001     1047274
005     20251107145125.0
037 _ _ |a FZJ-2025-04195
041 _ _ |a English
100 1 _ |a Hader, Fabian
|0 P:(DE-Juel1)170099
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Advances in Automation of Quantum Dot Devices Control
|g AQD
|c Los Angeles
|d 2025-10-05 - 2025-10-05
|w USA
245 _ _ |a Towards Scalable Robust Charge Transition Detection for Quantum Dot Devices
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1762522804_28393
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Reliable detection of charge transitions in charge stability diagrams (CSDs) is a key requirement for the full automation of quantum dot device control. Performing this task directly at the cryogenic stage reduces data transfer and supports scalability. To provide the large labeled datasets required for developing and evaluating detection methods, we introduced SimCATS [1], a simulator that generates realistic CSDs including sensor responses and distortions. We optimize both traditional and machine-learning-based detection methods using simulated data and benchmark them on simulated and experimental measurements from GaAs and SiGe qubit devices. We also investigate the potential of model compression and find its performance closely tied to task complexity, which can be alleviated by sensor dot compensation. In fact, we find that sensor compensation allows machine-learning approaches to be reduced in size by up to two orders of magnitude while maintaining, or even improving, detection quality. Together with high-quality measurements, this enables robust and scalable (ray-based) charge transition detection. Finally, we estimate the cryogenic power budget for applying this approach to large-scale systems with up to one million qubits.
[1] F. Hader et al., "Simulation of Charge Stability Diagrams for Automated Tuning Solutions (SimCATS)", IEEE Transactions on Quantum Engineering, DOI: 10.1109/TQE.2024.3445967 (2024).
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
700 1 _ |a Fuchs, Fabian
|0 P:(DE-Juel1)176540
|b 1
700 1 _ |a Fleitmann, Sarah
|0 P:(DE-Juel1)173094
|b 2
|u fzj
700 1 _ |a Havemann, Karin
|0 P:(DE-Juel1)201385
|b 3
|u fzj
700 1 _ |a Scherer, Benedikt
|0 P:(DE-Juel1)173093
|b 4
|u fzj
700 1 _ |a Vogelbruch, Jan-Friedrich
|0 P:(DE-Juel1)133952
|b 5
|u fzj
700 1 _ |a Humpohl, Simon
|0 P:(DE-Juel1)172767
|b 6
700 1 _ |a Hangleiter, Tobias
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Huckemann, Till
|0 P:(DE-Juel1)180702
|b 8
|u fzj
700 1 _ |a Geck, Lotte
|0 P:(DE-Juel1)169123
|b 9
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 10
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1047274/files/Hader-TowardsScalableRobustChargeTransitionDetectionForQuantumDotDevices.pdf
|y Restricted
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)170099
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173094
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)201385
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)173093
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133952
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)180702
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)169123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Integrated Computing Architectures
|x 0
980 _ _ |a conf
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21