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A B S T R A C T

Machine learning (ML) applications have shown potential in analyzing complex patterns in additively manu
factured (AMed) structures. Metal matrix composites (MMC) offer the potential to enhance functional parts 
through a metal matrix and reinforcement particles. However, their processing can induce several co-existing 
anomalies in the microstructure, which are difficult to analyze through optical metallography. Scanning elec
tron microscopy (SEM) can better highlight the degradation of reinforcement particles, but the analysis can be 
labor-intensive, time-consuming, and highly dependent on expert knowledge. Deep learning-based semantic 
segmentation has the potential to expedite the analysis of SEM images and hence support their characterization 
in the industry. This capability is particularly desired for rapid and precise quantification of defect features from 
the SEM images. In this study, key state-of-the-art semantic segmentation methods from self-attention-based 
vision transformers (ViTs) are investigated for their segmentation performance on SEM images with a focus 
on segmenting defect pixels. Specifically, SegFormer, MaskFormer, Mask2Former, UPerNet, DPT, Segmenter, and 
SETR models were evaluated. A reference fully convolutional model, DeepLabV3+, widely used on semantic 
segmentation tasks, is also included in the comparison. A SEM dataset representing AMed MMCs was generated 
through extensive experimentation and is made available in this work. Our comparison shows that several 
transformer-based models perform better than the reference CNN model with UPerNet (94.33 % carbide dilution 
accuracy) and SegFormer (93.46 % carbide dilution accuracy) consistently outperformed the other models in 
segmenting damage to the carbide particles in the SEM images. The findings on the validation and test sets 
highlight the most frequent misclassification errors at the boundaries of defective and defect-free pixels. The 
models were also evaluated based on their prediction confidence as a practical measure to support decision- 
making and model selection. As a result, the UPerNet model with the Swin backbone is recommended for seg
menting SEM images from AMed MMCs in scenarios where accuracy and robustness are desired whereas the 
SegFormer model is recommended for its lighter design and competitive performance. In the future, the analysis 
can be extended by including higher capacity as well as smaller models in the comparison. Similarly, variations 
in specific hyperparameters can be investigated to reinforce the rationale of selecting a specific configuration.

1. Introduction

Additive manufacturing (AM) or 3D printing is a layer-based 

fabrication technique [1]. Metal AM can realize fully dense metallic 
structures, thus offering the potential to compete with conventional 
manufacturing in industry. Some AM techniques, such as directed 

* Corresponding author.
E-mail address: yaoyao.zhao@mcgill.ca (Y.F. Zhao). 

Contents lists available at ScienceDirect

Materials Characterization

journal homepage: www.elsevier.com/locate/matchar

https://doi.org/10.1016/j.matchar.2025.115645
Received 8 July 2025; Received in revised form 26 September 2025; Accepted 7 October 2025  

Materials Characterization 229 (2025) 115645 

Available online 10 October 2025 
1044-5803/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:yaoyao.zhao@mcgill.ca
www.sciencedirect.com/science/journal/10445803
https://www.elsevier.com/locate/matchar
https://doi.org/10.1016/j.matchar.2025.115645
https://doi.org/10.1016/j.matchar.2025.115645
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


energy deposition (DED), offer freedom in depositing materials, thereby 
enabling the repair of components and the manufacture of hybrid 
products, as well as the enhancement of functional parts with changing 
chemistry and/or mechanical properties [2]. The capability to enhance 
parts has wide-ranging applications in the industry. For instance, DED 
processing of metal matrix composites (MMCs) can lead to wear- 
resistant overlays on functional parts and tools [3]. MMCs are engi
neered composite materials with a metal matrix integrated with one or 
more reinforcement particles [4,5]. These composites leverage the ad
vantageous characteristics of metals, such as toughness and ductility, 
alongside the reinforcing properties of the added materials, such as 
stiffness and strength. MMCs are highly valued for their exceptional 
strength-to-weight ratio, wear resistance, and performance at elevated 
temperatures. However, the production of MMCs, such as nickel tung
sten carbide (Ni-WC) overlays on steel substrates, poses significant 
challenges [6]. While these composites can significantly enhance the 
wear resistance of components used in several sectors (e.g., agriculture, 
automotive, mining, and aerospace), their development requires inten
sive optimization of the key process parameters and iterative adjustment 
to meet the specific needs of part geometries [7].

Metallographic characterization is an essential tool to process 
development as it can reveal the constituents in materials’ structure, 
enabling the evaluation of their properties [8,9]. The individual con
stituents in the microstructure of DED-based Ni-WC MMCs complement 
each other by reducing material wastage, while allowing reasonable 
plastic deformation. In addition to the metal matrix and reinforcement 
carbides, the deposited structures can also contain defects related to the 
processing conditions (e.g., porosities, cracks, dissolved carbides, poor 
carbide distribution) [10]. Therefore, it is essential to quantitatively 
evaluate printed structures and characterize parameter adjustments 
needed for the numerous key process variables. This evaluation is usu
ally accomplished in the industry through optical metallography, as it 
highlights the distribution of carbide particles in the matrix and certain 
processing defects (e.g., porosity). High thermal conditions also lead to 
degradation of the reinforcement carbide particles, which is usually 
reflected by partially diluted carbides and reprecipitated hard phases in 
the matrix.

Dilution band represents the rim region around a carbide particle in 
which elevated thermal exposure partially dissolves the original spher
ical WC particle, producing a contrast-visible zone that reflects rein
forcement degradation. Reprecipitated carbides represent fine 
secondary carbide phases that form within the matrix during cooling/ 
solidification after partial dissolution of the original WC particles. 
Reprecipitated carbides can appear as dispersed hard particles locally or 
across the matrix. Optical microscopy is limited in distinguishing these 
phases of degraded carbides. On the other hand, scanning electron mi
croscopy (SEM) is better suited to analyze these constituents owing to 
the shorter wavelength of electrons enabling higher magnifications and 
resolutions as well as highlighting compositional changes [11]. How
ever, the characterization of SEM-generated samples can be slow, labor- 
intensive, and dependent on expert knowledge, which makes it chal
lenging to meet the industrial requirements of high throughput quanti
tative and accurate metallography.

Additively manufactured (AMed) microstructures can be evaluated 
and analyzed using various methods [12]. Traditional manual tech
niques for characterizing and identifying the constituents of these mi
crostructures are prevalent in industrial settings. Although such 
techniques can produce detailed analyses, these methods are notably 
labor-intensive and time-consuming. Alternatively, computer-assisted 
or semi-automated techniques can accelerate the evaluation process, 
but demand consistent effort for each new analysis [13]. Consequently, 
there has been a shift toward employing image-processing or computer 
vision (CV) techniques to fully automate microstructural quantification. 
These approaches span a range from basic to highly complex, based on 
the algorithms’ sophistication. Despite their utility, CV methods often 
struggle with generalizing across different contexts and often fail to 

accommodate the characteristic variability in AMed micrographs [14].
Semantic segmentation, also known as dense or pixel-level predic

tion, is a process for classifying image pixels and is widely utilized in 
various fields, such as autonomous vehicles, medical diagnostics, ro
botics, and object identification [15]. Traditionally, machine learning 
(ML) models employed for this task have relied on established con
volutional neural network (CNN) based frameworks and architectures. 
These models, including architectures like U-Nets, are recognized for 
accurately delineating distinct regions within images by clustering at the 
pixel level [16]. Although U-Net architectures are prevalent, the ML 
community has recently explored the application of cutting-edge vision 
transformers (ViTs) to semantic segmentation, achieving comparably 
robust performance [17]. This progression underscores the imperative 
to enhance precision, tailor models to specific domains, broaden 
generalization capabilities and create high-quality annotated datasets.

This work aims to evaluate state-of-the-art ViTs for their capability to 
segment SEM images from AMed Ni-WC MMC structures, while also 
comparing the ViTs against a reference CNN architecture. Although 
CNNs and ViTs have been shown to be effective for a range of segmen
tation tasks, these models also suffer from domain-specific challenges. 
Engineering applications of artificial intelligence (AI) face issues of data 
imbalance and quality. Industrial deployment requires that ML models 
be lightweight and robust to changing data distributions. To support the 
requirement of high throughput quantitative metallography for SEM 
images generated through the analysis of AMed Ni-WC MMCs, this work 
contributes to the following: 

- An open-source annotated SEM dataset from AMed Ni-WC MMC 
metallographs, as well as an open-source codebase for 
reproducibility

- An investigation of seven state-of-the-art ViT architectures to quan
titatively analyze SEM images from AMed Ni-WC MMC using se
mantic segmentation

- A comparison between a reference CNN architecture and evaluated 
ViTs for insights on complementary or superior segmentation capa
bilities of each category

- Findings on the impact of encoder variations, model category, model 
size, as well as pixel categories on segmentation performance

- Recommendations for industrial deployment grounded in practical 
considerations of model size and prediction confidence

The rest of this paper is arranged into background discussions on 
semantic segmentation and their AM applications (Section 2), dataset 
introduction (Section 3), segmentation architectures with ViT back
bones (Section 4), training experiments (Section 5), discussions with 
findings (Section 6), and conclusions including suggestions for future 
works (Section 7).

