is the pseudodensity of the electrons and ions. It is constructed in the same way as
it was for the bulk, with the important distinction that an extra step is taken to ensure charge
neutrality. The pseudodensity and vacuum density are integrated and in case the result does
not vanish, a correction term is added to the 𝑛ps(𝑮 = 𝟎) component of the pseudodensity.
From this, we solve the simplified Poisson equation by direct integration:

∂2
𝑧𝑉0(𝑧) = −4𝜋𝑛0(𝑧) (9.26)

⇔ 𝑉0(𝑧) = −4𝜋 ∫
∞

𝑧
∫

∞

𝑧′
𝑛0(𝑧″)𝑑𝑧″𝑑𝑧′. (9.27)

Here, we implicitly took the boundary conditions 𝑉0(∞) = 0 and 𝑉 ′

0 (∞) = 0 into account.
Due to the downwards integration from ∞ to 𝑧, the result depends on the region that 𝑧 is in.
If it is in the upper vacuum (𝑧 ≥ 𝐷/2), we can define the integrated charge

𝜎+
0 (𝑧) ≔ ∫

∞

𝑧
𝑛0(𝑧′)𝑑𝑧′ (9.28)

and use it to find

𝑉 0(𝑧) = −4𝜋 ∫
∞

𝑧
𝜎+

0 (𝑧′)𝑑𝑧′ ≕ 𝑉 +
0 (𝑧) (9.29)

for the potential. By construction, this potential term does not depend on the density in any
region but the upper vacuum itself. This is no longer the case for the potential in the interstitial
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region (|𝑧| ≤ 𝐷/2). Here, both the integrated charge up to the upper vacuum boundary and
the potential at this point enter into the calculation. We define the averaged charge in the
slab 𝑛̄ by

𝑛̄ ≔ − 1
𝐷

∫
𝐷/2

−𝐷/2
𝑛0(𝑧)𝑑𝑧 = − ⎡⎢

⎣
𝑛ps(𝟎) + ∑

𝐺⟂≠0
𝑛ps(𝑮 = 𝑮⟂)𝑗0(𝐺⟂𝐷/2)⎤⎥

⎦
(9.30)

and use it to write

𝑉0(𝑧) = 𝑉 +
0 (𝐷/2) − 4𝜋(𝐷/2 − 𝑧) (𝜎+

0 (𝐷/2) − 𝑛̄/2(𝐷/2 − 𝑧)) (9.31)

+4𝜋 ∑
𝐺⟂≠0

𝑛ps(𝑮 = 𝑮⟂) {[𝑒𝑖𝐺⟂𝑧 − 𝑒𝑖𝐺⟂𝐷/2] /𝐺2
⟂ (9.32)

+i cos (𝐺⟂𝐷/2)(𝐷/2 − 𝑧)/𝐺⟂ (9.33)
+𝑗0(𝐺⟂𝐷/2)(𝑧2 − 𝐷2/4)/2} (9.34)

for the interstitial region. Going yet further down into the lower vacuum (𝑧 ≤ −𝐷/2), both the
upper vacuum and the IR contribute to the potential. We define the lower vacuum equivalent
of the integrated charge (9.28) as

𝜎−
0 (𝑧) ≔ ∫

−𝐷/2

𝑧
𝑛0(𝑧′)𝑑𝑧′ (9.35)

and the fully summed interstitial terms as

𝛴IR ≔ −4𝜋𝑖 ∑
𝐺⟂≠𝟎

𝑛ps(𝑮 = 𝑮⟂)𝑗1(𝐺⟂𝐷/2)𝐷2/2 (9.36)

we can write the lower vacuum potential as

𝑉 0(𝑧) = 𝑉 +
0 (𝐷/2) − 4𝜋 (𝐷𝜎+

0 (𝐷/2) − 𝑛̄𝐷2/2) + 𝛴IR (9.37)

−4𝜋 ∫
−𝐷/2

𝑧
𝜎−

0 (𝑧′) − 𝐷𝑛̄ + 𝜎+
0 (𝐷/2)𝑑𝑧′. (9.38)

This form is still relatively simple and straight-forward to implement.
𝑮|| ≠ 𝟎The case of non-vanishing reciprocal lattice vectors is both a lot more relevant in the scope of

this thesis and a lot more complicated. We begin by once again defining shorthand notations

𝑛𝑮||
(𝑧) ≔

⎧{
⎨{⎩

𝑛vac(𝑮||, 𝑧) 𝒓 ∈ vac
∑𝐺⟂

𝑛ps(𝑮|| + 𝑮⟂)ei𝐺⟂𝑧 𝒓 ∈ IR
(9.39)

for the density and

𝑉𝑮||
(𝑧) ≔

⎧{
⎨{⎩

𝑉 vac
C (𝑮||, 𝑧) 𝒓 ∈ vac

∑𝐺⟂
𝑉C,IR(𝑮|| + 𝑮⟂)ei𝐺⟂𝑧 𝒓 ∈ IR

(9.40)

for the potential. Now, we have to solve the full form of the screened Poisson equation, which
is done with the help of a Green’s function:

[∂2
𝑧 − 𝐺2

||] 𝑉𝑮||
(𝑧) = −4𝜋𝑛𝑮||

(𝑧) (9.41)

⇔ 𝑉𝑮||
(𝑧) = ∫

∞

−∞
𝐺(𝑧 − 𝑧′)𝑛𝑮||

(𝑧′)𝑑𝑧′. (9.42)
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This Green’s function is coupled to the same operations on the left hand side of the equation
but results in a δ-distribution instead:

[∂2
𝑧 − 𝐺2

||] 𝐺(𝑧 − 𝑧′) = −4𝜋δ(𝑧 − 𝑧′). (9.43)

It also obeys the same boundary condition of vanishing at ±∞ as the potential does. With
this knowledge, we can solve for

𝐺(𝑧 − 𝑧′) = 2𝜋
|𝑮|||

e−|𝑮||||𝑧−𝑧′|. (9.44)

Evaluating the Green’s function integral for any of the regions gives contributions from each
one, respectively. Explicitly evaluating the analytic form for the IR contributions, for 𝑧 ≥ 𝐷/2
we find

𝑉𝑮||
(𝑧) = 2𝜋

|𝑮|||
[𝑒−|𝑮|||𝑧 ∫

−𝐷/2

−∞
𝑛𝑮||

(𝑧′)𝑒|𝑮|||𝑧′
𝑑𝑧′ (9.45)

+ 𝑒−|𝑮|||𝑧 ∫
𝑧

𝐷/2
𝑛𝑮||

(𝑧′)𝑒|𝑮|||𝑧′
𝑑𝑧′ (9.46)

+ 𝑒|𝑮|||𝑧 ∫
∞

𝑧
𝑛𝑮||

(𝑧′)𝑒−|𝑮|||𝑧′
𝑑𝑧′ (9.47)

+𝑒−|𝑮|||𝑧 ∑
𝐺⟂

2𝑛ps(𝑮)
sinh ((|𝑮||| + 𝑖𝐺⟂)𝐷

2
)

(|𝑮||| + 𝑖𝐺⟂)
], (9.48)

the |𝑧| ≤ 𝐷/2 part is

𝑉𝑮||
(𝑧) = 2𝜋

𝑮||
[𝑒−|𝑮|||𝑧 ∫

−𝐷/2

−∞
𝑒|𝑮|||𝑧′

𝑛𝑮||
(𝑧′)𝑑𝑧′ (9.49)

