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Motivation Refinement with Sensor Compensation
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Bottlenecks: CSD using virtual gates:
* Reliable detection of charge transitions « Combination of several

In charge stabllity diagrams (CSDs) physical gates T 13 T 123
« Limited bandwidth for transferring l « Effect of DQD gates on - < -1

raw measurement data to room temperature | < the SD is compensated 5 .

- SD signal shows stepwise |5 . | | | 5L | |
- Solution: automation must be lightweight, T od4z 018 characteristic e
ggnerallzable, and |mplemented PV . Reduceg Interpretation Uncompensated Compensated
directly at the cryogenic stage Charge Transitions complexity

Automated Charge Transition Detection Results with Sensor Compensation
Investigated Approaches: Dice Similarity Coefficient for evaluation: DICE = lz)lirm;'
« Classical (gradient, phase-congruency, and mixed) i
« Machine learning (convolution-, transformer-, Surface Dice (S-DICE) allows deviation

state-space-model-, and diffusion-based) from exact segmentation
CSD Data: Target benchmark: S-DICE = 0.95 on simulated data DICE Calculation

 Training: 10° simulated CSDs (SIimCATS model [1])

» Validation: simulated + experimental CSDs [2] S-DICE (threshold=2)

Contemporary* Superior* Data

CSD Ground Truth Swin-Unet = VM-UNet U-Net UNet-38k Category Name Type Data Quality Quality

ks Unet-38k ML (CNN) 0.9944 0.9998

(Y

E Unet-4k ML (CNN) 0.9884 0.9979

n D Unet-447 ML (CNN) 0.9474 0.9884

k> PhCon+GCanny Classical 0.8673 0.9160

= Ray- Unet-1k-RB ML (CNN) 0.8903 0.9926

&

n Based Unet-179-RB ML (CNN) 0.8229 0.8971

* “Contemporary quality” denotes the distributions of distortions and sensor sensitivities extracted from the

< GaAs sample and applied in the simulations of [3]. “Superior quality” indicates that these distributions were

{8 restricted to the top 10% of the observed values

p Energy Efficiency of Scaled ML Models

» Required power for tuning procedure:

Detector |\Iops/csd I:)tune [W]
_ p _ Nops/csd "Nesd
Observations: tune = T Unet-38k  7.701-107 7.043-10*
] ] ] ] ] unet tune

. Algorlthms tralhed on simulated data can generalize to experimental data Unetak  2404.10" N
« U-Net like architectures performed best E, .. =50.62 [&be‘] U-Net accelerator efficiency [4]

« Diffusion-based approaches too complex for hardware implementation Unet-447  4.471-10° 4.089-107°

. . . N : number of operations per CSD inference
 Convolution based architectures are sufficient ops/csd P p

Unet-1k-RB  1.374 - 107 7.855-107°

. . . — 7
« Tiny versions (e.g. UNet-38k) show competitive results Nesq = 107 CSDs (or 6 - 107 ray-based measurements) 6 >
—>Hardware integration requires further reduction trune = 6h: time requirement of the tuning procedure ~ YUnet-179-RB 2.207-10% 1.262 - 10
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Full charge state tuning
Precise assessment of cryogenic limits: heat, wiring, data transfer

- Define the partition between cryo and room-temperature processing Integrated Computing
Architectures (ICA)

www.ica.fz-juelich.de

- Pursue multi-purpose ML architectures optimized via NAS/HPO

- Build hardware demonstrator to evaluate performance
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