# Towards Scalable Cryogenic Charge Transition Detection for Automated Quantum Dot Tuning

Fabian Hader<sup>1</sup>, F. Fuchs<sup>1</sup>, S. Fleitmann<sup>1</sup>, K. Havemann<sup>1</sup>, B. Scherer<sup>1</sup>, J. Vogelbruch<sup>1</sup>, L. Geck<sup>1,2</sup>, S. van Waasen<sup>1,3</sup>

- <sup>1</sup> Peter Grünberg Institute Integrated Computing Architectures (ICA | PGI-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- <sup>2</sup> System Engineering for Quantum Computing, Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, 52062 Aachen, Germany
- <sup>3</sup> Faculty of Engineering Communication Systems, University of Duisburg-Essen, 47057 Duisburg, Germany

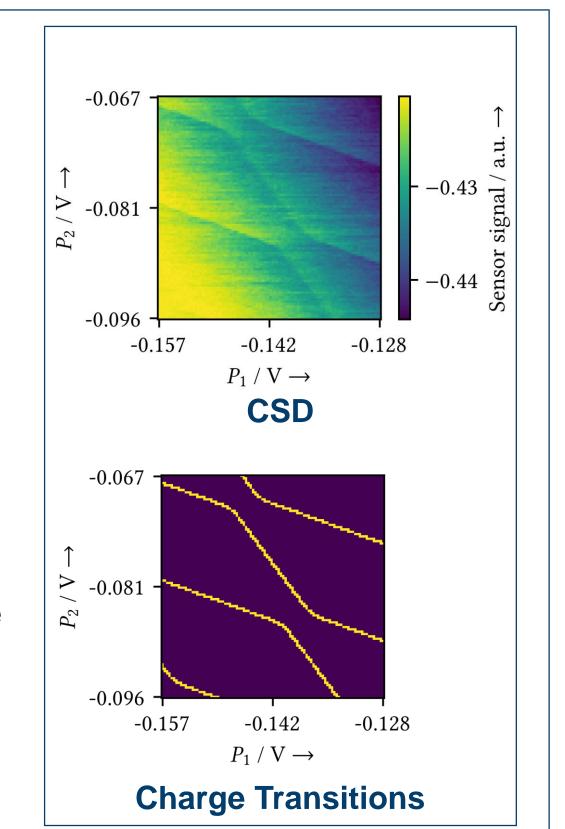
#### **Motivation**

Quantum dot qubits are controlled via electrostatic gate voltages

Scaling to a million-qubit processor requires automated tuning

#### **Bottlenecks:**

- Reliable detection of charge transitions in charge stability diagrams (CSDs)
- Limited bandwidth for transferring raw measurement data to room temperature
- automation must be lightweight, → Solution: generalizable, and implemented directly at the cryogenic stage

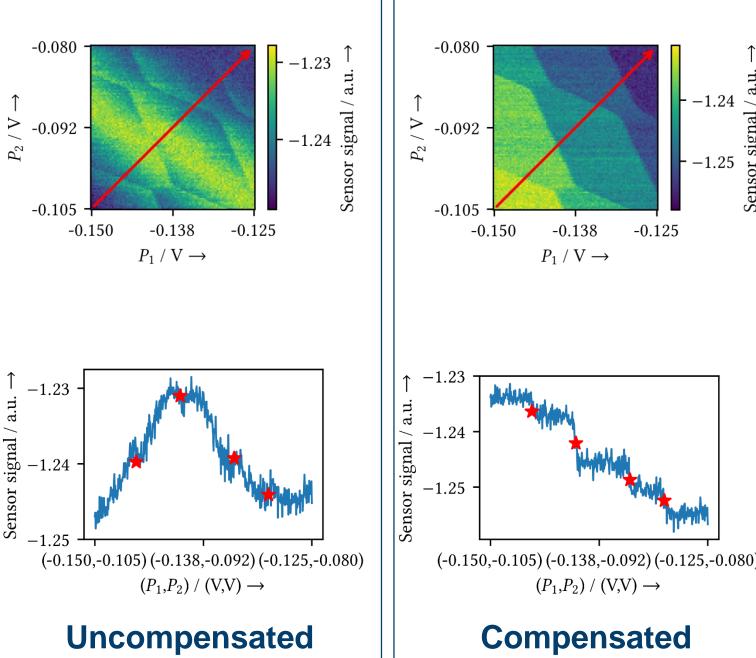


#### Refinement with Sensor Compensation

Sensor dot (SD) is disturbed by the voltages applied to the double quantum dot (DQD) gate electrodes