2. Semantic segmentation and AM applications

Semantic segmentation models work at the pixel level by predicting 
the labels and grouping them to highlight the regions of interest [18]. 
Standard CV algorithms can also accomplish this task reasonably, but 
these models struggle with generalization. This section is constrained to 
ML-based semantic segmentation and consists of two parts.

The first part provides a concise overview of the development and 
advancement of ML-based semantic segmentation algorithms, beginning 
with the basic fully convolutional networks and U-Net models and 
concluding with the most current state of the broader domain. The 
subsequent part emphasizes the applications of semantic segmentation 
in AM by addressing recent advancements, as well as by identifying 
ongoing research efforts.

2.1. ML-based semantic segmentation

The capacity to delineate information within images on a pixel-by- 
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pixel basis has been incorporated into ML models through various ap
proaches. Fully convolutional networks (FCNs) marked a significant 
shift in developing ML-driven semantic segmentation models [19]. 
These networks adapted conventional CNN architectures to execute the 
task of semantic segmentation. In FCNs, fully connected layers were 
completely substituted by convolutional layers to preserve spatial re
lations, facilitating seamless end-to-end segmentation across images of 
any size. A notable model within this category was introduced by Long 
et al. [19], which featured a skip architecture that effectively restored 
information lost during the down-sampling process. Upon its introduc
tion, their model demonstrated remarkable performance on the PASCAL 
VOC dataset, surpassing existing benchmarks [20].

The subsequent phase in developing semantic segmentation models 
was marked by the introduction of encoder-decoder structures, exem
plified by the U-Net series. These models were designed to retain 
detailed information through skip connections. Ronneberger et al. [16] 
provided a seminal architecture in this category. The encoder was 
designed for contraction, capturing the contextual details of the pixels, 
whereas the decoder focused on expansion, allowing for precise locali
zation. Additionally, the architecture utilized skip connections linking 
the contractive and expansive components, enhancing the model’s ac
curacy in pixel segmentation. Initially developed for medical imaging, 
this model has since become a standard in various other fields due to its 
effectiveness and remains widely adopted.

Building on the success of deep convolutional models for semantic 
segmentation, Chen et al. [21] combined a CNN trained for capturing a 
certain level of feature representation with a fully connected conditional 
random field (CRF) for refining the segmentation results from the CNN. 
The addition of CRF considered the dependencies and context of pixels 
that helped refine the results from CNN. The architecture is referred to as 
DeepLab, and improvements through research have led to several vari
ants of the architecture (e.g., versions v1, v2, v3, v3+). At the time of 
their work, the hybrid approach of combining CNN with fully connected 
CRF achieved state-of-the-art results on semantic segmentation tasks.

Sultana et al. [22] conducted a comprehensive review and analysis of 
semantic segmentation models that relied on convolution-based tech
niques before ViTs emerged for image segmentation tasks. They cate
gorized CNN-based semantic segmentation models into five principal 
architectural frameworks: (i) networks composed entirely of convolu
tional layers, (ii) networks incorporating dilated/atrous convolutions, 
(iii) networks employing a top-down/bottom-up strategy, (iv) networks 
that integrate global contextual information, and (v) networks that 
enhance the receptive field and incorporate multi-scale context. Notable 
examples within these categories include (i) FCN, (ii) DilatedNet and 
DeepLab, (iii) Deconvnet, U-Net, SegNet, FC-DenseNet, (iv) ParseNet, 
GCN, and EncNet, and (v) DeepLabV2, DeepLabV3, PSPNet, and Gated- 
SCNN. Their analysis offers an extensive overview of the field by 
providing a detailed comparison of these architectures and their 
respective advantages and limitations. Readers are encouraged to refer 
to their review for a more detailed examination [22].

The introduction of transformers and their extension to vision data 
have paved the way for their application to image semantic segmenta
tion tasks. Transformer models are built upon the self-attention mech
anism, which enables parallel data processing and the capture of long- 
range dependencies. This key attention feature allows transformers to 
selectively focus on relevant information, marking a substantial shift 
from the sequential processing typical of earlier natural language pro
cessing (NLP) models. Dosovitskiy et al. [23] extended the self-attention 
mechanism to visual data by representing an image as a series of tokens 
from 2D patches. This adaptation has recently prompted interest in 
applying self-attention mechanisms to vision-related tasks. The initial 
implementation of ViTs in semantic segmentation was introduced by 
Zheng et al. [24] in their segmentation transformer (SETR) model, 
which employs a pure transformer instead of the traditional encoder, 
systematically reducing the spatial resolution of inputs. Since then, 
several ViT architectures for semantic segmentation have been 

developed. Thisanke et al. [17] provide a detailed review and compar
ison of significant ViT architectures used in semantic segmentation. 
Their review offers insights into the increasing applications of ViTs in 
this field.

The latest research in CV for semantic segmentation tasks continues 
to be guided by the needs of specific domains, efficient architectures, 
and data challenges. The following section discusses the applications of 
semantic segmentation in AM, the domain of interest for the current 
work.

2.2. Applications of semantic segmentation in additive manufacturing

AM technology is rapidly progressing toward industrial maturity. 
The freedom in deposition mechanisms and material compositions en
ables the development of new materials whose microstructure brings 
unique challenges (e.g., segmentation of processing defects). Integrating 
AI theory and ML applications with AM has expedited its development. 
These applications are well documented in the open literature [25]. The 
AM contexts to ML solutions cover a broad spectrum of data modalities 
and information representations [26]. Among other applications, se
mantic segmentation is of interest to the data-driven AM community for 
in-process and post-process evaluation of quality for the deposited ma
terial by investigating macro and microstructures. As a result, several 
applications of image semantic segmentation models already exist in 
AM, both for 2D and 3D data representation captured at different stages 
(e.g., in-situ, ex-situ) of the AM process flow.

Applications of semantic segmentation in AM are predominantly 
focused on in-process datasets (e.g., monitoring) and post-process 
datasets (e.g., evaluation). In-process applications aim to swiftly iden
tify defects and irregularities during manufacturing by segmenting the 
relevant pixels. Scime et al. [27] designed a CNN-based semantic seg
mentation architecture named dynamic segmentation CNN (DSCNN). 
This model was designed for real-time segmentation at the native res
olution of both visible-light and infrared imaging systems and is 
adaptable across different machines, process technologies, and sensing 
systems. Moreover, recent efforts in semantic segmentation within AM 
have also concentrated on anomaly detection of powder beds in selective 
laser sintering processes [28]. Other in-process applications involve 
image segmentation under varying printing conditions of fused filament 
fabrication processes [29] and segmenting areas of interest from in-situ 
sensing representations [30]. A recent development in semantic seg
mentation for in-situ defect detection addresses the challenge of 
imbalanced datasets. Wang [31] introduced a class-aware semantic 
contrast and attention amalgamation model tailored explicitly for se
mantic segmentation. The proposed model demonstrated effective per
formance in scenarios with data imbalance.

Semantic segmentation techniques are also gaining traction for post- 
process datasets in AM as they facilitate rapid structure evaluation. 
These techniques are of particular interest within the data-driven AM 
community, as they enable the quantification of multi-scale features (e. 
g., macro, meso, micro), which are crucial for quality assessments. Scott 
et al. [11] integrated SEM images with synthetic thermal tomography 
images using a common U-Net encoder. This network segmented defects 
in the usual manner and classified their parameters by leveraging the 
encoded features for a subsequent fully connected network. Their 
approach enhanced the segmentation of thermal tomography results by 
incorporating SEM images. It led to superior performance compared to 
traditional methods. However, it did not address data scarcity and class 
imbalance challenges.

Similarly, Rose et al. [13] implemented a convolution-based se
mantic segmentation model to automate the segmentation of NiCrBSi- 
WC MMC metallographic images. This model specifically segmented 
carbide particles whilst designating the matrix as the background. 
Although their research utilizes the same MMC as the current work, their 
approach was limited to binary segmentation. It did not tackle class 
imbalances in AMed optical metallographs, which was addressed in a 
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recent work [10]. To the best of the authors’ knowledge, no approach in 
the open literature has yet focused on addressing challenges associated 
with SEM images from Ni-WC MMCs, such as segmenting diluted and 
reprecipitated carbides, representing anomalies of the processing con
ditions [32].

