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ARTICLE INFO ABSTRACT
Keywords: Machine learning (ML) applications have shown potential in analyzing complex patterns in additively manu-
Additive manufacturing factured (AMed) structures. Metal matrix composites (MMC) offer the potential to enhance functional parts

Scanning electron microscopy (SEM) images

; ; through a metal matrix and reinforcement particles. However, their processing can induce several co-existing
Metal matrix composites

Carbide damage anomalies in the microstructure, which are difficult to analyze through optical metallography. Scanning elec-
Semantic segmentation tron microscopy (SEM) can better highlight the degradation of reinforcement particles, but the analysis can be
Vision transformers labor-intensive, time-consuming, and highly dependent on expert knowledge. Deep learning-based semantic
segmentation has the potential to expedite the analysis of SEM images and hence support their characterization
in the industry. This capability is particularly desired for rapid and precise quantification of defect features from
the SEM images. In this study, key state-of-the-art semantic segmentation methods from self-attention-based
vision transformers (ViTs) are investigated for their segmentation performance on SEM images with a focus
on segmenting defect pixels. Specifically, SegFormer, MaskFormer, Mask2Former, UPerNet, DPT, Segmenter, and
SETR models were evaluated. A reference fully convolutional model, DeepLabV3+, widely used on semantic
segmentation tasks, is also included in the comparison. A SEM dataset representing AMed MMCs was generated
through extensive experimentation and is made available in this work. Our comparison shows that several
transformer-based models perform better than the reference CNN model with UPerNet (94.33 % carbide dilution
accuracy) and SegFormer (93.46 % carbide dilution accuracy) consistently outperformed the other models in
segmenting damage to the carbide particles in the SEM images. The findings on the validation and test sets
highlight the most frequent misclassification errors at the boundaries of defective and defect-free pixels. The
models were also evaluated based on their prediction confidence as a practical measure to support decision-
making and model selection. As a result, the UPerNet model with the Swin backbone is recommended for seg-
menting SEM images from AMed MMCs in scenarios where accuracy and robustness are desired whereas the
SegFormer model is recommended for its lighter design and competitive performance. In the future, the analysis
can be extended by including higher capacity as well as smaller models in the comparison. Similarly, variations
in specific hyperparameters can be investigated to reinforce the rationale of selecting a specific configuration.

1. Introduction fabrication technique [1]. Metal AM can realize fully dense metallic
structures, thus offering the potential to compete with conventional
Additive manufacturing (AM) or 3D printing is a layer-based manufacturing in industry. Some AM techniques, such as directed
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energy deposition (DED), offer freedom in depositing materials, thereby
enabling the repair of components and the manufacture of hybrid
products, as well as the enhancement of functional parts with changing
chemistry and/or mechanical properties [2]. The capability to enhance
parts has wide-ranging applications in the industry. For instance, DED
processing of metal matrix composites (MMCs) can lead to wear-
resistant overlays on functional parts and tools [3]. MMCs are engi-
neered composite materials with a metal matrix integrated with one or
more reinforcement particles [4,5]. These composites leverage the ad-
vantageous characteristics of metals, such as toughness and ductility,
alongside the reinforcing properties of the added materials, such as
stiffness and strength. MMCs are highly valued for their exceptional
strength-to-weight ratio, wear resistance, and performance at elevated
temperatures. However, the production of MMCs, such as nickel tung-
sten carbide (Ni-WC) overlays on steel substrates, poses significant
challenges [6]. While these composites can significantly enhance the
wear resistance of components used in several sectors (e.g., agriculture,
automotive, mining, and aerospace), their development requires inten-
sive optimization of the key process parameters and iterative adjustment
to meet the specific needs of part geometries [7].

Metallographic characterization is an essential tool to process
development as it can reveal the constituents in materials’ structure,
enabling the evaluation of their properties [8,9]. The individual con-
stituents in the microstructure of DED-based Ni-WC MMCs complement
each other by reducing material wastage, while allowing reasonable
plastic deformation. In addition to the metal matrix and reinforcement
carbides, the deposited structures can also contain defects related to the
processing conditions (e.g., porosities, cracks, dissolved carbides, poor
carbide distribution) [10]. Therefore, it is essential to quantitatively
evaluate printed structures and characterize parameter adjustments
needed for the numerous key process variables. This evaluation is usu-
ally accomplished in the industry through optical metallography, as it
highlights the distribution of carbide particles in the matrix and certain
processing defects (e.g., porosity). High thermal conditions also lead to
degradation of the reinforcement carbide particles, which is usually
reflected by partially diluted carbides and reprecipitated hard phases in
the matrix.

Dilution band represents the rim region around a carbide particle in
which elevated thermal exposure partially dissolves the original spher-
ical WC particle, producing a contrast-visible zone that reflects rein-
forcement degradation. Reprecipitated carbides represent fine
secondary carbide phases that form within the matrix during cooling/
solidification after partial dissolution of the original WC particles.
Reprecipitated carbides can appear as dispersed hard particles locally or
across the matrix. Optical microscopy is limited in distinguishing these
phases of degraded carbides. On the other hand, scanning electron mi-
croscopy (SEM) is better suited to analyze these constituents owing to
the shorter wavelength of electrons enabling higher magnifications and
resolutions as well as highlighting compositional changes [11]. How-
ever, the characterization of SEM-generated samples can be slow, labor-
intensive, and dependent on expert knowledge, which makes it chal-
lenging to meet the industrial requirements of high throughput quanti-
tative and accurate metallography.