#### Effect can be mitigated by using virtual gates:

- Combination of several physical gates
- Effect of DQD gates on the SD is compensated
- SD signal shows stepwise characteristic
  - Reduces interpretation complexity



# Compensated

### **Automated Charge Transition Detection**

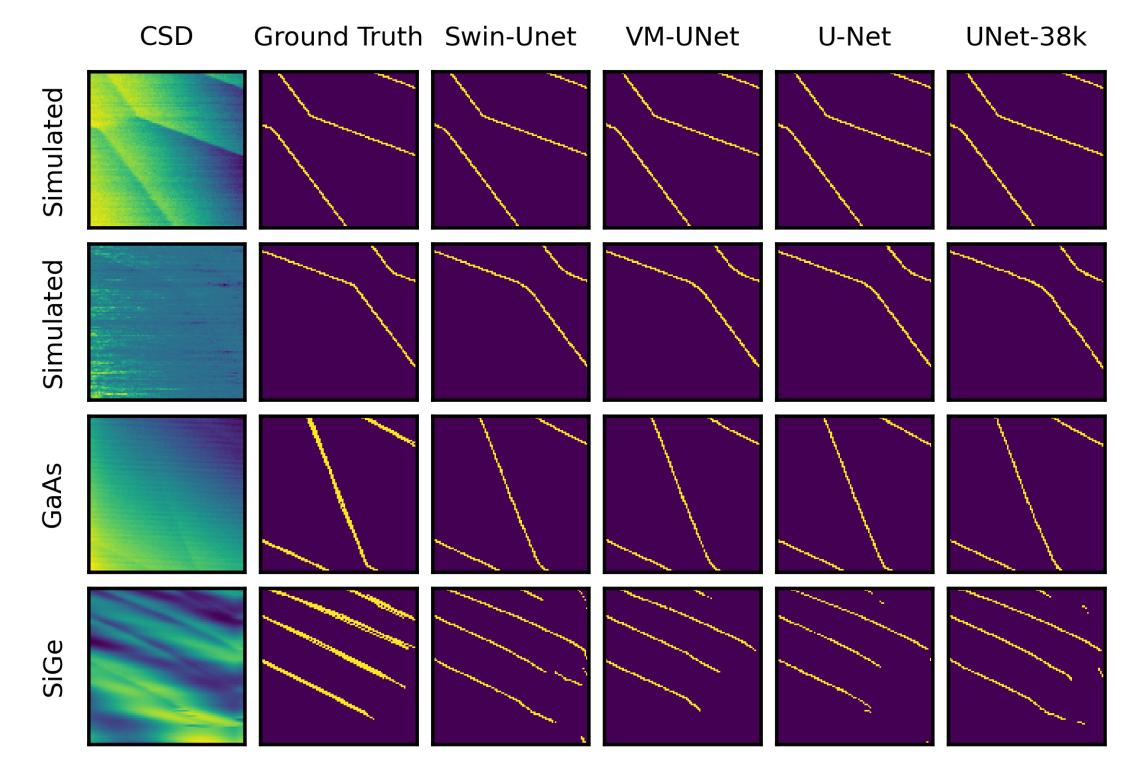
#### **Investigated Approaches:**

- Classical (gradient, phase-congruency, and mixed)
- Machine learning (convolution-, transformer-, state-space-model-, and diffusion-based)



#### **CSD Data:**

- Training: 10<sup>6</sup> simulated CSDs (SimCATS model [1])
- Validation: simulated + experimental CSDs [2]



#### **Observations:**

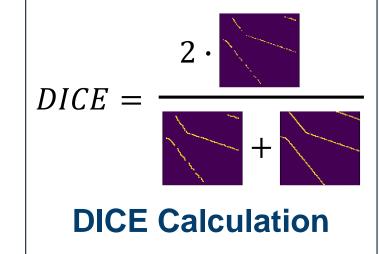
- Algorithms trained on simulated data can generalize to experimental data
- U-Net like architectures performed best
- Diffusion-based approaches too complex for hardware implementation
- Convolution based architectures are sufficient
- Tiny versions (e.g. UNet-38k) show competitive results → Hardware integration requires further reduction

## **Results with Sensor Compensation**

Dice Similarity Coefficient for evaluation:  $DICE = \frac{2|X \cap Y|}{|X| + |Y|}$ 