Recent advancements in the segmentation of AMed metallographic 
images have seen the adoption of ensemble methods to address the 
complexities of segmenting multi-phase materials. Luengo et al. [33] 

conducted detailed investigations using CNN-based architectures on 
their publicly available MetalDAM SEM dataset, introduced alongside 
their study. They developed an ensemble model tailored for semantic 
segmentation tasks, where their stacking-based approach demonstrated 
superior performance compared to the individual models. In parallel, 
Biswas et al. [34] developed an ensemble comprising three dilated, 
attention-guided U-Net models. The outputs of these models were 
combined pixel-by-pixel to construct the final segmentation mask. While 

Fig. 1. Steps to prepare SEM images for additively deposited Ni-WC MMC powder on steel substrate.

Carbide Particles Matrix

Fig. 2. Stitched panoramic sample cross-section based on optical microscopy. The lower portion of the figure shows an overlaid ground truth mask. Carbide particles 
and the surrounding matrix are highlighted owing to their relevance to this analysis. Optical microscopy does not effectively highlight the damage to reinforcement 
carbide particles from higher thermal conditions during processing.
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both ensemble strategies yielded encouraging results, these did not 
include the minority and challenging-to-segment precipitate class 
within their predictions. These applications were also aimed at optical 
microscopy images of AMed structures.

The applications of semantic segmentation in AM are mostly limited 
to fully CNNs, while transformer architectures are gaining traction due 
to their global context modeling and flexibility, necessitating a sys
tematic investigation of key ViT architectures and associated methods. 
Moreover, there is a need to generate material specific datasets to 
accelerate engineering applications of AI in AM. The current work 
covers these gaps through segmenting SEM images and quantitatively 
analyzing anomalies of AMed MMC structures to optimize the process
ing parameters by limiting damage to reinforcement particles (diluted 
carbides and reprecipitated hard phases in SEM).

3. SEM dataset generation

The SEM images presented in this study were obtained through DED- 
based processing of Ni-WC MMC powders. Fig. 1 shows the major phases 
of the processing pipeline for SEM dataset generation, starting with the 
deposition process (Phase A).

The DED system consisted of a 6-kW fiber laser, a twin-disk powder 
feeder, and a modified milling platform for substrate positioning. Before 

conducting the experiments, the laser was calibrated using a beam 
profiler to attain the optimal spot size (approximately 5.5 mm) suitable 
for wear-resistant overlay applications of Ni-WC MMCs. Additionally, 
the powder feed rate was precisely adjusted to within a tolerance of ±1 
g/min by modifying the hopper’s rotational speed. Following the cali
bration phase, the system was prepared for the experimental trials. Steel 
substrates were first milled and marked with reference lines aligned with 
the deposition direction at 0, 25 %, 50 %, 75 %, and 100 % along the 
deposition length (e.g., 200 mm). These reference lines facilitated the 
correlation of sensor data with metallographic evaluations. Subse
quently, the test plates underwent cleaning with acetone and were 
preheated using a propane torch to temperatures exceeding 260 ◦C. 
After preheating, the plates were allowed to cool to approximately 
260 ◦C to enhance deposition quality. Any oxides that formed on the 
plate surfaces during preheating were removed using a wire wheel. The 
deposition head was then positioned at the starting point, and the 
appropriate nozzle spacing was established before depositing the beads 
on the steel substrates.

For the metallographic examination of individual beads within the 
dataset, the beads were sectioned perpendicular to the deposition di
rection (Phase B in Fig. 1). The sectioned samples were subsequently 
embedded in Bakelite to facilitate the metallographic analysis. Post- 
embedding, the samples underwent a series of grinding steps using 
progressively finer SiC papers (80 grit, 120 grit, 220 grit, 500 grit, and 
1200 grit) to achieve a flat, smooth surface and minimize the grinding 
artifacts. The grinding and polishing of the samples were performed 
using the Saphir 550 grinding and polishing system manufactured by 
ATM Qness GmbH. This equipment maintained a consistent applied 
force of 200 N for each abrasive grain over two minutes. Following the 
grinding process, the samples were polished for eight minutes under a 
force of 25 N to eliminate any residual grinding marks. To make the 
heat-affected zone (HAZ) in the cross-section more noticeable, the 
samples were etched with Nital (approximately 3 % nitric acid in 
ethanol) for ten seconds and subsequently cleaned with ethanol to 
remove any etching residues. The prepared samples were then examined 
using an Olympus BX53M microscope at a magnification of 10× (Phase 
C in Fig. 1). Optical microscopic images were automatically captured 
using Olympus Stream Motion software, which employed an autofocus 
and stitching technique to achieve a resolution of 0.97 μm per pixel. A 
typical resulting cross-section is shown in Fig. 2 alongside the labeled 
ground truth.

A subset of samples was identified for SEM analysis, and the analysis 
was carried out on JEOL-JCM 7000 NeoScope Benchtop SEM (Phase D in 
Fig. 1). Specifically, during optical microscopy, the samples with 
premise for having diluted and reprecipitated carbide particles were 
selected for further investigation with SEM. Each selected sample was 
first individually mounted on the stage of the SEM, and an electrically 
conductive, non-porous carbon tape was used to act as a conducting path 
to prevent electric charge buildup on the sample surface (which would 
lower the image quality/resolution). The SEM chamber was then evac
uated to establish high vacuum conditions. When applicable, the view 
was adjusted to visualize the samples in the correct orientation with the 
bead reinforcement area set upside. Manual adjustment for visual con
ditions was preferred over automatic focus as it provided better results 
at the expense of effort. The low-angle detector C of backscattered 
electrons (BED–C) was found to work best for obtaining compositional 
images of the cross-section under focus, though different signals were 
tested. The landing voltage and working distance were fixed at 15.0 kV 
and 12.8 mm, respectively. All samples were analyzed across a range of 
magnification levels (270×, 500×, 600×, 700×, 800×, 1000×), and 
subsequently, the images were recorded for ML modeling. Out of the 
analyzed cross-sections, sample #29 led to the most representative 
carbide defects and was selected for the subsequent modeling. The main 
objective of ML is to assist with high throughput and accurate quanti
tative metallography. Therefore, labeled higher magnification images 
(1000×, 800×, 700×) were used for training while validating and 

Dilution Band

Reprecipitated Carbides

Fig. 3. A sample image from the SEM analysis captured with a BED-C signal at 
1000× magnification. At the bottom, a labeled ground truth mask highlights 
the dilution band and reprecipitated carbide particles. These two phases 
highlight damage to the reinforcing carbide particles, and their quantification 
can support decision-making during the process development.
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testing the models at lower magnification (600×) to mimic real-world 
SEM analysis.

Fig. 2 shows an optical microscopy image for a sample cross-section. 
The phases of interest are labeled in the sample and highlighted in the 
overlaid mask. Among these, carbide presence is of particular interest as 
it determines the quality of overlayed deposition for functional parts. 
While optical microscopy has significance for efficiently evaluating the 
quality of depositions for practical applications, it is difficult to visualize 
the carbide degradations and quantify their presence. Fig. 3 shows a 
sample SEM image from a deposited cross-section. The unique phases 

are labeled and represented by the overlaid mask. The carbide dilution 
band and reprecipitated carbides are highlighted, as these two are 
closely related to the anomalies of the processing parameters at higher 
thermal conditions.

The melting and subsequent re-solidification of the Ni-Cr-B-Si ma
trix, which contains substantial quantities of tungsten and carbon, 
induce significant modifications in the carbide morphology. These 
structural changes result in a considerable reduction in the abrasion 
resistance as well as the impact toughness. Since tungsten carbide is the 
primary wear-resistant component within the MMC, it is critical to 

Fig. 4. Web-based Supervisely interface. Among other features, the interface allows adjustment to enable per-pixel labeling through the brush tool.

Brightness 0.2 Brightness 0.3 Contrast 0.3 Contrast 0.4Original

Elastic 
Transform

Grid 
Distortion
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Flip

Random 
Rotate

Vertical      
Flip

Fig. 5. Original and augmented crops on a sample input image from the SEM dataset.
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minimize any thermal degradation of this carbide. The proportion of 
undamaged tungsten carbide in the deposit is the most critical factor in 
determining the relative performance of the deposition after porosity. 
Since porosity is easily detected optically, the SEM analysis focuses on 
segmenting the two types of reinforcement degradation namely dilution 
band and reprecipitated carbides [10]. These degradation phases are 
clearly visible in SEM images, which enable their segmentation and 
quantification to support process characterization.