+ 𝑒|𝑮|||𝑧 ∫
∞

𝐷/2
𝑒−|𝑮|||𝑧′

𝑛𝑮||
(𝑧′)𝑑𝑧′ (9.50)

+ ∑
𝐺⟂

2|𝑮|||𝑛ps(𝑮)

|𝑮|||2 + 𝐺2
⟂

𝑒𝑖𝐺⟂𝑧 (9.51)

− ∑
𝐺⟂

𝑛ps(𝑮)

|𝑮|||2 + 𝐺2
⟂

{𝑒−|𝑮|||𝑧𝑒−(|𝑮|||+𝑖𝐺⟂) 𝐷
2 (|𝑮||| − 𝑖𝐺⟂) (9.52)

+ 𝑒|𝑮|||𝑧𝑒−(|𝑮|||−𝑖𝐺⟂) 𝐷
2 (|𝑮||| + 𝑖𝐺⟂)}], (9.53)

and finally, 𝑧 ≤ −𝐷/2 gives

𝑉𝑮||
(𝑧) = 2𝜋

|𝑮|||
[𝑒−|𝑮|||𝑧 ∫

𝑧

−∞
𝑛𝑮||

(𝑧′)𝑒|𝑮|||𝑧′
𝑑𝑧′ (9.54)

+ 𝑒|𝑮|||𝑧 ∫
−𝐷/2

𝑧
𝑛𝑮||

(𝑧′)𝑒−|𝑮|||𝑧′
𝑑𝑧′ (9.55)

+ 𝑒|𝑮|||𝑧 ∫
∞

𝐷/2
𝑛𝑮||

(𝑧′)𝑒−|𝑮|||𝑧′
𝑑𝑧′ (9.56)

+𝑒|𝑮|||𝑧 ∑
𝐺⟂

2𝑛ps(𝑮)
sinh ((|𝑮||| − 𝑖𝐺⟂)𝐷

2
)

(|𝑮||| − 𝑖𝐺⟂)
]. (9.57)
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For both 𝑮|| = 𝟎 and 𝑮|| ≠ 𝟎, the plane wave coefficients of the IR potential are found by a
1D Fourier transform of the real space potential we calculated. It is done in the z-direction
only and defined in terms of the unit cell instead of the slab. Hence, we need to take the
part of the vacuum region between ±𝐷 and ±𝐷̃ into account in the Fourier transform. As
mentioned before, the propagation of the resulting coefficients into the MT boundary problem
is unchanged from the bulk case. This concludes the discussion of the vacuum potential
generation.

Total Energy
Calculations

The last aspect that is modified by the film setup is the calculation of the total energy or, more
generally, of integrals over the unit cell. While previous integrations e.g. in equation (2.13)
were performed over the unit cell Ω, we now need to take the vacuum into account as well
and integrate over the full stretch from 𝑧 = −∞ to 𝑧 = ∞ in the 2D unit cell Ω2𝐷. This leads
to two consequences. First, the step function in equation (4.9) needs to be slightly modified
to not only filter out the MT, but also the vacuum region through

Θ̂(𝑮) ⟶ Θ̂(𝑮) + δ𝑮,𝟎(𝐷𝐴/Ω̃ − 1) + ∑
𝐺⟂≠0

(𝐷𝐴/Ω̃) sin(i𝐺⟂𝐷/2)/(𝐺⟂𝐷/2), (9.58)

where we introduced the area 𝐴 of the vacuum boundary of the unit cell and the unit cell
volume Ω̃ that is defined with respect to 𝐷̃. A second aspect is, that every integral over the full
2D unit cell will contain a vacuum contribution constructed from the density and potential
2D star coefficients. It can be expressed analogously to the MT and IR terms in section 4.1 by

∫
vac

𝑋vac(𝒓)𝑌vac(𝒓)d𝒓 = A ∑
𝑠2𝐷

∫
vac

𝑋∗
IR(𝑧, 𝑠2𝐷)𝑌IR(𝑧, 𝑠2𝐷)d𝑧 (9.59)

and subsequently enters the density mixing procedure as well. All these aspects have long
been a part of the FLEUR code and an extension of the DFPT formalism to this framework is
both desirable and a matter of completeness.

9.2.2 Changes to the DFPT Formalism

Advantages of
the Thin Film
Treatment

To begin the discussion of the thin film FLAPW DFPT formalism, we first recall the specific form
of the k-points, as it translates to the phonon wave vectors we have to calculate and interpolate
between as well. They have no component in the out-of-plane direction, which in theory
makes the system scale a lot better. Doubling the number of k-points in each direction, for
example, now increases the total count by a factor of 4 instead of 8. The q-points consequently
also read

𝒒 = 𝑞|| ̂𝒆|| = (𝑞𝑥, 𝑞𝑦)𝑇. (9.60)

Additionally, the film approach replaces the method of simulating a slab by putting periodic
images of a single layer far away from each other, which constitutes a very large unit cell and
a proportionally large set of out-of-plane reciprocal lattice vectors 𝐺⟂. A thin film can instead
be used, whose unit cell (defined by 𝐷̃) does not need to be exceptionally large, once again
making the calculation a lot cheaper. We systematically go through the adaptions that need to
be done to the DFPT formalism to incorporate the thin film implementation.

Total Energy
Response

Our investigation of the necessary changes to FLEUR DFPT starts at the total energy. We recall,
that for a method with no dependence of the basis on the atomic positions, the second order
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response of the total energy is solely determined by the density (response) and quantities
related to the external potential (equation (3.29)). Neglecting for a moment the correction
terms necessary in the LAPW basis, we can write the corresponding form for the film as

𝐸(2)𝛽𝑗−𝛼𝑖+
tot = ∫

Ω2𝐷

[𝑛(1)𝛽𝑗−(𝒓)𝑉 (1)𝛼𝑖+
ext (𝒓) + 𝑛(𝒓)𝑉 (2)𝛽𝑗−𝛼𝑖+

ext (𝒓)] d𝒓 + 𝐸(2)𝛽𝑗−𝛼𝑖+
ii . (9.61)

The integration domain Ω2𝐷 signifies the volume of the 2D unit cell, i.e. the slab and the
two vacuum regions going to 𝑧 = ±∞. Due to the position dependent nature of the basis set,
the actual equation we need to solve for the response is a lot more involved, due to basis set
correction terms in the MT and surface integrals along the MT boundaries. As the position of
the vacuum boundary is in no way dependent on the atomic positions, the only additional
contribution to equation (4.87) comes from the vacuum integral terms in the HF part. Aside
from this the construction of 𝐸(2)𝛽𝑗−𝛼𝑖+

ii will change due to a different workflow of the potential
generation. This means we need the external potential to first and second order in the vacuum
for the first integral and the ion-ion interaction, respectively. If we additionally transform the
integral of the second order external potential like in equation (5.56), we also end up with
two surface terms at the upper and lower vacuum boundaries:

∫
Ω2𝐷

𝑛(𝒓)𝑉 (2)𝛽𝑗−𝛼𝑖+
ext (𝒓)d𝒓 = ∫

Ω2𝐷

(∇𝑗𝑛(𝒓))δ𝛽𝛼𝑉 (1)𝛼𝑖𝟎
ext (𝒓)d𝒓 (9.62)

− ∑
𝛾

∮
∂𝛾

[𝑛(𝒓)𝑉 (1)𝛼𝑖𝟎
ext (𝒓)]

SF
̂𝒆𝑟,𝑗d𝑆 (9.63)

− δ𝑗,𝑧 ∑
vac

∮
∂vac

[𝑛(𝒓)𝑉 (1)𝛼𝑖𝟎
ext (𝒓)]

SF
d𝑆. (9.64)

This is in principle quite compact and only requires the additional calculation of the numerical
density gradient in the vacuum. For the in-plane directions, this is very akin to the IR case, as
the derivative only produces a prefactor, while for the z-derivative, we need to actually use a
numerical differentiation routine. Both cases pose no big problems. But additional care needs
to be taken with respect to the sign of the surface terms. Since the normal vector of each
respective region points outwards, the upper vacuum term and the lower interstitial term get
a (−) sign, while the lower vacuum term and the upper interstitial term are positive.

