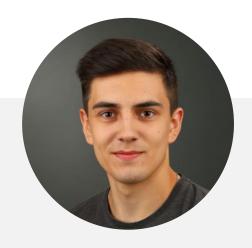

TOWARDS SCALABLE ROBUST CHARGE TRANSITION DETECTION FOR QUANTUM DOT DEVICES


5 October 2025 | FABIAN ANTÓNIO HADER

Outline

- Background: Experimental Data
- Charge Transition Detection
- Efficiency Refinement with Improved Sensor Dot Tuning
- Outlook

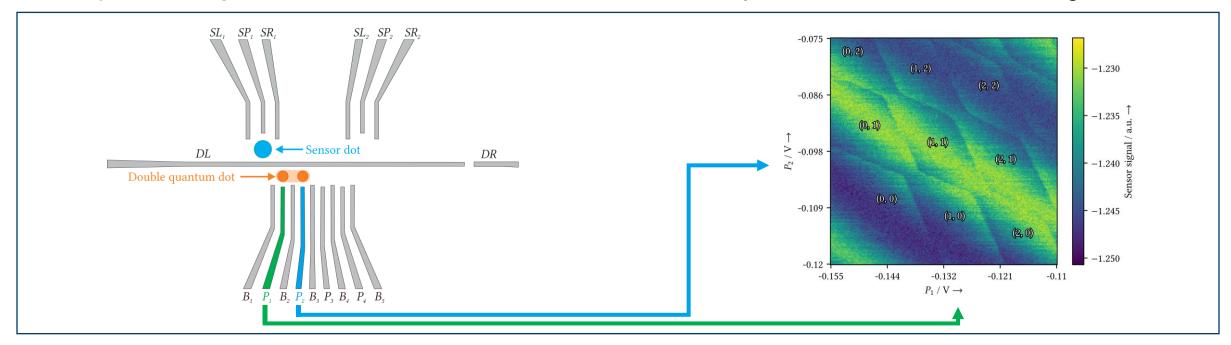
f.hader@fz-juelich.de www.fz-juelich.de/profile/hader_f

Integrated Computing Architectures (ICA | PGI-4)

www.ica.fz-juelich.de

Background

Experimental Data


Present Case:

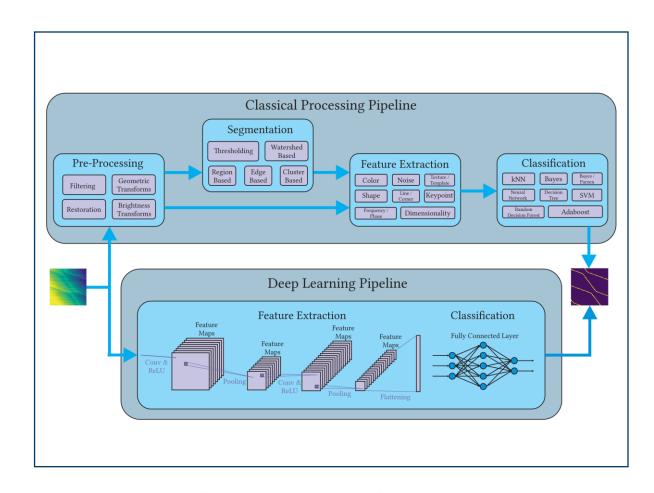
- Plunger-Plunger-Scans
- Mainly influencing dot potentials

Used for **charge state analysis**

→ Lines provide information about charge transitions

Motivation

Can CT detection be **integrated close to the qubits**, to reduce data transmission?


- Approaches must operate in cryogenic environments
- Power dissipation impacts qubit fidelity

Does ML offer a (robust) advantage?