The images were labeled (Fig. 1 Phase E) in the web-based software 
tool Supervisely [35], whose interface is shown in Fig. 4. A brushing tool 
was used at pixel resolution (20 pixels) to label the SEM phases of in
terest manually. To optimize the time-consuming labeling effort, the 
labeling order was carefully selected, starting with the matrix where the 
entire image was masked as the matrix class. This was possible through 

the overlay feature, which allows multiple pixel labels with preference 
given to the most recent value. Following this, entire carbide particles 
(including non-diluted phases) were labeled as the dilution band, which 
was subsequently updated by drawing an inner enclosure of the carbide 
mask on the existing dilution mask. This strategy made separating the 
dilution band from carbide particles easier by eliminating any repetition 
of effort when labeling intricate boundaries of dilution bands. Finally, 
the reprecipitated carbides were labeled, which represented the main 
portion of the labeling effort. Porosities did not contribute to the 
decision-making for the labeling sequence due to their highly sparse 
presence and, as such, these were eventually removed from the subse
quent comparison study to keep the focus on the carbide defects. 
Moreover, porosities can be quantified through optical microscopy to an 
acceptable degree, eliminating the need to include them in SEM seg
mentation task. The “Export with Masks” option was used for the data 
export process. An older version (e.g., 2.0.6) was chosen to ensure that 
the machine mask order corresponded with the interface’s default 
display. This selection was crucial because newer versions of the 
application exhibit a tendency for smaller area objects to overwrite 
larger ones, which could compromise the integrity of the annotations.

A total of four SEM images (each 1280 pixels by 960 pixels) were 
labeled at magnifications 1000×, 800×, 700×, and 600×, producing 45 
crops (50 % x-y overlap) in total, with each crop size of 512 pixels by 512 
pixels. Subsequently, this labeled dataset was then augmented (Fig. 1
Phase E) using flips (horizontal and vertical), rotates (random 90 de
grees), elastic transform (alpha = 1.0, sigma = 50.0, linear interpola
tion), grid distortion (num_steps = 5, distort_limit = ±0.3, linear 
interpolation), contrast (0.3, 0.4), and brightness (0.2, 0.3). The specific 
contrast and brightness levels were based on visual validation, as higher 
values lead to invalid augmentations (e.g., leading to no difference be
tween the dilution band and the carbide body). All augmentations were 
implemented using the Albumentations library [36]. This process 
resulted in 405 crops for the comparison process. Fig. 5 illustrates the 
applied augmentations against the original sample crop through 
visualizations.

4. Segmentation operations and architectures

This section discusses the segmentation operations and architectures. 

Fig. 6. Comparison between the sequence of operations in a typical convolu
tional layer (adapted from Deep Learning book [40]) and a typical atten
tion layer.

Fig. 7. Pictorial comparison between a convolution operation (left) and a self-attention operation (right). Unlike convolution, which applies the same kernel across 
the entire image grid to generate feature maps, the self-attention operation considers all relevant input components when generating output for each input element.
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The comparison is being done between fully convolutional network 
(reference CNN) and ViTs. ViT architectures can include convolutional 
and fully connected layers in addition to self-attention blocks [37]. This 
discussion on architectures follows basic convolution and self-attention 
operations. An architecture contains both the encoder (or backbone), 
which usually extracts the features from input images, as well as the 
specific segmentation method (or segmentation head or decoder), which 
converts the extracted features into final predicted masks. These dis
cussions are limited to transformer-based architectures, whereas the 
details on the reference CNN architecture can be found in the original 
ResNet backbone [38] and segmentation method papers [39].

4.1. Convolution and self-attention

Fig. 6 compares a typical convolutional layer with an attention layer. 
The first step of a convolutional layer is a kernel-sliding operation that 
computes dot products between the kernel values and the covered image 
grid region. The results of this linear transformation go through a non- 
linear activation function, which enables an architecture employing 
convolutions to learn non-linear relationships between inputs and out
puts. Pooling (max-pooling or average-pooling) is often applied to the 
resulting grids and helps to reduce the spatial dimensions. Finally, 
before the resulting feature maps are fed to the next convolutional layer, 
normalization (e.g., batch, instance, layer) is typically used to stabilize 
the learning process by normalizing the output of activation functions. 
Eq. 1 represents the convolution operation. 

y[i, j, c] =
∑k

m=− k

∑k

n=− k

∑Cʹ

Cʹ
w[m, n, cʹ].x[i+m, j+ n, cʹ] + b[c] (1) 

Where:
y[i, j, c]: The output feature map at spatial position (i, j) and channel c.
w[m, n, ć ]: Convolution filter weights of kernel size k× k
x[i + m, j + n, ć ]: Input feature map at position (i + m, j + n) and 

channel ć
b[c]: Bias term for channel c
Cʹ: Number of input channels
Unlike the fixed convolutional filters, which apply the same trans

formations across an entire image, the self-attention operation enables 
dynamic computation of the relevance for an input element based on all 
other elements in the entire input sequence. The attention layer begins 
by transforming the input sequence into queries (Q), keys (K), and 
values (V) through learned linear projections. Next, the dot product 
between Q and transposed K is calculated to determine how much each 
input relates to the others. The attention scores are scaled by dividing 
with the square root of the dimensionality of K to ensure numerical 

stability. These scaled scores are then passed through a Softmax function 
to normalize them into attention weights. The attention weights are 
finally multiplied with the corresponding V and summed to produce the 
output for each input. The exact sequence of steps is repeated for all 
input sequence elements. As illustrated in Fig. 7, while convolutional 
filters focus on local spatial patterns with fixed receptive fields, self- 
attention considers the entire input grid (e.g., Input #n contributing to 
output #1), allowing it to capture long-range dependencies across an 
image. For vision data, this capability makes self-attention particularly 
effective in modeling global relationships, but it also requires flattening 
the image into patch embeddings, adding encodings to retain positional 
information, and handling higher computational costs compared to 
convolution.

Eqs. 2–5 represent the aforementioned self-attention operation. 

Score(qi, ki) = qi.ki =
∑dk

d=1

Q[i, d].K[j, d] (2) 

Scaled Score(qi, ki) =
Score(qi, ki)

̅̅̅̅̅
dk

√ (3) 

αij = softmax
(

Score(qi, ki)
̅̅̅̅̅
dk

√

)

(4) 

Output(i) =
∑N

j=1
αij.vj (5) 

Where:
qi and ki are query and key vectors for input positions i and j
dk represents the dimensionality of the key vectors
αij represents the attention weight between positions i and j
vj is the value vector at position j and N represents the input elements 

in the sequence

4.2. Vision transformer encoders or backbones

Table 1 lists the reference CNN and candidate transformer archi
tectures alongside their encoders and decoders. A diverse set of encoders 
was selected to evaluate the varying capabilities in feature extraction for 
SEM image segmentation. The reference encoder (ResNet-50) represents 
a widely used convolution-based backbone and is often regarded as a 
benchmark for semantic segmentation. Among the transformer en
coders, the ViT backbone (Base and Large variants) extracts fixed reso
lution features through its global context modeling whereas the shifted 
window (Swin) backbone (Base and Small variants) extracts hierarchical 
multi-scale features through local attention in shift windows. The mix 
transformer or MiT backbone (b0 variant) also extracts multi-scale 
features but balances the performance with efficiency through its 
lightweight design. This functionality could be ideal for real-time or 
industrial applications. In the future, large encoders like BERT pre
training of images transformers (BEiT [41]) can be considered for 
comparison employing pertained encoder checkpoints. Moreover, 
depending on the findings, encoders smaller than MiT such as the 
MobileViT encoder (Extra Small variant with 2.3 million parameters 
[42]) can also be investigated. As a result, the current selection provides 
representative capabilities to investigate transformer backbones for 
segmenting SEM images of AMed MMCs.

The transformer backbones considered in this study, ViT, Swin, and 
MiT, represent distinct approaches to encoding features for vision tasks. 
The ViT backbone uses a consistent patch size of 16 × 16 to generate 
non-overlapping patches and applies linear embedding to produce 
tokenized representations. ViT computes self-attention globally across 
all patches, maintaining a fixed resolution throughout its layers, as 
illustrated in Fig. 8. In contrast, the Swin backbone employs a hierar
chical encoder with a patch size of 4 × 4 and applies shifted windows to 
compute attention locally. It incorporates patch merging in deeper 

Table 1 
Segmentation architectures under comparison. In the table, ‘L’’ refers to layers 
in the architecture, ‘P’’ refers to patch size of the input used in the transformer 
backbone, ‘W’’ specifies the attention window size for Swin-based transformer 
backbones. ‘b0’ represents the SegFormer variant used in the comparison.