Density Response The density response in the vacuum case translates directly to an analogous form from the
response of the MT density and the original density of the vacuum. It is constructed from the
z-dependent functions for 𝒌 and 𝒌 + 𝒒 as

𝑛(1)𝛽𝑗+
vac (𝑮″

|| + 𝒒, 𝑧) = ∑
𝒌

∑
𝑮′

||(⋅)
′

𝑮||(⋅)

𝑑𝒌vac,(1)𝛽𝑗+
𝑮′

||𝑮||𝑮″
|| (⋅)′(⋅)

(⋅)′

𝑢
vac

𝑮′
||,𝒌

(𝑧)𝑢vac
𝑮||,𝒌+𝒒(𝑧) (9.65)

with a new density coefficient

𝑑𝒌vac,(1)𝛽𝑗+
𝑮′

||𝑮||𝑮″
|| (⋅)′(⋅) = ∑

𝜈

̃𝑓𝒌𝜈𝐴vac∗
𝒌𝜈,𝑮′

||(⋅)′𝐴
vac,(1)𝛽𝑗+
𝒌𝜈,𝑮||(⋅)

δ𝑮″
|| ,𝑮||−𝑮′

||
(9.66)

+ ∑
𝜈

̃𝑓 (1)𝛽𝑗+
𝒌𝜈 𝐴vac∗

𝒌𝜈,𝑮′
||(⋅)′𝐴vac

𝒌𝜈,𝑮||(⋅)
δ𝑮″

|| ,𝑮||−𝑮′
||
. (9.67)

The modified contracted matching coefficient that appears is defined as

𝐴vac,(1)𝛽𝑗+
𝒌𝜈,𝑮||(⋅)

= ∑
𝐺⟂

2𝑧(1)𝛽𝑗+
𝒌𝑮𝒒𝜈 𝑎vac

𝒌+𝒒,𝑮(⋅). (9.68)
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Note, that no basis correction terms like imaginary number prefactors and gradient terms
appear. Since the resulting density variables are only a very slight modification from the base
case, they are easily implemented and we can move on to the next small aspect.

Hamiltonian and
Overlap Response

As the vacuum basis does not depend on the atomic positions, there are no matrix response
terms related to a basis correction. Furthermore, the Hamiltonian itself does not give a
response term except for that of the effective potential. This means the only additional matrix
element we need to calculate is

𝐻(1)𝛽𝑗+,vac
𝑮′,𝑮 = ⟨𝜙𝒌𝑮′𝒒|𝑉 (1)𝛽𝑗+

eff |𝜙𝒌𝑮⟩vac. (9.69)

Just like the basic Hamiltonian matrix elements, its constituents can be expressed as the
evaluation of a matrix 𝑡 with respect to the matching coefficients, though this time evaluated
for 𝒌 + 𝒒 on the left side:

𝐻(1)𝛽𝑗+,vac
𝑮′,𝑮 (𝒌 + 𝒒, 𝒌) = ∑

(⋅)′(⋅)
𝑎vac∗

𝒌+𝒒,𝑮′(⋅)′𝑡
(1)𝛽𝑗+,(⋅)′(⋅)
𝑮′

||+𝒒,𝑮||
𝑎vac

𝒌,𝑮(⋅). (9.70)

The 𝑡-matrix elements are also evaluated partially with the coefficients at 𝒌 + 𝒒, but have no
distinction between the vanishing and non-vanishing reciprocal vector difference, as well as
no energy terms. They read

𝑡(1)𝛽𝑗+,(⋅)′(⋅)
𝑮′

||+𝒒,𝑮||
= ⟨

(⋅)′

𝑢
vac

𝑮′
||,𝒌+𝒒|𝑉 (1)𝛽𝑗+,vac

eff (𝑮′
|| + 𝒒 − 𝑮||, 𝑧)|

(⋅)
𝑢
vac
𝑮||,𝒌⟩vac. (9.71)

This concludes the next small set of terms to implement.
Potential
Response

The last set of terms, that we need to look at, is the potential response formalism for the
thin film - particularly the Coulomb part. Aside from being provided with the response
pseudodensity in the same way as the bulk and subsequently using the same formalism as for
the ground-state film calculation, there is one main point to keep in mind. While there was a
clear distinction between the 𝑮|| = 𝟎 and 𝑮|| ≠ 𝟎 before, the screened Poisson equation now
reads

[∂2
𝑧 − |𝑮|| + 𝒒|2] 𝑉 (1)𝛽𝑗+

𝐶 (𝑮|| + 𝒒, 𝑧) = −4𝜋𝑛(1)𝛽𝑗+(𝑮|| + 𝒒, 𝑧). (9.72)

Since for 𝒒 ≠ 𝟎, the term 𝑮|| + 𝒒 cannot become zero (except for with q-vectors that we
would not even want to calculate the DM for), each reciprocal lattice vector is treated with
the Green’s function formalism. Only for 𝑮|| = 𝒒 = 𝟎 the direct integration must be applied.

Results for the
in-Plane Mode

Now that the extension of the FLAPW method to the 2D DFPT case is established, we want
to highlight some first promising results that could be obtained from the formalism. For
this we look at graphene, the material that single-handedly sparked a renewal of interest
in 2D materials [50] that is as of yet unbroken. We want to compare a 3D setup, where
the hexagonal monolayer of C atoms is described by periodically repeating layers with a big
interlayer distance of 18 𝑎0, which constitutes a pseudo film calculation, to a true 2D film with
the new implementation. The film thickness for the latter is chosen as 𝐷 = 10 𝑎0, whereas
the extent of the plane wave defining unit cell is 𝐷̃ = 12.5 𝑎0. The remaining parameters are
habitually given in table 9.7

Aside from this, the reciprocal energy cutoff was set to 10−5 Ha, as for a cutoff of 10−7 Ha the
film curve dipped slightly towards 𝑀. With these parameters, we run three calculations. First,
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Table 9.7: Overview of the specific calculational parameters for graphene. More parameters in
section 6.1.

