001047253 001__ 1047253
001047253 005__ 20251103202054.0
001047253 0247_ $$2doi$$a10.1021/acsami.5c10525
001047253 0247_ $$2ISSN$$a1944-8244
001047253 0247_ $$2ISSN$$a1944-8252
001047253 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04184
001047253 037__ $$aFZJ-2025-04184
001047253 082__ $$a600
001047253 1001_ $$00009-0006-9562-9291$$aXie, Zhiqiang$$b0$$eCorresponding author
001047253 245__ $$aAdditive-Engineered CsPbBr 3 -Based Perovskite Memristors for Neuromorphic Computing and Associative Learning Applications
001047253 260__ $$aWashington, DC$$bSoc.$$c2025
001047253 3367_ $$2DRIVER$$aarticle
001047253 3367_ $$2DataCite$$aOutput Types/Journal article
001047253 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1762157377_16914
001047253 3367_ $$2BibTeX$$aARTICLE
001047253 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047253 3367_ $$00$$2EndNote$$aJournal Article
001047253 520__ $$aPerovskite memristors have emerged as promising candidates for neuromorphic computing due to their simple fabrication process and mixed ionic and electronic properties. Among them, all-inorganic CsPbBr3 perovskites have garnered significant interest due to their excellent stability. However, the low solubility of cesium bromide (CsBr) in most common solvents poses a major challenge in fabricating high-quality, pinhole-free CsPbBr3 films for memory device applications using a convenient one-step solution method. In this work, a facile one-step spin-coating approach was employed to fabricate CsPbBr3-based memristors, incorporating a carbohydrazide (CBH) additive into the perovskite precursor to enhance device performance. The modified device exhibited an improved ON/OFF ratio, enhanced endurance, and longer retention time. Furthermore, it successfully emulated key synaptic functions, including excitatory postsynaptic current, paired-pulse facilitation, long-term potentiation/depression, and learning–forgetting–relearning behaviors, effectively mimicking biological synapses. Additionally, an associative learning experiment inspired by Pavlov’s dog experiment was conducted, demonstrating memory formation and extinction under optical and electrical stimuli. The fabricated perovskite memristor was further evaluated in a convolutional neural network for Fashion MNIST classification, achieving a high recognition accuracy of 89.07%, confirming its potential for neuromorphic computing applications. This study highlights the effectiveness of additive engineering as a strategy for developing high-performance perovskite-based neuromorphic electronics.
001047253 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001047253 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047253 7001_ $$0P:(DE-Juel1)192542$$aWu, Jianchang$$b1
001047253 7001_ $$aTian, Jingjing$$b2
001047253 7001_ $$00000-0002-8399-4244$$aLi, Chaohui$$b3
001047253 7001_ $$aZhang, Difei$$b4
001047253 7001_ $$00000-0003-4530-2566$$aChen, Lijun$$b5
001047253 7001_ $$00000-0002-7985-7431$$aLoi, Maria Antonietta$$b6
001047253 7001_ $$00000-0001-9098-9171$$aOsvet, Andres$$b7$$eCorresponding author
001047253 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b8$$ufzj
001047253 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.5c10525$$gVol. 17, no. 38, p. 53704 - 53715$$n38$$p53704 - 53715$$tACS applied materials & interfaces$$v17$$x1944-8244$$y2025
001047253 8564_ $$uhttps://juser.fz-juelich.de/record/1047253/files/manuscript%20supporting_without_highlight.pdf$$yPublished on 2025-09-13. Available in OpenAccess from 2026-09-13.
001047253 8564_ $$uhttps://juser.fz-juelich.de/record/1047253/files/manuscript_main_without_highlight.pdf$$yPublished on 2025-09-13. Available in OpenAccess from 2026-09-13.
001047253 909CO $$ooai:juser.fz-juelich.de:1047253$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001047253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192542$$aForschungszentrum Jülich$$b1$$kFZJ
001047253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b8$$kFZJ
001047253 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001047253 9141_ $$y2025
001047253 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001047253 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
001047253 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
001047253 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001047253 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2024-12-13
001047253 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2024-12-13
001047253 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
001047253 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001047253 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
001047253 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001047253 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001047253 920__ $$lyes
001047253 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001047253 980__ $$ajournal
001047253 980__ $$aVDB
001047253 980__ $$aUNRESTRICTED
001047253 980__ $$aI:(DE-Juel1)IET-2-20140314
001047253 9801_ $$aFullTexts