Architecture # Encoder/ 
backbone

Method/ 
decoder

Parameters Reference

Reference 
CNN ResNet (50 L) DeepLabV3+ 43,655,648 [39]

Transformer 1
Swin (Base P4 

W7) UPerNet 121,238,503 [43]

Transformer 2
ViT (Large 

P16)
SETR 309,351,977 [24]

Transformer 3 ViT (Base P16) DPT 109,674,708 [44]
Transformer 4 MiT (b0 P4) SegFormer 3,719,018 [45]
Transformer 5 ViT (Base P16) Segmenter 102,385,162 [46]

Transformer 6
Swin (Small P4 

W7) MaskFormer 63,095,272 [47]

Transformer 7
Swin (Small P4 

W7)
Mask2Former 68,777,896 [48]
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layers, progressively reducing spatial resolution by 4, 8, and 16 factors, 
enabling multi-scale feature extraction. Finally, the MiT backbone 
builds on these principles with overlapping patches for tokenization and 
a hierarchical encoder comprising four transformer blocks. These blocks 
produce multi-level feature maps at scales 1/4, 1/8, 1/16, and 1/32 of 
the original image dimensions. To maintain feature consistency with 
non-overlapping patches, MiT employs overlapped patch merging. This 
design ensures both spatial continuity and efficient self-attention across 
varying resolutions, as symbolically depicted in Fig. 8.

4.3. Segmentation methods

Similar to the transformer encoders, the decoders in Table 1 repre
sent a diverse selection with methods that have been proposed to work 
specifically with transformer encoders. DeepLabV3+ is based on atrous 
convolutions that expand the receptive field and capture multi-scale 
context and thus serves as a strong CNN reference for comparison. 
Unified perceptual parsing network (UPerNet) can integrate hierarchical 
feature maps from Swin transformer backbone to accomplish multi-scale 
fusion. ViT for dense prediction (DPT) uses a transformer-based archi
tecture to improve global context aggregation and has been proposed for 
dense prediction tasks like semantic segmentation and depth estimation. 
SegFormer contains a lightweight multi-layer perceptron (MLP) decoder 
to process features from MiT encoder. This design has been shown to 
maintain performance while offering simplicity. Segmenter extends 
pure transformer architectures through mask embeddings for dense 
pixel-level classification and can demonstrate the potential of attention 
mechanism for SEM segmentation. SETR is another pure transformer- 
based decoder and has been used in conjunction with a ViT encoder 
for semantic segmentation. Finally, MaskFormer and its extension 
Mask2Former have been proposed for universal segmentation tasks 
(combining semantic, panoptic and instance segmentation) and repre
sent advancements in decoder designs. This diverse selection of decoders 
can be extended in the future by adding more transformer-based 
methods for semantic segmentation (e.g., HRFormer [49], 

Data2VecVision [50]).
Vision transformer for dense prediction or DPT introduces an 

approach for dense or pixel-level prediction tasks (e.g., semantic seg
mentation, depth estimation) by replacing traditional convolutional 
backbones with transformer-based architectures. As depicted in Fig. 9
(A), the DPT framework begins by transforming an input image into a 
sequence of patches. These patches are generated using a linear 
embedding process or derived from a ResNet-50-based hybrid feature 
extractor, with positional embeddings added for spatial context. The 
transformer backbone processes these tokens at a uniform and high 
resolution across multiple stages, enabling a global receptive field that 
captures fine-grained details and broader spatial relationships. To 
construct full-resolution predictions, the architecture reassembles to
kens into feature maps at varying scales (e.g., 1/32, 1/16, 1/8, and 1/4 
of the original image resolution) through hierarchical fusion modules. 
These modules (shown in green between transformer and fusion mod
ules in Fig. 9 (A)) progressively refine the features using convolutional 
units and up-sampling. DPT uses a mix of hierarchical features and 
convolution-based decoding to produce precise and globally consistent 
outputs. This makes it very useful for dense vision tasks (e.g., 
segmentation).

The segmentation transformer or SETR presents an alternative 
approach to semantic segmentation by treating it as a sequence-to- 
sequence prediction task, departing from the conventional encoder- 
decoder FCN framework. Instead of relying on progressive down- 
sampling and convolutions to capture semantic context, SETR utilizes 
a pure transformer-based encoder that processes an image as a sequence 
of fixed-size patches, while maintaining the original spatial resolution. 
This design allows for global context modeling at every layer of the 
transformer by improving the ability to capture fine-grained details and 
large receptive fields. Fig. 9 (B) shows that the architecture begins by 
embedding non-overlapping image patches into tokens, which are later 
enhanced with positional embeddings. These tokens are passed through 
multiple transformer layers to generate comprehensive feature repre
sentations. For pixel-wise segmentation, the architecture employs 

Fig. 8. Transformer-based backbones employed in the semantic segmentation architectures of this study. The red and grey patches symbolically highlight the 
extraction of features with global and local attention as well as at varying scales. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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decoder designs, such as progressive up-sampling (SETR-PUP), which 
reshapes and incrementally upscales feature maps to restore the original 
image resolution, and multi-level feature aggregation (SETR-MLA), 
which integrates features from different transformer layers to enhance 
spatial accuracy. This framework eliminates the dependence on con
volutional layers, achieving context-aware segmentation through the 
transformer’s global attention mechanism.

Transformer for semantic segmentation or Segmenter model in
troduces a transformer-based approach to semantic segmentation by 
leveraging global context at each network layer. Unlike traditional 
convolutional methods, Segmenter builds on the ViT architecture, 
adapting it for segmentation tasks by treating image patches as tokens 
and projecting them into embeddings. As illustrated in Fig. 9 (C), the 
model consists of an encoder that transforms input images into patches, 

Fig. 9. Segmentation methods employed in the comparison study. (A) Dense Vision Transformer. (B) Segmentation Transformer. (C) Transformer for Semantic 
Segmentation. (D) Masked-attention Mask Transformer. (E) Unified Perceptual Parsing. (F) MaskFormer. (G) SegFormer. Figures taken or adapted from the original 
papers referenced in Table 1.
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followed by the addition of positional information. These embeddings 
are passed through a transformer encoder to capture global contextual 
information. The output embeddings are then processed by a mask 
transformer decoder, which generates class-specific masks via scalar 
products, resulting in the final segmentation map. While a linear 
decoder provides robust baseline performance, the mask transformer 
decoder further enhances segmentation accuracy by generating detailed 
class masks. This architecture demonstrates the potential of transformer- 
based models in semantic segmentation by enabling fine-grained and 
globally coherent predictions.

The Masked-attention mask transformer or Mask2Former is a uni
versal architecture designed to handle a broad spectrum of image seg
mentation tasks, including panoptic, instance, and semantic 
segmentation. Unlike traditional approaches that necessitate specialized 
architectures for each segmentation task, Mask2Former unifies these 
under a single framework. The model architecture in Fig. 9 (D) com
prises three key components: a backbone, a pixel decoder, and a trans
former decoder. Masked attention within the transformer decoder leads 
to localized features by limiting cross-attention to predicted mask re
gions. This functionality improves the efficiency of feature extraction 
and enhances the handling of small objects. The pixel decoder processes 
multi-scale features, feeding them to the transformer decoder in a layer 
by layer fashion. By removing redundant computation through learn
able query features and reordered self- and cross-attention layers, 
Mask2Former achieves superior performance across various segmenta
tion benchmarks.

The Unified perceptual parsing network or UPerNet provides a ver
satile multi-task architecture capable of recognizing various visual ele
ments within an image, including scene contexts, objects, materials, and 
textures. UPerNet effectively captures hierarchical multi-scale features 
by integrating a feature pyramid network (FPN) and a pyramid pooling 
module (PPM). The architecture presented in Fig. 9 (E) processes fused 
feature maps at different scales and directs them to distinct output heads 
for scene and object-level segmentation. In the context of semantic 
segmentation, this fusion mechanism enhances spatial coherence and 
captures fine-grained details. By focusing exclusively on semantic seg
mentation, this framework takes advantage of UPerNet’s ability to 
combine features hierarchically, which enables precise and reliable 
segmentation results.

MaskFormer introduces a unified framework for tackling semantic 
and panoptic segmentation tasks by leveraging a mask classification 
approach rather than the traditional per-pixel classification paradigm. 
As depicted in Fig. 9 (F), the architecture utilizes a backbone to extract 
image features F, which are processed by a pixel decoder to generate 
per-pixel embeddings. A transformer decoder utilizes these features and 

produces per-segment embeddings Q that correspond to a set of binary 
mask predictions and their associated global class labels. This unified 
approach simplifies the segmentation pipeline by treating each binary 
mask as a standalone prediction. It allows the same model and training 
procedure to address semantic and instance-level segmentation tasks. By 
integrating segmentation inference through a dot product of mask and 
pixel embeddings, MaskFormer achieves strong empirical results in 
scenarios involving many classes.

SegFormer offers a simple and efficient framework for semantic 
segmentation. It combines a hierarchical transformer encoder with a 
lightweight MLP decoder. As illustrated in Fig. 9 (G), the transformer 
encoder extracts multi-scale features using overlapping patch embed
dings and a series of hierarchical transformer blocks. These blocks 
progressively reduce the spatial resolution from H

4 ×
W
4 to H

32 ×
W
32 (H 

represents image height, W represents image width). Notably, Seg
Former eliminates the need for positional encodings, which helps avoid 
interpolation issues when the testing resolution differs from the training 
resolution. The lightweight MLP decoder directly fuses features across 
multiple levels using feed-forward layers and up-sampling operations. 
This approach integrates local and global attention mechanisms. The 
framework provides variants from MiT-b0 (3.7 million parameters) to 
MiT-b5 (82.0 million parameters), which successively demonstrate su
perior efficiency and accuracy compared to prior methods. This com
bination of simplicity and performance makes SegFormer a robust 
choice for semantic segmentation tasks.