𝑁𝑘𝑥/𝑦/𝑧
ℓmax ℓmax,nsph 𝑁MT 𝑅MT dx 𝑎latt

24/24/1 12 10 981 1.18 𝑎0 0.010 4.644 𝑎0

we want an FD benchmark, for which we do a supercell calculation with an 8 × 8 × 1 supercell.
Smaller cells tended to show soft modes that we do not expect in graphene, so we converged
the result with respect to the supercell size. Second is the pseudo film calculation in DFPT.
Optimally, it matches neatly against the FD benchmark to provide a doubly verified benchmark
for the third calculation, which is the 2D run with the newly implemented formalism. Before
we look at the full dispersion, we summarize the Goldstone modes of the FD benchmark and
the film calculation in table 9.8.

Table 9.8: Overview of the acoustic Γ-point modes, 𝜔, in cm−1 for the 2D graphene film calculation.

𝜔1 𝜔2 𝜔3

FD bulk −3.46 × 10−2 −3.46 × 10−2 −9.46 × 10−6

DFPT bulk −2.58 × 100− −3.57 × 100− −2.45 × 100−

DFPT film −1.58 × 102− −2.45 × 100− −2.45 × 100−

As opposed to all previous cases, there is now one significant soft mode for the DFPT film case,
while the pseudo film bulk and the FD reference take on sufficiently small values as always.
The same holds for the dispersion curve, where we get a soft mode in the true film where the
bulk results are stable. We first show only the in-plane modes of the DFPT calculations, they
are shown in figure 9.3.

The data from both DFPT calculations agrees nicely. Most points lie nearly perfectly atop each
other and there is only one significant discrepancy to discuss. At 𝐾, there is a significant
outlier below the acoustic modes, that instead belongs to the optical regime in the bulk case.
Such a deviation at a high-symmetry point is similar to what we have seen for the 𝛤-point in
several polyatomic materials in this thesis, but it only appears for the film calculation, which
suggests the effect does not stem from the same problem. At 𝛤 there is in fact a splitting
of the optical modes that should actually be a degenerate pair [231], but it is exactly the
same in the bulk and film cases. This means aside from the inconsistency at 𝐾, the true film
implementation reproduces the results from the bulk case.

We have yet to closely investigate the deviation at 𝐾 closely, but there is at least the notion, that
in can be connected to the handling of degenerate states in solving the Sternheimer equation.
This idea arises from the fact, that the reciprocal energy cutoff needed to be increased for
the film as opposed to the bulk setup, which reveals that the eigenenergy spectrum is overall
more sensitive to the DFPT procedure. Effects connected to the states, especially for the high-
symmetry points where 𝒌 and 𝒌 + 𝒒 form many degenerate pairs of energies, are therefore a
plausible cause of the deviation.
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Figure 9.3: Phonon dispersions for the in-plane modes of graphene. The red data points belong
to the DFPT data of a bulk calculation with far apart layers. The green data points
belong to a true film FLAPW calculation.

This concludes the discussion of the in-plane modes in graphene. The investigation into the
origin of the soft ZA mode and a mismatch in the corresponding out-of-plane optical mode
(ZO) is still ongoing and therefore not in the main part of this thesis. The current situation is
instead shown in appendix D.
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Chapter 10
Conclusion

I have implemented in the electronic structure code FLEUR [90, 91], a state-of-the-art realiza-
tion of the density-functional perturbation theory (DFPT) approach to phonon calculations for
the full-potential linearized augmented plane-wave (FLAPW) method [71–73]. It was based on
the juPhon plugin, a standalone program developed in the institute PGI-1 of Forschungszen-
trum Jülich [93]. I have extended this milestone version to a competitive and practical
version by (i) replacing the 𝑋𝛼 method [95] for exchange by the local density approximation
(LDA) [105, 106, 108, 109] to the exchange-correlation energy functional, (ii) enabling the
treatment of multiple atoms per unit cell (up to 3 atoms per unit cell have been explored),
(iii) implementing spin-polarized density-functional perturbation theory to treat materials
exhibiting collinear magnetism, (iv) introducing correction terms to the response of the wave
function’s expansion coefficients that remedied problems present for specific materials like fcc
Ne, and (v) implementing new property calculators such as the full phonon bandstructure
by q-point interpolation and, based on this, the phonon density of states. All the while, the
standalone plugin was reintroduced to the FLEUR code to reduce code redundancy and increase
its maintainability. Beyond that, the development of the DFPT for truly two-dimensional slabs
embedded in semi-infinite vacua has been initiated, put through a first set of tests, and is
currently in progress. This feature will be a valuable tool in the research of 2D quantum
materials [30, 49, 50] - especially magnetic ones, as the FLAPW is an appropriate method for
this purpose.

I validated the current implementation for a diverse set of materials. The basic monatomic
materials improved from the juPhon version included an insulator (fcc Ne) and a metal (fcc
Cu). The extension to spin-polarized DFPT allowed a satisfactory validation of a ferromagnetic
(FM) metal (fcc Ni) as well. The introduction of an atomic basis for the unit cell led to the
successful validation of semiconductors (Si in diamond and SiC in zinc blende structure) and
a polyatomic magnetic metal (hcp Co). It was shown that the method provides the same, if
not even a higher, quality of results than that of reference calculations performed with the
finite displacement (FD) method in conjunction with the phonopy package. For the exemplary
material of FM bcc Fe, I demonstrated the robustness of the DFPT method with respect to
several parameters such as the convergence threshold for the density response, the LAPW
basis cutoff, and the density of the k-point sampling of the Brillouin zone. I showed, that the
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convergence of the DFPT results in terms of these cutoff parameters and thresholds is much
less costly than the large supercell sizes that must be chosen for the convergence of FD results,
and that the latter is neither guaranteed nor smooth. This was explicitly the case for bcc
Fe and the transition metal bcc Mo, where I benchmarked the results against experimental
data [203] and could easily reproduce it with the DFPT method, while the FD supercells
failed to converge to the experimental results. However, it should be noted that at the current
state of implementation the FD calculations for small supercells (e.g. 2 × 2 × 2 cells) are still
a lot faster than their DFPT equivalents. This is due to the maximum possible exploitation
of crystal symmetry provided by phonopy and FLEUR, that is not yet present for the DFPT
implementation.

I used the improved implementation to study the behavior of phonons in magnetic materials.
For the elemental FM bcc Fe I showed, that a nonmagnetic setup yields a profoundly different
phonon dispersion with extremely soft modes that mandate a structural phase transition. This
is well in line with the observation, that the local density approximation (LDA) a nonmagnetic
structure to be the true ground state for fcc Fe. For both bcc Fe and hcp Co, I analyzed the effect
of the lattice constant on the phonon dispersion against that of the magnetic configuration.
The key takeaway message is that the shape of the dispersion curve is mainly dictated by
the magnetic configuration, while the lattice constants that vary between the two ground
states significantly impact the overall magnitude of the curve. The same could be seen more
clearly for the rare-earth magnets hcp Gd and bcc Eu. As the lattice constants differ only
slightly between their FM and AFM ground states, the impact of the magnetic configuration
on the curve shape is a lot more pronounced than the scaling effect. This motivates more
future research into the interplay of phonons and magnetism as well as the phonon physics of
rare-earth metals in general. The latter group of materials is a field of study, that is mostly
reserved to FLAPW due to its all-electron nature and thus FLAPW-DFPT is the optimal tool to
further this research.

