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Background

Present Case:

• Plunger-Plunger-Scans

• Mainly influencing dot potentials

Experimental Data
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Used for charge state analysis

→ Lines provide information about charge transitions



Charge Transition Detection

Can CT detection be integrated close to the qubits, 

to reduce data transmission?

• Approaches must operate in cryogenic

environments

• Power dissipation impacts qubit fidelity

Does ML offer a (robust) advantage?

• Collect & compare different classical

& ML approaches

• Training with simulated data (SimCATS)
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Motivation
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Goals: 
1. Good generalization

2. Reduce approach complexity



Charge Transition Detection

Machine Learning Approaches:
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Collected Approaches

Approaches intended for:
• Edge Detection
• Segmentation / Object Detection

• Diffusion-Based:

• DiffusionEdge, MedSegDiff-V2

• Convolution-Based:

• CASENet, CHRNet, DeepLabV3+, DFF, FPN, 

LDC, LinkNet, TEED, U-Net, U-Net++

• State-Space-Model-Based:

• VM-UNet

• Transformer-Based:

• CrackFormer, EDTER, MA-Net, MMViT-Seg, 

SegFormer, Segmenter, Swin-Unet, TransUNet

Classical Approaches: 

• Canny, CannyPF, ED, PhCon+GCanny, gPb+GCanny

05.10.2025



Charge Transition Detection

Datasets

• Simulated

• Parameter ranges extracted from RWTH GaAs sample

• Random variations of TCTs, sensor, and distortion parameters

• 10.000 randomly sampled configs with 100 CSDs each

• Experimental

• GaAs DQD data & SiGe single QD data

Training

• Classical & ML approaches optimized on simulated data 

• ML models trained using original settings, and

using AdamW, OneCycleLR, and dice loss
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Datasets & Training
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Charge TransitionsCSD



Charge Transition Detection

Used Dice Similarity Coefficient for Evaluation: 

𝑫𝑰𝑪𝑬 =
𝟐|𝑿 ∩ 𝒀|

𝑿 + |𝒀|

→ Quantifies the similarity between 

 the predicted segmentation mask 𝑋 

 and the ground truth segmentation mask 𝑌

Requires pixel-precise segmentation

→ Surface Dice (S-DICE) allows deviation
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Dice Similarity Coefficient
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𝐷𝐼𝐶𝐸 =

+

2 ∙

CSD

DICE Calculation



Charge Transition Detection
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Results – Metrics
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Classical Approaches

SSM CNN

Transformer

Tiny CNN Diffusion

Solid = DICE
Transparent = S-DICE



Charge Transition Detection
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Results – Exemplary Predictions
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Low Noise, High Sensitivity

High Noise, Low Sensitivity

Random Telegraph Noise

Low Noise, Low Sensitivity

Blurred Transitions, Single Dot

Different Angle, Single Dot

Classical
approach
not robust



Charge Transition Detection
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Summary

05.10.2025

Machine learning clearly outperforms

classical approaches

• Models trained on simulated generalize

well to experimental data

Model size & complexity can be reduced

• How can we further reduce?

F. Hader et al., "Automated Charge Transition Detection in Quantum Dot Charge Stability Diagrams“

Published in IEEE TQE,  DOI: 10.1109/TQE.2025.3596392



Uncompensated

Efficiency Refinement with Improved SD Tuning

SD is disturbed by the voltages applied to

the DQD gate electrodes

Effect can be mitigated by using virtual gates

• Combination of several physical gates

• Effect of DQD gates on the SD is compensated

• SD signal shows stepwise characteristic

→ Reduces complexity in signal interpretation

Task: Evaluate if compensated SD data improves 2D U-Net 

model performance and enables ray-based (RB) detection

→ Target benchmark: S-DICE ≥ 0.95 on simulated data
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Sensor Compensation – Effects on Data Quality
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Compensated



Efficiency Refinement with Improved SD Tuning

Considered Approaches:

• U-Net 

• Full size & Unet-38k

• Further reduced-size Variants

• RB Versions of the smallest U-Nets

• Classical Methods: PhCon+GCanny, First-Order Derivative (FOD) filter

• HIAT Circuit: Hardware integrated averaging and thresholding (scalable on-chip detection)

Datasets:

• Simulated with compensated SD

• Simulated with compensated SD & superior data quality (top 10% of parameter range)
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Sensor Compensation – Approaches & Optimization
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HIAT Schematic



Efficiency Refinement with Improved SD Tuning

Sensor compensation improves detection quality

• ML models improved (U-Net & Unet-38k)

• Models up to 2 orders of magnitude smaller

became viable

• Classical approaches improved, but are still inferior

RB detection did not reach the targeted benchmark

of S-DICE ≥ 0.95

• ML based RB detection outperforms 2D classical 

approach

• HIAT not robust enough for local detection

 

13

Sensor Compensation – Results

05.10.2025



Efficiency Refinement with Improved SD Tuning

Superior data quality further improves detection quality

• All 2D ML models achieved optimal S-DICE scores

• Classical approaches improved, but did not match target

RB detection became viable

• ML based RB detection achieves optimal S-DICE score 

(Unet-1k-RB)

• Classical variants & HIAT still not robust enough

→ HIAT may perform reliably with further improved data 

quality and dual averaging times

UNet-447 and UNet-179-RB show declining S-DICE 

→ Further downsizing not advisable 
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Sensor Compensation – Results Superior Data Quality
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Efficiency Refinement with Improved SD Tuning
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Energy Efficiency of Scaled Machine Learning Models
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Required Power for Tuning Procedure:

𝑃𝑡𝑢𝑛𝑒 =
𝑁𝑜𝑝𝑠/𝑐𝑠𝑑 ∙ 𝑛𝑐𝑠𝑑

𝐸𝑢𝑛𝑒𝑡 ∙ 𝑡𝑡𝑢𝑛𝑒

• 𝑁𝑜𝑝𝑠/𝑐𝑠𝑑 : number of operations per CSD inference

• 𝑛𝑐𝑠𝑑 = 107 CSDs (or 6 ∙ 107 ray-based measurements)

• 𝐸𝑢𝑛𝑒𝑡 = 50.62
𝑇𝑂𝑃𝑆

𝑊

• 𝑡𝑡𝑢𝑛𝑒 = 6ℎ : time requirement of the tuning procedure

Power vs. Performance of AI Edge Processors

Adapted from DOI: 10.3390/electronics13152988

[1] Teo et al., „U-Net Hardware Accelerator“; IEEE Computer Society, 2024 

DOI: 10.1109/MCSoC64144.2024.00063

https://doi.org/10.1109/MCSoC64144.2024.00063


Efficiency Refinement with Improved SD Tuning
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Summary
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Reliable SD compensation is essential for scalable and accurate CT detection

RB approaches are only viable under consistently superior data quality

= Selected Candidate



Outlook
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Is detection at the millikelvin stage more efficient than transfer?

Can we realize a more versatile demonstrator chip for multiple tasks?

= Selected Candidate
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