5. Training experiments

The dataset was split into 75 % training samples, 15 % validation 
samples, and 15 % test samples for the experiments. The test and train 
splits were composed of only the crops coming from the lowest magni
fication (e.g., 600×). This was done to evaluate the potential of ML for 
high-throughput segmentation, since a montage-based data extraction 
can support fast SEM analysis of printed bead cross-sections at lower 
magnifications, while also reasonably capturing the carbide defects.

The MMSegmentation framework of OpenMMLab was used to 
conduct the experiments [51–53]. The MMSegmentation framework 
provides a modular and flexible pipeline for semantic segmentation, as 
illustrated in Fig. 10. The data preprocessor first processes input images 
to generate normalized inputs for the backbone. Subsequently, the 
backbone extracts hierarchical feature maps. Optional neck modules 
further refine these feature maps before being passed to the decode 
head. The head is responsible for producing segmentation logits. The 
logits serve as the raw predictions of the model and provide valuable 
information on the confidence of each class prediction. In “loss” mode, 

Fig. 10. Components of MMSegmentation forward function implemented for a model instance—figure adapted from official MMSegmentation documentation.
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the decode head computes the primary segmentation loss. The logits 
from the decode head are post-processed in “predict” mode to produce 
final segmentation masks. When adapting models for specific tasks, 
decode and auxiliary heads are modified by adjusting the number of 
classes or by introducing task-specific loss functions. This modularity 
allows for efficient customization and performance optimization across 
diverse segmentation datasets and applications.

All MMSegmentation models were implemented using Python pro
gramming language and the PyTorch deep learning framework. For each 
model, the default configurations were adapted to meet the needs of our 
dataset, which included setting the crop size to 512 by 512 pixels and 
updating the preprocessor to handle the mean and standard deviation of 
the dataset. The decoder head was updated by defining five custom 
classes (e.g., matrix, porosity, carbide particles, dilution band, and 
reprecipitated carbides) for SEM image segmentation. The class label 
values were zero-indexed to meet the requirements of the library. As 
mentioned in Section 3, the porosity class (index 1) was ignored in the 
training process due to its sparse presence and irrelevance to the SEM 
image analysis. A batch size of 4 was used across all experiments. All 
models were trained for 5000 iterations with a 20-step validation in
terval leading to 250 sets of validation metrics during training. One 
model checkpoint with updated weights was saved at the end (e.g., 
5000th iteration), while the checkpoints with the best mean metrics 
were also saved. Instead of using pre-trained weights from MMSeg
mentation checkpoints, these were randomly initialized to mitigate the 
impact of different pre-trained configurations (different datasets, ob
jectives, and normalization conventions) on comparison results. These 
differences could advantage particular backbones for reasons unrelated 
to performance on SEM images. Across all experiments, five different 

seed values (e.g., 1, 2, 3, 4, 5) were used to compare the effect of 
different weight initialization and dataset shuffling, while keeping 
everything the same in the model configuration.

During training, a stochastic gradient descent (SGD) optimizer was 
used to lower the training error in the process of iterative improvement. 
A learning rate of 0.01, a momentum of 0.9, and a weight decay of 
0.0005 were used during the optimization process. A combination of 
schedulers was used to dynamically adjust the value of the learning rate, 
which started with a linear warm-up (iteration ≤ 1000) followed by a 
cosine annealing schedule (iteration >1000). This combination sup
ported stable initial training, followed by a gradual reduction in the 
learning rate to enable smooth convergence and to avoid any local 
minima.

Three different evaluation metrics were used to compare the per
formance of models during training and on the test set: accuracy, 
intersection over union (IoU), and f-score or Dice Coefficient. Accuracy 
measures the proportion of accurately classified pixels against the entire 
image or dataset. The IoU metric, also known as the Jaccard Index, is a 
class-sensitive measure and less dependent on the total number of pixels. 
The Dice Coefficient, also known as the f-score, quantifies the extent of 
overlap between two distinct sets. In semantic segmentation tasks, the 
Dice Coefficient measures the similarity between the predicted seg
mentation results and ground truth. This metric is highly responsive to 
the degree of overlap between the prediction and the ground truth mask, 
making it especially effective for semantic segmentation where precise 
overlap is essential. While mean IoU and f-score were recorded for all 
models, special attention was given to models’ performance on seg
menting the dilution band from the carbide particles and reprecipitated 
phases from the matrix by recording per-class metrics. We also used a 

(A) (B)

(C) (D)

Fig. 11. Validation curves for percentage mean Dice Coefficient and percentage mean IoU on dilution band and reprecipitated carbides across the models 
under comparison.
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confusion matrix to visualize and compare the performance of models 
across different classes, as it highlights which classes were consistently 
confused for other classes by the models. Eqs. 6–8 show basic formulas 
of these metrics with parametric explanations. 

Accuracy =
TP + TN

TP + TN + FP + FN
(6) 

Where:
TP = True Positives are the number of pixels correctly predicted as 

belonging to the target class.
TN = True Negatives are the number of pixels correctly predicted as 

not belonging to the target class.
FP = False Positives are the number of pixels incorrectly predicted as 

belonging to the target class.
FN = False Negatives the number of pixels incorrectly predicted as 

not belonging to the target class. 

IoU =
|P ∩ G|
|P ∪ G|

=
TP

TP + FP + FN
(7) 

Where:
P and G are the predicted and ground truth sets respectively.
P ∩ G is the intersection (overlap) between prediction and ground 

truth.
P ∪ G is the union of the prediction and ground truth. 

Dice =
2 |P ∩ G|
|P| + |G|

=
2TP

2TP + FP + FN
(8) 

6. Discussions and findings

Fig. 11 (A-D) shows the performance of models on the validation set 
during training. The plots are limited to 4000 iterations to highlight key 
regions of performance improvement, as the order of performance for all 
models remained the same for the rest of the training. The plots high
light the overall mean Dice (mDice) and mean IoU (mIoU) metrics for 
carbide defect categories, namely dilution band and reprecipitated 
carbides, as the overall mean may not be representative of performance 
on these two categories of interest. UPerNet, with a Swin backbone, 
performs the best in segmenting both categories. For dilution band 
segmentation on the validation set, mIoU and mDice show that Seg
Former and Mask2Former perform similarly, as the second-best seg
mentation models. These are followed by MaskFormer and 
DeepLabV3+, where the former model performs slightly better. DPT, 
SETR, and Segmenter maintain the last three positions, with Segmenter 
being the lowest-performing model.

Notably, the SegFormer model, while being much smaller than the 
other models, achieves top performance in the first 500 iterations. 
However, its capacity may be restricted for learning complex patterns; 
this could have limited its performance against the UPerNet model in the 
following iterations. For segmentation of reprecipitated carbides on the 

Table 2 
Mean test metrics for DeepLabV3þ with standard error across all five runs.

Metrics mIoU ± SE mDice ± SE mAcc ± SE

Class

Matrix 91.87 ± 0.01 95.76 ± 0.01 95.76 ± 0.05
Carbide particles 97.69 ± 0.02 98.83 ± 0.01 98.58 ± 0.05

Dilution band 77.47 ± 0.16 87.31 ± 0.10 90.11 ± 0.25
Reprecipitated carbides 80.56 ± 0.13 89.24 ± 0.08 87.95 ± 0.16

Table 3 
Mean test metrics for SegFormer with standard error across all five runs.

Metrics mIoU ± SE mDice ± SE mAcc ± SE

Class

Matrix 92.60 ± 0.01 96.16 ± 0.00 95.95 ± 0.08
Carbide particles 98.09 ± 0.02 99.04 ± 0.01 98.80 ± 0.05

Dilution band 80.19 ± 0.06 89.00 ± 0.04 93.21 ± 0.10
Reprecipitated carbides 82.05 ± 0.04 90.14 ± 0.02 88.18 ± 0.13

Table 4 
Mean test metrics for Mask2Former with standard error across all five runs.

Metrics mIoU ± SE mDice ± SE mAcc ± SE

Class

Matrix 89.94 ± 1.13 94.69 ± 0.63 98.68 ± 0.30
Carbide particles 98.07 ± 0.02 99.03 ± 0.01 98.69 ± 0.04

Dilution band 80.31 ± 0.18 89.08 ± 0.11 87.84 ± 0.39
Reprecipitated carbides 77.12 ± 3.57 86.89 ± 2.40 79.89 ± 4.24

Table 5 
Mean test metrics for MaskFormer with standard error across all five runs.