- Collect & compare different classical
 & ML approaches
- Training with simulated data (SimCATS)

Goals:

- 1. Good generalization
- 2. Reduce approach complexity

Collected Approaches

Approaches intended for:

- Edge Detection
- Segmentation / Object Detection

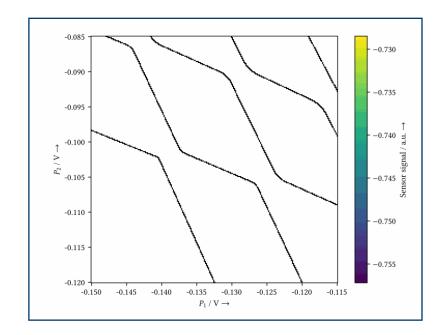
Classical Approaches:

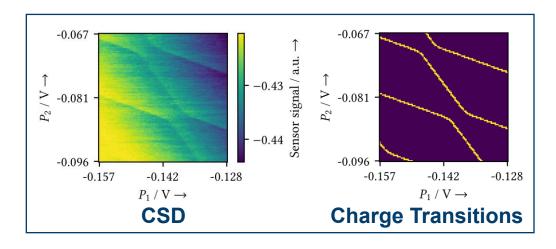
Canny, CannyPF, ED, PhCon+GCanny, gPb+GCanny

Machine Learning Approaches:

- Convolution-Based:
 - CASENet, CHRNet, DeepLabV3+, DFF, FPN, LDC, LinkNet, TEED, U-Net, U-Net++
- Transformer-Based:
 - CrackFormer, EDTER, MA-Net, MMViT-Seg,
 SegFormer, Segmenter, Swin-Unet, TransUNet

- State-Space-Model-Based:
 - VM-UNet
- Diffusion-Based:
 - DiffusionEdge, MedSegDiff-V2


Datasets & Training

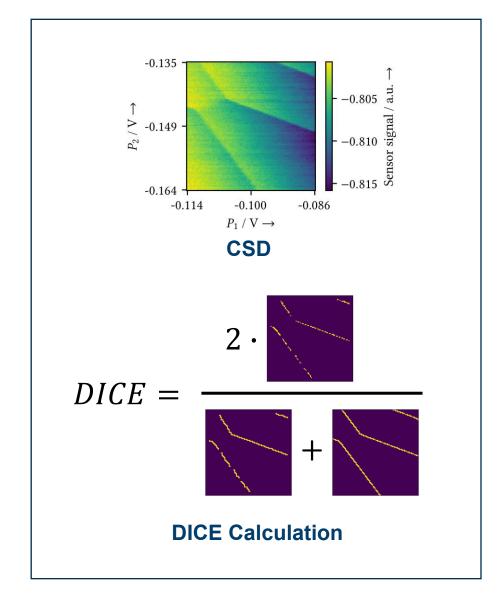

Datasets

- Simulated
 - Parameter ranges extracted from RWTH GaAs sample
 - Random variations of TCTs, sensor, and distortion parameters
 - 10.000 randomly sampled configs with 100 CSDs each
- Experimental
 - GaAs DQD data & SiGe single QD data

Training

- Classical & ML approaches optimized on simulated data
- ML models trained using original settings, and using AdamW, OneCycleLR, and dice loss