By implementing the DFPT in the FLAPW method, I advanced a methodology that was
barely studied internationally and at our institute [94]. It is natural that on the way to
implementation, we encountered a number of numerical difficulties. I was able to solve the
problem of outliers in fcc Ne using the reciprocal energy correction, to tame the bcc Mo
dispersion that was previously erratic by switching to a different radial integration scheme, to
improve the match between the FD and DFPT results for Si, Co, and SiC by moving to bigger
supercells in the FD calculations and to impressively show, that DFPT gives an extraordinarily
good fit to experimental data for bcc Mo, while the FD approach breaks down for too large
supercells. Some other problems that I want to draw attention to here have already been
investigated, but not yet solved to our complete satisfaction. Particularly, I want to highlight
the deviations from the otherwise smooth dispersion curve at the 𝛤-point when there is more
than one atom per unit cell involved. The extent of these deviations ranged from negligible
(hcp Co, Si), to small (bcc Fe, bcc Eu), to significant (hcp Gd), and finally to large (TMDCs).
These deviations were linked to phenomena that play out on the state-dependent level, but
whether the problem lies in the eigenenergy responses, the occupation number responses that
are formed from them, in the correction terms for near-degenerate energies, or a combination
of the three factors is yet to be determined. The second issue of note is the current state of the
DFPT thin film implementation. While the in-plane modes overlap nicely with a reference bulk
calculation, there are deviations at the high-symmetry points even aside from 𝛤. Moreover,
the out-of-plane modes deviate in both the acoustic and optical regime. This was linked to an
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overlap of both a constant shift (i.e. a deviation of the out-of-plane Goldstone mode) and a
q-dependent problem at small wave vectors. Both problems are still under active investigation.
Another drawback of the current implementation is the runtime. In terms of parallelization,
the implementation makes use of everything that is also available for the ground state, like
the MPI parallelization over the k-points and the various OMP loops strewn throughout the
code. This can be done due to adapting existing routines in contrast to rewriting new ones for
each part of the calculation. But the main bottlenecks are the evaluation of the expansion
coefficients for the wave function response, that involves all states, and the overall number
of necessary Sternheimer self-consistency loops. Both the option to reduce the number of
states considered and the reduction of necessary loops by symmetry are currently under
consideration.

This concludes the discussion of the current state of development for the FLEUR DFPT imple-
mentation. The next steps of advancements may be adapting the various other capabilities
of the code. They range from more powerful functional classes like the generalized gradient
approximation (GGA) [110–113], to tools for more complex magnetism like the spin-orbit
coupling [133, 134] and the possibility of non-collinear magnetism [131, 132] and spin-
spirals [205], to explicitly taking strong Coulomb interactions into account through Hubbard
𝑈, 𝐽, and 𝑉 parameters (DFT+U) [135]. This will make the feature just as versatile as the
ground-state code is. As a property calculator, it is then crucial to make more results avail-
able, such as the electron-phonon coupling [65] e.g. to gain insight about superconducting
properties of a material [14] and to investigate the relations between complex magnetism
and phonon physics (spin-phonon and phonon-magnon interaction) [24, 26, 31, 213, 217].
Another way in which to continue the work is making more thermodynamical quantities avail-
able by postprocessing the phonon density of states. DFPT is a general method to calculate
second order derivatives to the total energy. Thus, different interactions can be treated. This
will necessitate the extension of the formalism to different perturbations than vibrational
ones. One example is the response of the system to electric fields [46, 232]. It is currently in
development and also gives us access to the Born effective charges and static dielectric tensor
needed to augment the phonon dispersions of polar materials with the non-analytical term
correction [176, 192].

In summary, the framework presented and validated in this thesis marks a significant step
forward for the field of FLAPW-DFPT and the physics of phonons in structurally, chemically,
magnetically, and electronically complex materials.
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Appendix A
Further Exploitation of Symmetry

In the late stages of this thesis, we did some additional work with respect to the usage of
symmetry to reduce the computational effort of the DFPT procedure. This is the most basic
requirement to make it more efficient than the FD reference calculations, which already
contain a symmetry reduction and can sometimes be sufficient even with small supercells.
The details on the theory and algorithm are pushed to this appendix, as the implementation
was not used in any of the results present in the thesis, albeit already being implemented and
showing promise.

We start from equation (3.13) and look at a symmetry operation, that leaves the q-point
𝒒 = 𝑆 ⋅ 𝒒 unchanged and maps the atoms (𝛽′, 𝛼′) onto (𝛽, 𝛼). We additionally shift one of the
rotation matrices to the left hand side to find

𝐷𝛽′,𝛼′(𝒒) = ei𝒒⋅(𝝉𝛼′−𝝉𝛽′)e−i𝒒⋅(𝝉𝛼−𝝉𝛽)𝑆 𝐷𝛽,𝛼(𝒒) 𝑆𝑇 (A.1)

⇔ 𝑆𝑇 𝐷𝛽′,𝛼′(𝒒) = ei𝒒⋅(𝝉𝛼′−𝝉𝛽′)e−i𝒒⋅(𝝉𝛼−𝝉𝛽)𝐷𝛽,𝛼(𝒒) 𝑆𝑇 (A.2)

We multiply both sides of this equation from the left with ̂𝒆𝑇
𝑗 and write the dynamical matrices

component wise, to find

∑
𝑗′𝑖′

𝑆𝑗′𝑗𝐷
𝑗′,𝑖′

𝛽′,𝛼′(𝒒) ̂𝒆𝑇
𝑖′ = ei𝒒⋅(𝝉𝛼′−𝝉𝛽′)e−i𝒒⋅(𝝉𝛼−𝝉𝛽) ∑

𝑘
[∑

𝑖
𝐷𝑗,𝑖

𝛽,𝛼(𝒒)𝑆𝑘𝑖] ̂𝒆𝑇
𝑘 . (A.3)

This essentially constitutes a linear equation with three (possibly unknown) rows of the
dynamical matrix on the left hand side and one known but rotated one on the right hand
side. This is a solvable equation, provided we have at most one unknown row on the left hand
side that has a non-vanishing prefactor. So there are three things that need to be added to
the calculation. First we need to find the reduced group of symmetries that does not affect
𝒒. Second for each calculated row of the dynamical matrix and each symmetry the rotated
right hand side needs to be saved. Third, and most crucially, we need a routine that is called
for each new displacement calculation but the first row, where equation (A.3) in checked
for a solution. Should such a solution exist, the Sternheimer self consistency loop for this
displacement row can be skipped completely by using the one gained by symmetry instead.
The workflow of the current implementation is shown in algorithm 2.
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Algorithm 2: Calculating new DM rows from existing ones.
1 Input: 𝛽′𝑗′, {𝑆}, {𝑆 ⋅ 𝑫𝑗

𝛽,𝛼}∀𝛼, {𝑫𝑗
𝛽,𝛼}∀𝛼

2 Output: {𝑫𝑗′

𝛽′,𝛼′}∀𝛼′

3 for 𝛼 do
4 for 𝛽 do
5 for 𝑆 do
6 if 𝝉𝛽 ≠ 𝑆𝝉𝛽′ or 𝝉𝛼 ≠ 𝑆𝝉𝛼′ then
7 cycle 𝑆
8 end if
9 for available 𝑗 do

10 rhsvec ←ei𝒒⋅(𝝉𝛼′−𝝉𝛽′)𝑆 ⋅ 𝑫𝑗
𝛽,𝛼;