Metrics mIoU ± SE mDice ± SE mAcc ± SE

Class

Matrix 90.86 ± 0.71 95.21 ± 0.39 97.63 ± 0.59
Carbide particles 97.97 ± 0.04 98.98 ± 0.02 98.39 ± 0.07

Dilution band 78.12 ± 1.13 87.70 ± 0.71 87.10 ± 1.88
Reprecipitated carbides 81.48 ± 1.34 89.77 ± 0.83 86.65 ± 2.34

Table 6 
Mean test metrics for UPerNet with standard error across all five runs.

Metrics mIoU ± SE mDice ± SE mAcc ± SE

Class

Matrix 92.75 ± 0.01 96.24 ± 0.01 96.10 ± 0.02
Carbide particles 98.02 ± 0.01 99.00 ± 0.01 98.55 ± 0.02

Dilution band 82.04 ± 0.43 90.13 ± 0.26 94.29 ± 0.08
Reprecipitated carbides 83.92 ± 0.37 91.25 ± 0.22 89.97 ± 0.44

Table 7 
Mean test metrics for DPT with standard error across all five runs.

Metrics mIoU ± SE mDice ± SE mAcc ± SE

Class

Matrix 91.57 ± 0.02 95.60 ± 0.01 95.57 ± 0.03
Carbide particles 97.00 ± 0.03 98.48 ± 0.02 97.47 ± 0.04

Dilution band 74.57 ± 0.18 85.43 ± 0.12 91.47 ± 0.09
Reprecipitated carbides 79.13 ± 0.08 88.35 ± 0.05 87.25 ± 0.07

Table 8 
Mean test metrics for Segmenter with standard error across all five runs.

Metrics mIoU ± SE mDice ± SE mAcc ± SE

Class

Matrix 74.76 ± 0.02 85.56 ± 0.01 89.44 ± 0.11
Carbide particles 97.00 ± 0.02 98.48 ± 0.01 98.39 ± 0.02

Dilution band 63.64 ± 0.14 77.78 ± 0.10 77.25 ± 0.15
Reprecipitated carbides 41.31 ± 0.10 58.47 ± 0.10 52.22 ± 0.29

Table 9 
Mean test metrics for SETR with standard error across all five runs.

Metrics mIoU ± SE mDice ± SE mAcc ± SE

Class

Matrix 75.96 ± 0.04 86.34 ± 0.03 87.41 ± 0.28
Carbide particles 97.51 ± 0.03 98.74 ± 0.01 98.37 ± 0.05

Dilution band 70.78 ± 0.23 82.89 ± 0.16 87.23 ± 0.25
Reprecipitated carbides 51.58 ± 0.36 68.05 ± 0.31 64.16 ± 0.84
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validation set, mIoU and mDice show that while SegFormer is still the 
second-best model after UPerNet, it is not the case for Mask2Former, as 
it struggles to learn and segment reprecipitated carbides throughout the 
training. The SegFormer model is followed by MaskFormer and Deep
LabV3+, and the performance of these three models is close to each 

other. The fifth model in the performance is DPT, where Mask2Former 
model performs lower and takes the 6th spot in segmenting reprecipi
tated carbides on the validation set. The last two performing models 
remain the same as the dilution band. However, their performance is 
significantly lower on reprecipitated carbides (77.46 mDice dilution 

Fig. 12. Confusion matrices on the test set for each model. Presented results correspond to best performing model on dilution band out of the five runs. DeepLabV3+
(Seed 3, 5000 iteration) SegFormer (Seed 5, 5000 iteration), Mask2Former (Seed 1, 5000 iteration), MaskFormer (Seed 4, 5000 iteration), UPerNet (Seed 4, 5000 
iteration), DPT (Seed 5, 5000 iteration), Segmenter (Seed 3, 5000 iteration), SETR (Seed 5, 5000 iteration).
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band versus 57.71 mDice reprecipitated carbides for Segmenter, 83.53 
mDice dilution band versus 68.51 mDice reprecipitated carbides for 
SETR).

6.1. Results

Tables 2–9 present predictions for each class using mean IoU, mean 
Dice, and mean Accuracy over the entire test set. The standard error or 
SE, as in [54], highlights the variations in the performance across the 
five runs for each model. In the case of the dilution band, while UPerNet 
maintains top performance also on the test set, Mask2Former performs 
slightly better than SegFormer, followed by Mask2Former. The CNN- 
based DeepLabV3+ model is ranked 5th on the test set for its perfor
mance in segmenting the dilution band followed by DPT, SETR, and 
Segmenter. Notably, the two masked transformers (MaskFormer & 
Mask2Former) have much higher standard errors than any other model. 
In the case of reprecipitated carbides, SegFormer performs better than 
both masked transformers after the UPerNet model. The CNN-based 
DeepLabV3+ performs better than one of the masked transformers 
and is ranked 3rd. This performance could be explained based on the 
ability of the CNN models to better capture intricate shape features, as in 
the case of reprecipitated carbides. The variability of masked trans
formers across the five runs makes their performance less robust, giving 
an edge to UPerNet and SegFormer as the two top-performing trans
former models.

Fig. 12 shows the confusion matrices for the best-performing run on 
the test set across all models. The values are averaged over the entire test 
set and presented as a percentage of the total pixels in each class. 
Notably, the lower performance for all models can be attributed to 
classification errors related to the dilution band and reprecipitated 
carbide pixels. Between these two classes, the misclassification of rep
recipitated carbide pixels as matrix pixels represents the highest 
misclassification error across all models. While MaskFormer has the 
lowest misclassification (5.91 %) error in this regard, the results could 
be subjected to high-performing run as indicated earlier by higher SEs. 
This makes SegFormer (7.64 % misclassified reprecipitated carbides) 
and UPerNet (7.88 % misclassified reprecipitated carbides) the two top- 
performing models in this regard, with UPerNet still performing better 
overall on reprecipitated carbides (90 % correctly classified pixels). 
While the dilution band has the second highest misclassification errors 
after the reprecipitated carbides; these are more distributed between the 
matrix and carbide particles, suggesting that all models struggle simi
larly when classifying dilution band pixels as either matrix or carbide 
particles. On dilution band pixels, UPerNet has the highest performance 

(94.33 %), with the SegFormer model as a close second (93.46 %).

6.2. Observations

Figs. 13 and 14 show the iterative improvement on the validation set 
during the training of the best (UPerNet) and worst (Segmenter) per
forming models on a sample of the SEM image dataset from the AMed 
Ni-WC MMCs. In this study, the interval selected contained the most 
improvement in performance across all training iterations. Fig. 13 il
lustrates how the Segmenter model fails to precisely capture the context 
of the dilution band, leading to misclassification of dilution band pixels 
with the matrix, carbide particles, or even with reprecipitated carbides. 
It also struggles to learn and segment reprecipitated carbides, as several 
of these are misclassified for matrix. Lastly, some of the reprecipitated 
carbides were consistently misclassified as carbide particles, indicating 
that overall, the model struggles to learn the class-wise fine intensity 
gradients, leading to poor contextualization and the subsequent 
localization.

Fig. 14, on the other hand, highlights how the top-performing 
UPerNet model promptly captures the context of each class and re
fines the precise localization of dilution band and reprecipitated carbide 
pixels over the remaining training iterations. One notable similarity 
between the two models in these visualizations is their struggle to 
consistently segment the partial dilution band on the left (e.g., without 
the associated carbide body). The Segmenter model consistently seg
ments only a portion of the dilution band across the training iterations, 
whereas the UPerNet model randomly captures it, while missing the 
band altogether for most iterations. This observation could highlight the 
dependence of the models on the neighborhood context but requires 
focused investigation before conclusion.

For practical evaluation, the models were also qualitatively tested on 
a larger crop (e.g., 1280 pixels by 960 pixels) at lower magnification (e. 
g., ×600) comprising validation and test sets. Fig. 15 presents the results 
for the UPerNet model alongside the confusion matrix highlighting the 
quantified pixels. The original predicted mask was updated to replace 
the misclassified pixels with red before being laid on the input image. 
Most of the misclassified labels lie at the carbide-dilution and 
reprecipitate-matrix boundaries, highlighting the source of segmenta
tion errors. Interestingly, the small, diluted carbide at the bottom was 
partially misclassified due to its relatively dense structure resembling 
carbide particles.

Fig. 16 shows the results for the best-performing run of the model 
with overall low performance. Like the UPerNet mask, the Segmenter 
mask was updated to replace the misclassified pixels with red before 

Fig. 12. (continued).
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being laid on the original input image. In addition to poor performance 
on challenges discussed earlier (e.g., separating phase boundaries), the 
Segmenter model also struggled to accurately segment the dilution band 
and matrix pixels. Most notably, 39,877 matrix pixels in the original 
image were misclassified as reprecipitated carbide, whereas 78,166 
reprecipitated carbide pixels were incorrectly predicted as matrix. These 
misclassifications led to an overall lower performance of the model. 