Dice Similarity Coefficient

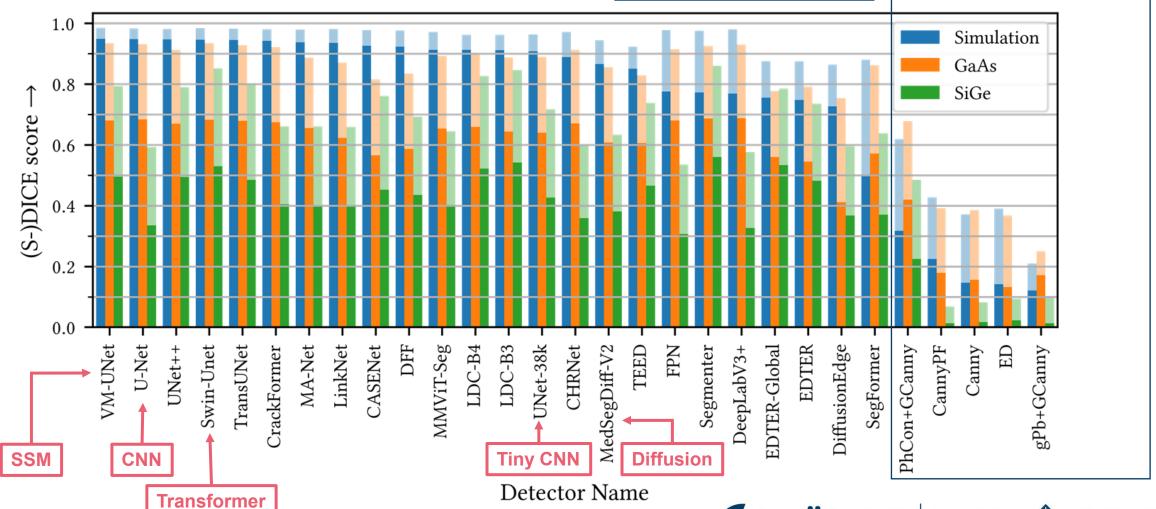

Used Dice Similarity Coefficient for Evaluation:

$$DICE = \frac{2|X \cap Y|}{|X| + |Y|}$$

→ Quantifies the similarity between the predicted segmentation mask X and the ground truth segmentation mask Y