11 i_done ←0;
12 i_need ←3;
13 for 𝑘′ do
14 if 𝑫𝑘′

𝛽′,𝛼′ is available then
15 l_done[𝑘′] ←true;
16 i_done ←i_done + 1;
17 l_need[𝑘′] ←false;
18 i_need ←i_need - 1;
19 rhsvec ←rhsvec - 𝑆𝑘′,𝑗𝑫𝑘′

𝛽′,𝛼′;
20 cycle 𝑘′;
21 else
22 if 𝑆𝑘′,𝑗 = 0 then
23 l_need[𝑘′] ←false;
24 i_need ←i_need - 1;
25 rhsvec ←rhsvec - 𝑆𝑘′,𝑗𝑫𝑘′

𝛽′,𝛼′;
26 cycle 𝑘′;
27 end if
28 end if
29 k_need ←𝑘′

30 end for
31 if 𝑖done = 0/3 or 𝑖need ≠ 1 or |rhsvec|=0 then
32 cycle 𝑗
33 end if
34 if 𝑆𝑘need,𝑗 ≠ 0 then
35 𝑫𝑘need

𝛽′,𝛼′ ←rhsvec
36 end if
37 cycle 𝛼′

38 end for
39 end for
40 end for
41 end for
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The input quantities are the indices of the new DM row, the set of symmetry operations that
leave the q-point unchanged, and the transformed and untransformed rows of the DM, that are
already known. The output is the full new row of the DM, in case it is solvable. Currently, this
reduction is implemented but not yet used to skip parts of the calculation. Rather, we output
the solution by symmetry and compare it to that calculated directly from the Sternheimer
cycle. We tested this for the MoSe2 system from chapter 9 to possibly reduce the amount of
necessary Sternheimer cycles at each q-point from nine to something lower. For 𝒒 ≠ 𝟎 the
results agree nicely, with correctly reproduced values across the full sampled dispersion curve.
The algorithm manages to shirk four out of nine calculations, foregoing the y-displacement of
each of the atoms and the z-displacement of the second Se atom. This is nearly a reduction
by half, but we are convinced that the x-displacement of the second Se atom should also be
skippable. Furthermore, at 𝒒 = 𝟎 we find mostly correct absolute values up to a negative
prefactor on some elements of the matrix, but the results are a lot less accurate than for the
finite q-points. Further dissection of the results is warranted.
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Appendix B
Installing and Using FLEUR with DFPT

To use the features that are described in this work, we need to first install a version of FLEUR in
which they are all implemented. The presented state-of-the-art can be obtained by cloning the
git repository from https://iffgit.fz-juelich.de/fleur/fleur and using the command
line git checkout MaX-R7.1 to access the correct version. From there it is the task of the
user to correctly compile the code into a working executable as described in the tutorial on
flapw.de [90]. There are two additional compile options, that are usually not mandatory but
required in the context of DFPT. First, the code must be compiled while linking a version of
Hierarchical Data Format library HDF5 [233]. This is because the density responses are written
out in this format with no other fallback options. The second mandatory option is compiling
with the libxc [171] library of xc functionals, that enables the usage of functionals and their
derivatives without hard-coding them into FLEUR itself. As the implementation of functional
derivatives to second order (as they are needed by DFPT) for all possible xc functionals would
be an excruciating task, there are no plans to lift this requirement.

As mentioned in section 6.1, the input file for our FD calculations needs to take on a specific
form. Below we provide an example input file for the MoSe2 calculation in section 9.1, as it is
the most complex material analyzed in this work and serves to highlight the parameters that
can be set in the basic input file.

4_2 MoSe2

&input f i lm=f /

3.327 −3.327 0.0000000000 ! a1
3.327 3.327 0.0000000000 ! a2
0.000 0.000 17.8927192846 ! a3
1.89515158089
0.5 −0.75 1.0

3 ! num atoms
42.1 0.0 0.0 0.0
34.1 1.0 −1.0 0.0942542746
34.1 1.0 −1.0 −0.0942542746
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&f a c t o r 3.0 3.0 1.0 /

&atom element="Mo" id=42.1 rmt=2.23 j r i =661 dx=0.019 lmax=10
lnonsph=8 /

&atom element="Se" id=34.1 rmt=2.23 j r i =661 dx=0.019 lmax=10
lnonsph=8 /

&kpt div1=24 div2=24 div3=1 tkb=0.001 /
&exco xctyp='vwn' /

The lattice vectors a1-3 are provided in Å, which transform to 𝑎0 by a conversion factor of
around 1.8897. The factor provided in the input file is slightly different, as it is multiplied
by the factor obtained from the Birch-Murnaghan fit. The interlayer distance in a3 and the
z-position of the Se atoms were also optimized, which leads to the long numbers provided in
the file. The negative scaling factor of −0.75 is read as a factor of √3/4 =

√
3/2 by the FLEUR

input generator and gives us the correct in-plane hexagonal lattice vectors of (𝑎/2, ∓
√

3𝑎/2)𝑇.
From this input the FD and DFPT calculations can be run according to the workflows described
in section 6.1.
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Appendix C
Second Order Coordinate Transformation

Section 5.1 introduced the matrix 𝜁, that relates the Cartesian to the natural coordinates
associated to the angular momentum ℓ = 1. For the analytical second order response terms
described in section 5.5, an analogous transformation is needed that takes two directional
indices instead of one and belongs to ℓ = 2 instead. So instead of a 3 × 3 matrix, we find a
3 × 3 × 5 object with elements 𝜒𝑗,𝑖,𝑚. The non-vanishing ones are

i) 𝜒1,1,±2 = √4𝜋/5√3/2,

ii) 𝜒2,2,±2 = −√4𝜋/5√3/2,

iii) 𝜒1,2,±2 = 𝜒2,1,±2 = ∓√4𝜋/5√3/2i,

iv) 𝜒1,3,±1 = 𝜒3,1,±1 = ∓√4𝜋/5√3/2,

v) 𝜒2,3,±1 = 𝜒3,2,±1 = √4𝜋/5√3/2i,

vi) 𝜒1,1,0 = 𝜒2,2,0 = −𝜒3,3,0/2 = −√4𝜋/5,

and the rest of them are zero. With this transformation, the multipole elements can be
constructed and inserted into the pseudodenstiy in the same way they were for the first order
response.
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Appendix D
Out-of-Plane Modes of the Film DFPT
Implementation

We tested the implementation described in section 9.2 for graphene, a hexagonal film of C
atoms with a two atom unit cell that forms a honeybomb structure. In this setup, we can
once again postulate certain results that are to be expected. Specifically, we expect three
acoustic modes starting at 0 cm−1 at the 𝛤-point. Furthermore, if we set up the same system
as a 3D repeated slab with big spacing between the layers, we expect a very similar phonon
dispersion to arise from it. We have managed to fulfill these predictions for the in-plane modes,
where we achieved a tight fight between its DFPT run and the 2D DFPT data after increasing
the reciprocal eigenenergy cutoff for the corrections to the Sternheimer equation (5.24) to
10−5 Ha to remedy a kink along the otherwise smooth branches. Something that did not
match at all, however, was the out-of-plane mode. It is quite natural, that if a specific part of
the calculation causes trouble, it would be this one, as the atomic motion is parallel to the
axis perpendicular to the film and should thus prove more numerically challenging. Even in
basic DFT self-consistency calculations, shifting the positions of all atoms by the same amount
in the 𝑧-direction can influence the result for the total energy, which is not the case for bulk
setups, where translational invariance is guaranteed in each direction. Though some progress
in solving this problem was made, it is not yet fully solved. The following appendix serves too
highlight our train of thought and approaches to remedy the soft out-of-plane modes.