Similar to the UPerNet model, the Segmenter model was also able to 
identify partially appearing dilution bands, indicating its ability to learn 
without depending on the neighborhood context of the pixels.

The misclassification errors at phase boundaries can be attributed to 
two main factors: (i) annotation ambiguity, and (ii) model limitations. 
Since phase boundaries in SEM images often exhibit gradual intensity 
transitions, making precise pixel-level delineation can be subjective 

Ground Truth

#250 #350 #450

#750 #850 #950

#1150 #1250 #1350 #1450

#550

#650 #1050

#1550

#1650 #1750 #1850 #1950 #2050

#150

Input Image

Fig. 13. Iteration-wise visual validation of predictions from Segmenter with ViT backbone during the lowest performing run (seed 5) from iterantion#150 to 
iteration#2050 in steps of 100 on a random validation crop (e.g., sem600_x256_y0_HorizontalFlip).
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even for experts leading to some degree of annotation ambiguity. 
Moreover, certain model architectures (e.g., transformers), despite their 
global context awareness, may still struggle to capture fine-grained 
gradients at small scales. The future work could focus on boundary- 
aware loss functions or multi-annotator labeling to reduce such ambi
guities leading to reduced misclassifications at phase boundaries.

6.3. Practical considerations and recommendations

The confidence in the prediction of a model when segmenting classes 
of interest can be highlighted using logits. A logit is a raw model output 
from its final layer before it is normalized through an activation func
tion. Fig. 17 (A) presents the logits across all classes to compare the 
confidence in models’ predictions under comparison for segmenting 
SEM images. The models are significantly more confident when 

#350 #450 #550 #650#250

#850 #950 #1050 #1150#750

#1350 #1450 #1550 #1650#1250

#1750 #1850 #1950 #2050 #2150

Input Image Ground Truth

Fig. 14. Iteration-wise visual validation of predictions from UPerNet with Swin backbone during the highest performing run (seed 4) from iterantion#250 to 
iteration#2150 in steps of 100 on a random validation crop (e.g., sem600_x256_y0_HorizontalFlip).
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predicting the pixels for the carbide particles and matrix compared to 
the dilution band and reprecipitated carbides with the lowest values 
corresponding to the dilution band pixels.

The plots in Fig. 17 (B) present logit values as a percentage of the 
global maximum. It can be seen that masked transformers are more 
confident on “easy-to-predict” matrix and carbide particle pixels, but 
their confidence fluctuates on the dilution band and reprecipitated 
carbide pixels. This behavior could also be the reason for the high SE in 
the predictions of MaskFormer and Mask2Former on the test set. Fig. 17
(C) shows the logit values as a percentage of the maximum value within 
each pixel category or class. DPT, UPerNet, and SegFormer models have 
the highest values for logits when predicting the dilution band pixels. 
Out of these three models, the UPerNet and SegFormer models per
formed the best in predicting the dilution band on the test set. On the 
reprecipitated carbides, these two models have similar logit values. 
Notably, the CNN-based DeepLabV3+ has slightly higher logit values 
and its performance in predicting the reprecipitated carbide pixels on 
the test set is also comparable to UPerNet and SegFormer. This can be 
attributed to the inherent characteristics of CNNs, as these models are 
especially effective when detecting patterns, edges, and shapes, features 
that are representative of the reprecipitated carbide pixels.

We compared single-image (using larger micrograph of Fig. 15 and 

Fig. 16) inference runtimes on a workstation with an NVIDIA RTX 4090 
GPU using PyTorch and MMSegmentation library. We report median 
per-image latency (milliseconds) and the corresponding single-image 
equivalent throughput in frames per second (FPS = 1000/median la
tency in milliseconds) and include the 90th-percentile latency (p90), the 
time by which 90 % of runs complete, to characterize tail-latency vari
ability. SegFormer achieved a median 42.6 milliseconds per image (23.5 
frames per second) with p90 = 51.4 milliseconds, whereas SETR 
required 396.0 milliseconds per image (2.5 frames per second) with p90 
= 453.6 milliseconds, corresponding to an approximately 9.3 times 
speedup on GPU (8.8 times by p90). On CPU, SegFormer ran in 1.18 s per 
image (0.85 frames per second; p90 = 1.23 s) versus 23.19 s (0.04 
frames per second; p90 = 23.29 s) for SETR. This reflected a 19.7 times 
speedup (18.9 times by p90). These measurements reflect repeated 
inference on the same single image and frames per second is reported as 
the single-image equivalent (1000 divided by median latency in 
milliseconds).

Based on the findings, the UPerNet method with the Swin backbone 
is recommended for segmenting SEM images from AMed MMCs in sce
narios where accuracy and robustness are desired, such as lab-scale or 
research and development setups. This recommendation is supported by 
the performance of the model on challenging features of dilution bands 

Fig. 15. UPerNet checkpoint from 5000th iteration taken from best performing seed for evaluation on a larger image (e.g., 1280 pixels by 960 pixels). Misclassified 
pixels are highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Segmenter checkpoint from 5000th iteration taken from the best-performing seed for evaluation on a larger image (e.g., 1280 pixels by 960 pixels). 
Misclassified pixels are highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and reprecipitated carbides. For industrial applications where compu
tational resources and productivity are critical, the SegFormer model is 
recommended as a promising alternative due to its lighter design and 
competitive performance. Moreover, future works are recommended on 
hyperparameter variations, as well as lighter and high-capacity seg
mentation methods to build upon the findings of the current work.

7. Conclusions and future works

In conclusion, widely used semantic segmentation methods and en
coders based on transformers were evaluated and compared for seg
menting damage to the carbide particles at higher thermal conditions in 
the case of AMed Ni-WC MMCs. The SEM images were used as the inputs 
and augmentations were applied to enhance the dataset and make the 

Fig. 17. Logits from the final layer of each model. (A) average raw values, (B) percentage of global maximum, and (C) percentage of class-wise maximum.
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models more robust to changing data distributions. Three transformer 
backbones, namely ViT, MiT, and Swin, with different patch sizes and 
depth variants, were used to extract the features from the SEM images 
during training. These features were fed to different methods for seg
menting the input images into pixels of the matrix, carbide particles, 
dilution band, and reprecipitated carbides. Specifically, SegFormer, 
MaskFormer, Mask2Formaer, UPerNet, DPT, Segmenter, and SETR 
based methods were used for the semantic segmentation task. A refer
ence CNN architecture, DeepLabV3+, with ResNet-50 backbone was 
also included in the comparison. During training, all models, except 
SETR and Segmenter, were found to reasonably learn the pixels of car
bide anomalies. The masked transformers, MaskFormer and Mask2For
maer, were found to fluctuate significantly across the five runs during 
training. UPerNet and SegFormer were found to perform best on dilution 
band (94.33 % and 93.46 % overall accuracy on test set, respectively) 
and reprecipitated carbide (90.97 % and 88.52 % overall accuracy on 
test set, respectively) classes. The low-performing models SETR and 
Segmenter were found to struggle with the precise localization of the 
dilution band features. The models were also tested on a large industrial 
image mimicking high throughput analysis for process characterization. 
The primary source of misclassification was found to be the segmenta
tion errors arising from poor separation between the carbide-dilution 
and matrix-reprecipitate boundaries. For practical considerations, the 
models were also compared in terms of predicted raw logits from the last 
layer before the post processing step for generating final mask. Much 
higher logit values were observed for all models on carbide particles and 
matrix pixels with the lowest logit values reported for the dilution band 
pixels. The top-performing UPerNet and SegFormer models had com
parable logit values across all four classes. For industrial deployment, 
SegFormer can be preferred over UPerNet owing to its much smaller 
size; however, from pure performance considerations, UPerNet, with its 
higher capacity, could be more suited to handle changing data 
distributions.

In the future, the current comparison can be made more robust by 
extending through the following considerations: 

- Within each selected model, more variations of key hyperparameters 
(e.g., batch size, learning rate, optimizer) can be considered

- The effect of specific components (e.g., multi-feature backbones) can 
be investigated in detail to evaluate their impact on the segmentation 
task. Moreover, different available variants (small, base, large, and 
extra large) of the existing encoders can be tested

- While the current study considered representative categories, the list 
can be expanded to include more transformer-based architectures (e. 
g., BEiT, Data2VecVision, HRFormer)

- The developed models can also be blind tested on Ni-WC images from 
other SEM setups to evaluate their generalizability in segmenting 
carbide damages

- To achieve absolute performance limits, more SEM data can be 
generated through new experiments or relevant augmentations. The 
enhanced dataset can improve the performance of selected models by 
providing robust model generalization
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