Requires pixel-precise segmentation

→ Surface Dice (S-DICE) allows deviation

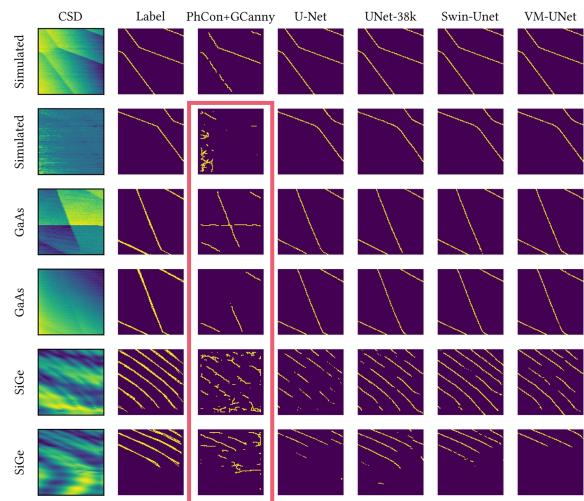


Solid = DICE Transparent = S-DICE

Classical Approaches

Results – Exemplary Predictions

Low Noise, High Sensitivity


High Noise, Low Sensitivity

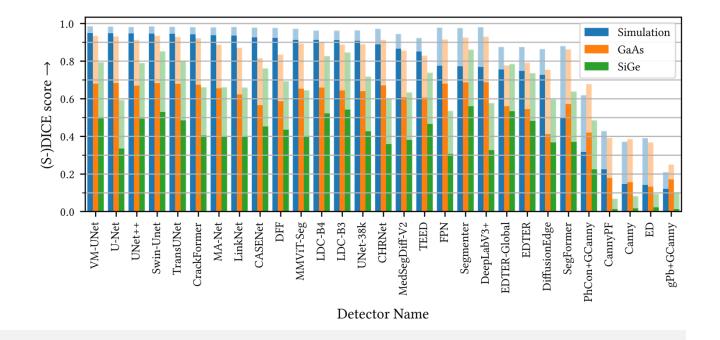
Random Telegraph Noise

Low Noise, Low Sensitivity

Blurred Transitions, Single Dot

Different Angle, Single Dot

Classical approach not robust


Summary

Machine learning clearly outperforms classical approaches

 Models trained on simulated generalize well to experimental data

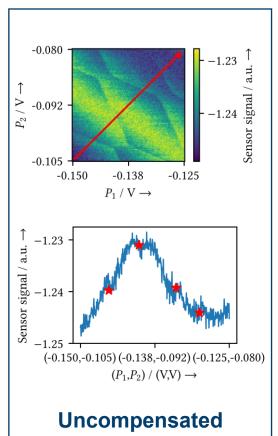
Model size & complexity can be reduced

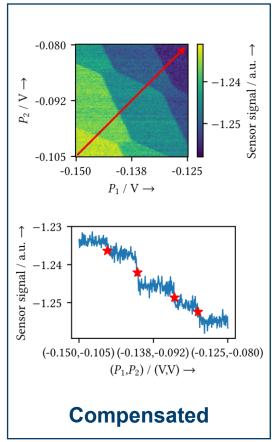
How can we further reduce?

F. Hader et al., "Automated Charge Transition Detection in Quantum Dot Charge Stability Diagrams"

Published in IEEE TQE, **DOI: 10.1109/TQE.2025.3596392**

Sensor Compensation – Effects on Data Quality

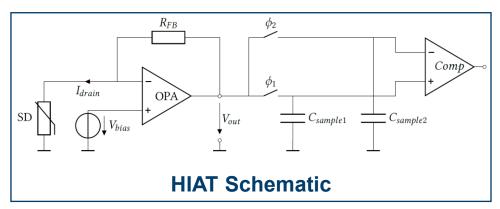

SD is **disturbed** by the **voltages** applied to the DQD gate electrodes


Effect can be mitigated by using virtual gates

- Combination of several physical gates
- Effect of DQD gates on the SD is compensated
- SD signal shows stepwise characteristic
 - → Reduces complexity in signal interpretation

Task: Evaluate if **compensated SD data improves 2D** U-Net model performance and **enables ray-based (RB)** detection

→ Target benchmark: S-DICE ≥ 0.95 on simulated data


Sensor Compensation – Approaches & Optimization

Considered Approaches:

- U-Net
 - Full size & Unet-38k
 - Further reduced-size Variants
 - RB Versions of the smallest U-Nets
- Classical Methods: PhCon+GCanny, First-Order Derivative (FOD) filter
- **HIAT Circuit**: Hardware integrated averaging and thresholding (scalable on-chip detection)

Datasets:

- Simulated with compensated SD
- Simulated with compensated SD & superior data quality (top 10% of parameter range)

Sensor Compensation – Results

Sensor compensation improves detection quality

- ML models improved (U-Net & Unet-38k)
- Models up to 2 orders of magnitude smaller became viable
- Classical approaches improved, but are still inferior

RB detection did not reach the targeted benchmark of S-DICE ≥ 0.95

- ML based RB detection outperforms 2D classical approach
- HIAT not robust enough for local detection

Category	Detector Name	DICE	S-DICE	
2D	U-Net	0.9935	0.9999	
	UNet-38k	0.9906	0.9998	
	UNet-4k	0.9805	0.9979	
	UNet-447	0.9558	0.9884	
	PhCon+GCanny	0.4886	0.9160	
RB	UNet-1k-RB	0.8662	0.9926	
	UNet-179-RB	0.7571	0.8971	
	FOD filter	0.4429	0.8914	
	HIAT	0.3256	0.8861	

Sensor Compensation – Results Superior Data Quality

Superior data quality further improves detection quality

- All 2D ML models achieved optimal S-DICE scores
- Classical approaches improved, but did not match target

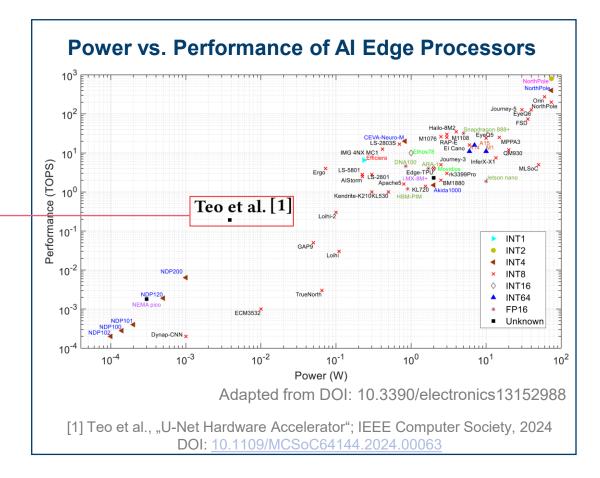
RB detection became viable

- ML based RB detection achieves optimal S-DICE score (Unet-1k-RB)
- Classical variants & HIAT still not robust enough
 - → **HIAT** may perform reliably with further improved data quality and dual averaging times