D.1 Changes to the Formalism

We investigated this problem very closely and, to start very early into the calculation, analyzed
the first order response of the external potential. As our test system is inversion symmetric,
the components of the upper and lower vacuum should be identical up to a prefactor. We
also expect the 𝑮|| = 𝟎 component to vanish in this region, as it is determined from a density
that is 0 in the vacuum, which is the case for quantities related to the external potential. Due
to the construction from the upper vacuum downwards, this was not fulfilled in the case of
the potential gradient with respect to 𝑧 or the response to an atomic displacement in this
same direction. The result was a constant vacuum term to first and a linear one to second
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order. We have tried several methods to remedy this discrepancy. The initial approach was
to forcefully set the lower vacuum component of the gradient and response to 0 and, for the
sake of a continuous result, correct the interstitial part by a linear part with an offset. This
improved the situation for the first order quantities, but did not work very well for the second
order external potential, which is needed for the ion-ion interaction terms.

As the first method was not very well motivated from a theoretical point of view, but rather
served to forcefully correct the anomaly, we came up with a somewhat heuristic motivation
that can give us a similar correction. If we start from the defining Poisson equation of the
𝑮|| = 𝟎 potential component and differentiate with respect to 𝑧, the (pseudo-)density is
differentiated as well:

∂2
𝑧𝑉0(𝑧) = −4𝜋𝑛0(𝑧) (D.1)

⇔ ∂2
𝑧𝑉 ′

0 (𝑧) = −4𝜋𝑛′
0(𝑧) (D.2)

⇔ ∂2
𝑧𝑉 ″

0 (𝑧) = −4𝜋𝑛″
0(𝑧). (D.3)

Taking into account, that the density term is finite only inside the slab, it is discontinuous at
the vacuum boundaries. This translates, by differentiation, into two δ-peaks for the derivative
density and δ′-terms to second order. Taking these into account gives a linear correction term
again and allows for a discontinuity between the vacua and the slab that depends on the
pseudodensity of the external potential Poisson equation instead of that for the response. This
method served to gain better results for the out-of-plane dispersion, but we could clearly see a
discontinuity introduced between the 𝒒 = 𝟎 and 𝒒 ≠ 𝟎 contributions to the DM that resulted
from Hellmann–Feynman terms, i.e. exactly those related to the external potential and its
responses. We attribute this to the fact, that we only apply a correction to the 𝑮|| = 𝒒 = 𝟎
term and no correction whatsoever to the 𝒒 ≠ 𝟎 part. Such a correction cannot be inferred
from the original potential, as it is strictly defined for 𝒒 = 𝟎. Additionally, constructing only
the external potential from the vacuum Poisson solver is sort of problematic, as it wants
to normalize the integrated charge of the slab and vacua to 0, but it should be set to the
sum of the ionic charges instead for the external potential. Lastly, saving and carrying the
boundary values of the external potential pseudodensity through the code results in additional
complexity and optional parameter passing, which is very inelegant.

Hence, we tried a different approach to motivate the correction, that does not rely on extra
quantities that would not be present in the potential generation and is also valid for the
𝑮|| + 𝒒 ≠ 𝟎 components. We start from the general defining Poisson equation of the 2D
problem and integrate both sides in an 𝜀-perimeter of the boundaries:

[∂2
𝑧 − 𝐺2

||] 𝑉𝑮||
(𝑧) = −4𝜋𝑛𝑮||

(𝑧) (D.4)

⇔ [∂𝑧𝑉𝑮||
(𝑧)]±𝐷/2 − 𝐺2

||[∫ d𝑧𝑉𝑮||
(𝑧)]±𝐷/2 = −4𝜋[∫ d𝑧 𝑛𝑮||

(𝑧)]±𝐷/2. (D.5)

If we assume that whatever potential we calculate is discontinuous at most, hence not contain-
ing any δ-peaks and the like, the middle term will vanish and we are left with an equation,
that relates the jump condition of the potential derivative to the jump of the indefinite integral
of the pseudodensity. Since we know the analytic form of this density both in the slab and in
the vacua (where it is 0), we can also express this jump analytically. Defining 𝛥±(𝑮||) as the
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jump of a particular component at the upper (+) and lower (−) boundary, we can write

𝛥±(𝑮||) = −𝑛ps(𝑮 = 𝑮||)𝐷/2 ± ∑
𝐺⟂≠0

i𝑛ps(𝑮)e±i𝐺⟂𝐷/2

𝐺⟂
. (D.6)

We explicitly capture this discontinuity as a δ-contribution to the pseudodensity, meaning it
will give explicit contributions to the potential when integrated:

𝑛𝑮||
(𝑧) ⟶ 𝑛𝑮||

(𝑧) + δ(𝑧 − 𝐷/2)𝛥+(𝑮||) + δ(𝑧 + 𝐷/2)𝛥−(𝑮||). (D.7)

By direct integration, this leads to linear corrections of the external potential in the 𝑮|| = 𝟎
case

𝑉0(𝑧) ⟶ 𝑉0(𝑧) − 4𝜋[(𝐷/2 − 𝑧)(1 − 𝛩(𝑧 − 𝐷/2))𝛥+(0) (D.8)
+(−𝐷/2 − 𝑧)(1 − 𝛩(𝑧 + 𝐷/2))𝛥−(0)] (D.9)

and contributes a set of Green’s function terms for the 𝑮|| ≠ 𝟎 case

𝑉𝑮||
(𝑧) ⟶ 𝑉𝑮||

(𝑧) + 𝐺(𝑧 − 𝐷/2)𝛥+(𝑮||) + 𝐺(𝑧 + 𝐷/2)𝛥−(𝑮||). (D.10)

The latter of course also directly translates to a possible correction for 𝑮|| + 𝒒 ≠ 𝟎. A quick
check of this correction for 𝑮|| = 𝟎 reveals, that it does not have the desired result. The
constant term that exists in the lower vacuum e.g. for ∂𝑧𝑉ext is given only by 𝛴IR due to the
symmetry of the system. The new correction can be analytically checked to exactly cancel
the cosine part in this term. The sine term would require a correction that is of second order,
giving a reciprocal term proportional to 𝐺2

⟂. We thus look at the second order jump condition

[𝑉𝑮||
(𝑧)]±𝐷/2 = −4𝜋[∫ d𝑧 ∫ d𝑧 𝑛𝑮||

(𝑧)]±𝐷/2 (D.11)

as well. It can be expressed in terms of discontinuities as

𝛥(2)
± (𝑮||) = ∓𝑛ps(𝑮 = 𝑮||)𝐷2/4 ± ∑

𝐺⟂≠0
𝑛ps(𝑮)e±i𝐺⟂𝐷/2

𝐺2
⟂

(D.12)

and produces corrections

𝑉0(𝑧) ⟶ 𝑉0(𝑧) + 4𝜋[ (1 − 𝛩(𝑧 − 𝐷/2))𝛥(2)
+ (0) (D.13)

+(1 − 𝛩(𝑧 + 𝐷/2))𝛥(2)
− (0)] (D.14)

for 𝑮|| = 𝟎 and

𝑉𝑮||
(𝑧) ⟶ 𝑉𝑮||

(𝑧) + 𝐺′(𝑧 − 𝐷/2)𝛥(2)
+ (𝑮||) + 𝐺′(𝑧 + 𝐷/2)𝛥(2)

− (𝑮||). (D.15)

for the 𝑮|| ≠ 𝟎 components respectively. For the external potential gradient, it can be shown
that this form exactly cancels out 𝛴IR and thus guarantees a vanishing first order. The second
order was also checked to vanish.