Surface Dice (S-DICE) allows deviation from exact segmentation

Target benchmark: S-DICE ≥ 0.95 on simulated data



| Detector      |              |           | S-DICE (threshold=2)       |                           |
|---------------|--------------|-----------|----------------------------|---------------------------|
| Category      | Name         | Type      | Contemporary* Data Quality | Superior* Data<br>Quality |
|               | Unet-38k     | ML (CNN)  | 0.9944                     | 0.9998                    |
|               | Unet-4k      | ML (CNN)  | 0.9884                     | 0.9979                    |
| 2D            | Unet-447     | ML (CNN)  | 0.9474                     | 0.9884                    |
|               | PhCon+GCanny | Classical | 0.8673                     | 0.9160                    |
| Ray-<br>Based | Unet-1k-RB   | ML (CNN)  | 0.8903                     | 0.9926                    |
|               | Unet-179-RB  | ML (CNN)  | 0.8229                     | 0.8971                    |

\* "Contemporary quality" denotes the distributions of distortions and sensor sensitivities extracted from the GaAs sample and applied in the simulations of [3]. "Superior quality" indicates that these distributions were restricted to the top 10% of the observed values

# **Energy Efficiency of Scaled ML Models**

Required power for tuning procedure:

$$P_{tune} = \frac{N_{ops/csd} \cdot n_{csd}}{E_{unet} \cdot t_{tune}}$$

 $E_{unet} = 50.62 \left[ \frac{TOPS}{W} \right]$ : U-Net accelerator efficiency [4]

 $N_{ops/csd}$ : number of operations per CSD inference  $n_{csd} = 10^7$  CSDs (or  $6 \cdot 10^7$  ray-based measurements)

 $t_{tune} = 6h$ : time requirement of the tuning procedure

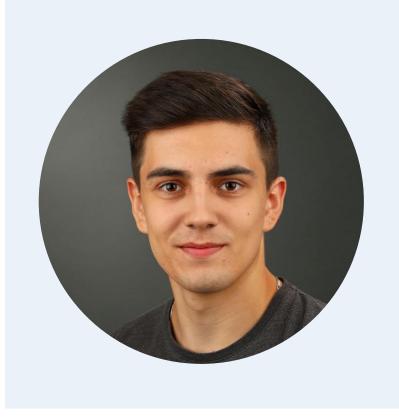
| Detector    | N <sub>ops/csd</sub> | P <sub>tune</sub> [W] |  |
|-------------|----------------------|-----------------------|--|
| Unet-38k    | $7.701 \cdot 10^7$   | $7.043 \cdot 10^{-4}$ |  |
| Unet-4k     | $2.404 \cdot 10^{7}$ | $2.199 \cdot 10^{-4}$ |  |
| Unet-447    | $4.471 \cdot 10^6$   | $4.089 \cdot 10^{-5}$ |  |
| Unet-1k-RB  | $1.374\cdot 10^7$    | $7.855 \cdot 10^{-6}$ |  |
| Unet-179-RB | $2.207 \cdot 10^6$   | $1.262 \cdot 10^{-6}$ |  |

#### Outlook

#### Full charge state tuning

Precise assessment of cryogenic limits: heat, wiring, data transfer

- → Define the partition between cryo and room-temperature processing
- → Pursue multi-purpose ML architectures optimized via NAS/HPO
- → Build hardware demonstrator to evaluate performance



**Fabian António Hader** f.hader@fz-juelich.de www.fz-juelich.de/profile/hader\_f

> **Integrated Computing Architectures (ICA)** www.ica.fz-juelich.de



F. Hader et al., "Simulation of Charge Stability Diagrams for Automated Tuning Solutions (SimCATS)," in IEEE Transactions on Quantum Engineering, doi: 10.1109/TQE.2024.3445967

Provided by the Quantum Technology Group of RWTH Aachen (www.quantuminfo.physik.rwth-aachen.de/cms/quantuminfo/forschung/~xwpl/quantum-technology-group) F. Hader et al., "Automated Charge Transition Detection in Quantum Dot Charge Stability Diagrams," in IEEE Transactions on Quantum Engineering, doi: 10.1109/TQE.2025.3596392

T. Hui Teo et al., "U-Net Hardware Accelerator". In: 2024 IEEE 17th International Symposium on Embedded Multicore/Manycore Systems-on-Chip (MCSoC), doi: 10.1109/MCSoC64144.2024.00063