001047250 001__ 1047250
001047250 005__ 20260113204520.0
001047250 0247_ $$2doi$$a10.1016/j.sna.2025.117095
001047250 0247_ $$2ISSN$$a0924-4247
001047250 0247_ $$2ISSN$$a1873-3069
001047250 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04181
001047250 037__ $$aFZJ-2025-04181
001047250 041__ $$aEnglish
001047250 082__ $$a620
001047250 1001_ $$0P:(DE-Juel1)173858$$aPourshahidi, Ali Mohammad$$b0$$ufzj
001047250 245__ $$aMagnetic nanoparticle spectroscopy for multiplex detection: Insights from frequency mixing magnetic detection
001047250 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001047250 3367_ $$2DRIVER$$aarticle
001047250 3367_ $$2DataCite$$aOutput Types/Journal article
001047250 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768316252_19290
001047250 3367_ $$2BibTeX$$aARTICLE
001047250 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047250 3367_ $$00$$2EndNote$$aJournal Article
001047250 520__ $$aMagnetic nanoparticles (MNPs) have shown promising applications in the field of biomedical sciences. Subsequently, various types of Magnetic Particle Spectroscopy (MPS) have been proposed for quantitative and qualitative analysis of MNPs. Among the various functions of MPS proposed so far, the development of technology that can analyze multiplex detection of different types of MNPs has attracted due to the expansion of various application fields. For example, the technology can be applied to enhance efficiency in biosensors, process analysis in MNP manufacturing, and measurement of various diseases in MPI. In our investigation, we perform a comparative study of different commercially available MNPs for use in multiplex detection applications using the frequency mixing magnetic detection (FMMD) technique. In this method, we employ a low-frequency magnetic field scanning method and analyze the real and imaginary parts of the measurement signal f1+ 2⋅f2 obtained from binary mixture samples of different MNP type combinations. Our findings suggest that FMMD-based duplex detection can achieve effective and reliable differentiation when a substantial phase response deviation exists among the particles.
001047250 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001047250 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047250 7001_ $$0P:(DE-HGF)0$$aJeong, Jae Chan$$b1
001047250 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b2$$ufzj
001047250 7001_ $$00000-0002-0738-3636$$aHong, Hyo Bong$$b3$$eCorresponding author
001047250 773__ $$0PERI:(DE-600)1500729-7$$a10.1016/j.sna.2025.117095$$gVol. 396, p. 117095 -$$p117095 -$$tSensors and actuators / A$$v396$$x0924-4247$$y2025
001047250 8564_ $$uhttps://juser.fz-juelich.de/record/1047250/files/Open%20Access%20Paper.pdf$$yOpenAccess
001047250 909CO $$ooai:juser.fz-juelich.de:1047250$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001047250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173858$$aForschungszentrum Jülich$$b0$$kFZJ
001047250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b2$$kFZJ
001047250 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001047250 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-04
001047250 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-04
001047250 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-04
001047250 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001047250 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-04
001047250 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSOR ACTUAT A-PHYS : 2022$$d2024-12-04
001047250 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-04
001047250 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-04
001047250 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047250 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-04
001047250 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-04
001047250 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-04
001047250 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-04$$wger
001047250 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-04
001047250 920__ $$lyes
001047250 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001047250 980__ $$ajournal
001047250 980__ $$aVDB
001047250 980__ $$aUNRESTRICTED
001047250 980__ $$aI:(DE-Juel1)IBI-3-20200312
001047250 9801_ $$aFullTexts