Introducing these new correction terms yields a similar improvement to the previous approach,
but without introducing a discontinuity. This is more favorable, but the results produced with
this correction still yield discrepancies between the FD reference and the DFPT data for small
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q-vectors. The 𝑮|| ≠ 𝟎 does not behave properly when implemented and it stands to reason
that there is either a flaw in the derivation or in the current implementation.

Convergence in
𝐺⟂

Both attempts at implementing a discontinuity correction raised the question, why such
terms become necessary in the first place. I.e. why does the pseudodensity become highly
discontinuous at the vacuum boundary? The density that goes into the potential generation
consists of two parts. Firstly, there is the true plane wave expansion of the electron density
(or in this case its response) in the interstitial. This quantity and its vacuum counterpart are
constructed from the plane wave and vacuum basis, that are matched against each other to
ensure continuity and differentiability. The discontinuities of the density can hence not stem
from this contribution. The second contribution is the true ”pseudo-” part that expands the MT
electronic charge and ionic δ-charges as a smooth plane wave density in the slab and has no
contribution in the vacuum. Since this density is tied to step functions for each MT, it is hard
to converge with respect to the set of reciprocal lattice vectors 𝑮. This convergence is tied to a
proper localization of the pseudodensity within the MTs and too low cutoffs will make it finite
outside this region. This goes especially for the vacuum boundaries as well, which is directly
tied to the convergence in the out-of-plane reciprocal lattice vectors. The argument, that the
discontinuities arise from an insufficient localization of the pseudodensity is underpinned by
the fact that we noted much larger discontinuities for the external potential terms, that are
only tied to the ionic charges, as opposed to the Coulomb ones, where the electronic charges
contribute as well. In the second case the charges partially compensate each other, which leads
to smaller resulting multipole moments. This does nothing to improve the localization of the
step function itself, but smaller coefficients of course constitute a smaller overall pseudodensity
in real space and thus a smaller discontinuity at the vacuum boundary. So to validate the
importance of the plane wave cutoff, we ran test calculations for an increased 𝐺max parameter
and an increased film thickness, both of which increase the amount of 𝑮 chosen especially for
the z-direction. This turned out to be beneficial and made the correction negligible, at the
cost of increasing the calculation time vastly. We therefore thought of two ways to make this
increase in accuracy less costly.

Modifying the
Cutoff Behavior

The first option was to look only at the problematic quantities and increase the plane wave
cutoff locally for the generation of the external potential responses. This has the benefit of only
increasing the runtime at select parts of the run instead of in every calculation of the potential
or density. The downside is that this affects the amount of reciprocal lattice vectors for each of
the three Cartesian direction, while we explicitly found the out-of-plane convergence to be the
relevant one. This means an increase of computational cost that is largely wasteful. The more
sophisticated approach we agreed on is the introduction of a new global cutoff parameter
𝐺max,z, that governs the selection of the out-of-plane lattice vectors. In practice, the new cutoff
changes the selection criterion for the vectors and instead of |𝑮| < 𝐺max we instead use

|𝑮||| < 𝐺max, |𝐺⟂| < 𝐺max,z. (D.16)

This way, the vectors are no longer bounded by a sphere in reciprocal space, but rather by
an in-plane circle that forms a tube in the out-of-plane direction. The new cutoff parameter
can stretch this tube without increasing its in-plane extent, which keeps the amount of 𝑮||
constant while increasing the accuracy of the z-dependent representation. At cutoffs that we
set to same values as the increased ones from the local approach, the results were of the same
quality at a fraction of the runtime increase, which promises to be of future use.
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D.2 State-of-the-Art for the out-of-Plane Modes

To conclude this section, we discuss the results that were missing from figure 9.3, i.e. the
out-of-plane modes and the FD benchmark. Aside from that, we show an additional data set,
where the out-of-plane modes were corrected by the offset at 𝛤 according to the acoustic sum
rule. This results in figure D.1.

Figure D.1: Phonon dispersions for graphene. The red data points belong to the DFPT data and
the black dashed lines represent the FD benchmark of a bulk calculation (both with far
apart layers). The green and blue data points belong to a true film FLAPW calculation,
where the latter have been corrected by the offset of the 𝛤-point.

For the benchmark curves, the DFPT bulk data agrees nicely with the FD reference aside from
the 𝛤-point. This is likely due to the same reason as in the metallic systems in chapter 8 and
the materials in the previous section 9.1, where only 𝛤 showed modes that deviated from
the trend given by the sample points in its vicinity. The need for further investigations into
this problem has already been noted. Moving on to the film, while the direct result of the 2D
calculation shows a significant soft mode across the full sampled path through the BZ and an
offset in the out-of-plane optical mode, enforcing the acoustic sum rule is very beneficial for it.
The correction shifts the mismatched optical mode slightly upwards and moves the soft mode
closer to the oscillatory regime. The resulting data points (shown in blue for these particular
branches) do, however, not remedy the underlying problem. The ZO mode is not matched
and the ZA mode still gives imaginary frequencies close to 𝛤. So there is more at hand than a
simple offset problem. This can be made even more evident by applying a different correction.
The film ZO mode seems to be shifted from the bulk one somewhat constantly, so if we shift
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the out-of-plane film modes by the offset of the ZO mode at 𝛤 instead of enforcing the acoustic
sum rule, we arrive at a different result, shown in figure D.2.

Figure D.2: Phonon dispersions for graphene. The red data points belong to the DFPT data and
the black dashed lines represent the FD benchmark of a bulk calculation (both with far
apart layers). The green and blue data points belong to a true film FLAPW calculation,
where the latter have been corrected by the ZO offset of the 𝛤-point.

The applied correction serves to improve the ZO mode vastly. Far away from 𝛤, the ZA mode
is also improved, which leads us to the conclusion that there are two superposed problems
at hand. On the one hand there is a small constant shift in the out-of-plane modes, on the
other hand there is a deviation that becomes increasingly large for smaller q-points. This is
in line with the fact, that the correction terms for 𝑮|| + 𝒒 ≠ 𝟎 we derived did not yield an
improvement for the calculation and are thus not applied at the moment.

Outlook The present implementation of the thin film DFPT formalism serves as a starting point for
future development. Specifically we are interested in the modification of the phonon dispersion
due to the application of external electric or magnetic fields. Considering the former, they
inherently break the 3D periodicity of the bulk system by contributing a potential term that
depends on the position vector 𝒓, but in a film setup a linear potential term in with respect to
𝑧, i.e. an electric field that is parallel to the out-of-plane axis does not pose a problem. So even
if it turns out that the 2D formalism cannot be used to achieve a speed-up for film calculations,
it would still be valuable to study the phonon physics under an external influence, likely once
the NAC has been implemented to properly describe polar materials at all q-points.
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