001     1047275
005     20251023202111.0
024 7 _ |a 10.34734/FZJ-2025-04196
|2 datacite_doi
037 _ _ |a FZJ-2025-04196
041 _ _ |a English
100 1 _ |a Hader, Fabian
|0 P:(DE-Juel1)170099
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Silicon Quantum Electronics Workshop
|g SiQEW 2025
|c Los Angeles
|d 2025-10-06 - 2025-10-08
|w USA
245 _ _ |a Towards Scalable Cryogenic Charge Transition Detection for Automated Quantum Dot Tuning
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1761203656_20917
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a A scalable platform for quantum computing necessitates the automation of the quantum dot tuning process. One crucial step in this process is the capture of the requisite number of electrons within the quantum dots. This is typically accomplished through the analysis of charge stability diagrams (CSDs), wherein the charge transitions manifest as edges. Therefore, it is imperative to automatically recognize these edges with high reliability. To reduce the amount of data transferred to the room-temperature electronics, it is optimal to integrate this detection locally at the cryogenic stage. Machine learning methods for the charge transition detection necessitate substantial amounts of labelled data for training and testing purposes. Therefore, we developed SimCATS [1], a novel approach to the realistic simulation of such data. It enables the simulation of ideal CSD data, complemented by appropriate sensor responses and distortions. The simulated data facilitates the investigation and training of potential charge transition detection methods. Afterward, the trained detection methods are quantitatively and qualitatively evaluated using simulated and experimentally measured data from a GaAs and a SiGe qubit sample. Subsequent exploration of model size reduction revealed a strong correlation with the complexity of the data analysis task, which was mitigated through the implementation of sensor dot compensation. In conjunction with superior measurement quality, this compensation enables robust and scalable ray-based (1D) charge transition detection. Finally, we estimate the cryogenic power requirements for the application of this approach to a fully automated, one-million-qubit system.
[1] F. Hader et al. Simulation of Charge Stability Diagrams for Automated Tuning Solutions (SimCATS), IEEE Transactions on Quantum Engineering, doi: 10.1109/TQE.2024.3445967 (2024)
[2] F. Hader et al. SimCATS GitHub repository, https://github.com/f-hader/SimCATS (2023)
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
700 1 _ |a Fuchs, Fabian
|0 P:(DE-Juel1)176540
|b 1
700 1 _ |a Fleitmann, Sarah
|0 P:(DE-Juel1)173094
|b 2
|u fzj
700 1 _ |a Havemann, Karin
|0 P:(DE-Juel1)201385
|b 3
|u fzj
700 1 _ |a Scherer, Benedikt
|0 P:(DE-Juel1)173093
|b 4
|u fzj
700 1 _ |a Vogelbruch, Jan-Friedrich
|0 P:(DE-Juel1)133952
|b 5
|u fzj
700 1 _ |a Geck, Lotte
|0 P:(DE-Juel1)169123
|b 6
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 7
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1047275/files/Hader_TowardsScalableCryogenicChargeTransitionDetectionForAutomatedQuantumDotTuning.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047275
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)170099
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173094
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)201385
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)173093
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)169123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Integrated Computing Architectures
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21