UNet-447 and UNet-179-RB show declining S-DICE

→ Further downsizing not advisable

Category	Detector Name	DICE	S-DICE	
2D	U-Net	0.9935	0.9999	
	UNet-38k	0.9906	0.9998	
	UNet-4k	0.9805	0.9979	
	UNet-447	0.9558	0.9884	
	PhCon+GCanny	0.4886	0.9160	
RB	UNet-1k-RB	0.8662	0.9926	
	UNet-179-RB	0.7571	0.8971	
	FOD filter	0.4429	0.8914	
	HIAT	0.3256	0.8861	


Energy Efficiency of Scaled Machine Learning Models

Required **Power for Tuning Procedure**:

$$P_{tune} = \frac{N_{ops/csd} \cdot n_{csd}}{E_{unet} \cdot t_{tune}}$$

- $N_{ops/csd}$: number of operations per CSD inference
- $n_{csd} = 10^7$ CSDs (or $6 \cdot 10^7$ ray-based measurements)
- $E_{unet} = 50.62 \left[\frac{TOPS}{W} \right]$
- $t_{tune} = 6h$: time requirement of the tuning procedure

Category	Model	Parameters	FLOPs	Power [W]
2D	U-Net	17,261,825	$1.124 \cdot 10^{10}$	$1.028 \cdot 10^{-1}$
	UNet-38k	38,041	$7.701 \cdot 10^7$	$7.043 \cdot 10^{-4}$
	UNet-4k	4,193	$2.404 \cdot 10^7$	$2.199 \cdot 10^{-4}$
	UNet-447	447	$4.471 \cdot 10^6$	$4.089 \cdot 10^{-5}$
RB	UNet-1k-RB	1,481	$1.374 \cdot 10^7$	$7.855 \cdot 10^{-6}$
	UNet-179-RB	179	$2.207 \cdot 10^6$	$1.262 \cdot 10^{-6}$

Summary

Reliable **SD** compensation is essential for scalable and accurate CT detection

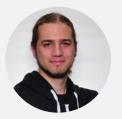
RB approaches are only viable under consistently superior data quality

Category	Model	Power		Data Quality		
			uncompensated, contemporary	compensated SD	compensated SD, superior data quality	
2D	U-Net					
	UNet-38k		*			
	UNet-4k					
	UNet-447			*		
	PhCon+GCanny					
T. F	UNet-1k-RB				*	
	UNet-179-RB					
	FOD filter					
	HIAT					★= Selected Candi

Outlook

Is detection at the millikelvin stage more efficient than transfer?

Category	Model	Power	Data Quality		
			uncompensated, contemporary	compensated SD	compensated SD, superior data quality
2D	U-Net				
	UNet-38k		*		
	UNet-4k				
	UNet-447			*	
	PhCon+GCanny				
RB	UNet-1k-RB				*
	UNet-179-RB				
	FOD filter				
	HIAT				



Acknowledgements

RWTH Aachen University

Quantum Technology Group

(Measurement Data)

Simon Humpohl

Tobias Hangleiter

Till Huckemann

Forschungszentrum Jülich
ICA – Integrated Computing Architectures
(Charge Transition Detection)

Fabian Fuchs

Sarah Fleitmann

Karin Havemann

Benedikt Scherer

Jan Vogelbruch

Jonas Bühler

Lotte Geck

Stefan van Waasen