Additively manufactured (AMed) microstructures can be evaluated
and analyzed using various methods [12]. Traditional manual tech-
niques for characterizing and identifying the constituents of these mi-
crostructures are prevalent in industrial settings. Although such
techniques can produce detailed analyses, these methods are notably
labor-intensive and time-consuming. Alternatively, computer-assisted
or semi-automated techniques can accelerate the evaluation process,
but demand consistent effort for each new analysis [13]. Consequently,
there has been a shift toward employing image-processing or computer
vision (CV) techniques to fully automate microstructural quantification.
These approaches span a range from basic to highly complex, based on
the algorithms’ sophistication. Despite their utility, CV methods often
struggle with generalizing across different contexts and often fail to
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accommodate the characteristic variability in AMed micrographs [14].

Semantic segmentation, also known as dense or pixel-level predic-
tion, is a process for classifying image pixels and is widely utilized in
various fields, such as autonomous vehicles, medical diagnostics, ro-
botics, and object identification [15]. Traditionally, machine learning
(ML) models employed for this task have relied on established con-
volutional neural network (CNN) based frameworks and architectures.
These models, including architectures like U-Nets, are recognized for
accurately delineating distinct regions within images by clustering at the
pixel level [16]. Although U-Net architectures are prevalent, the ML
community has recently explored the application of cutting-edge vision
transformers (ViTs) to semantic segmentation, achieving comparably
robust performance [17]. This progression underscores the imperative
to enhance precision, tailor models to specific domains, broaden
generalization capabilities and create high-quality annotated datasets.

This work aims to evaluate state-of-the-art ViTs for their capability to
segment SEM images from AMed Ni-WC MMC structures, while also
comparing the ViTs against a reference CNN architecture. Although
CNNs and ViTs have been shown to be effective for a range of segmen-
tation tasks, these models also suffer from domain-specific challenges.
Engineering applications of artificial intelligence (AI) face issues of data
imbalance and quality. Industrial deployment requires that ML models
be lightweight and robust to changing data distributions. To support the
requirement of high throughput quantitative metallography for SEM
images generated through the analysis of AMed Ni-WC MMCs, this work
contributes to the following:

- An open-source annotated SEM dataset from AMed Ni-WC MMC
metallographs, as well as an open-source codebase for
reproducibility

An investigation of seven state-of-the-art ViT architectures to quan-
titatively analyze SEM images from AMed Ni-WC MMC using se-
mantic segmentation

- A comparison between a reference CNN architecture and evaluated
ViTs for insights on complementary or superior segmentation capa-
bilities of each category

Findings on the impact of encoder variations, model category, model
size, as well as pixel categories on segmentation performance
Recommendations for industrial deployment grounded in practical
considerations of model size and prediction confidence

The rest of this paper is arranged into background discussions on
semantic segmentation and their AM applications (Section 2), dataset
introduction (Section 3), segmentation architectures with ViT back-
bones (Section 4), training experiments (Section 5), discussions with
findings (Section 6), and conclusions including suggestions for future
works (Section 7).

2. Semantic segmentation and AM applications

Semantic segmentation models work at the pixel level by predicting
the labels and grouping them to highlight the regions of interest [18].
Standard CV algorithms can also accomplish this task reasonably, but
these models struggle with generalization. This section is constrained to
ML-based semantic segmentation and consists of two parts.

The first part provides a concise overview of the development and
advancement of ML-based semantic segmentation algorithms, beginning
with the basic fully convolutional networks and U-Net models and
concluding with the most current state of the broader domain. The
subsequent part emphasizes the applications of semantic segmentation
in AM by addressing recent advancements, as well as by identifying
ongoing research efforts.

2.1. ML-based semantic segmentation

The capacity to delineate information within images on a pixel-by-
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pixel basis has been incorporated into ML models through various ap-
proaches. Fully convolutional networks (FCNs) marked a significant
shift in developing ML-driven semantic segmentation models [19].
These networks adapted conventional CNN architectures to execute the
task of semantic segmentation. In FCNs, fully connected layers were
completely substituted by convolutional layers to preserve spatial re-
lations, facilitating seamless end-to-end segmentation across images of
any size. A notable model within this category was introduced by Long
et al. [19], which featured a skip architecture that effectively restored
information lost during the down-sampling process. Upon its introduc-
tion, their model demonstrated remarkable performance on the PASCAL
VOC dataset, surpassing existing benchmarks [20].

The subsequent phase in developing semantic segmentation models
was marked by the introduction of encoder-decoder structures, exem-
plified by the U-Net series. These models were designed to retain
detailed information through skip connections. Ronneberger et al. [16]
provided a seminal architecture in this category. The encoder was
designed for contraction, capturing the contextual details of the pixels,
whereas the decoder focused on expansion, allowing for precise locali-
zation. Additionally, the architecture utilized skip connections linking
the contractive and expansive components, enhancing the model’s ac-
curacy in pixel segmentation. Initially developed for medical imaging,
this model has since become a standard in various other fields due to its
effectiveness and remains widely adopted.

Building on the success of deep convolutional models for semantic
segmentation, Chen et al. [21] combined a CNN trained for capturing a
certain level of feature representation with a fully connected conditional
random field (CRF) for refining the segmentation results from the CNN.
The addition of CRF considered the dependencies and context of pixels
that helped refine the results from CNN. The architecture is referred to as
DeepLab, and improvements through research have led to several vari-
ants of the architecture (e.g., versions v1, v2, v3, v3+). At the time of
their work, the hybrid approach of combining CNN with fully connected
CRF achieved state-of-the-art results on semantic segmentation tasks.

Sultana et al. [22] conducted a comprehensive review and analysis of
semantic segmentation models that relied on convolution-based tech-
niques before ViTs emerged for image segmentation tasks. They cate-
gorized CNN-based semantic segmentation models into five principal
architectural frameworks: (i) networks composed entirely of convolu-
tional layers, (ii) networks incorporating dilated/atrous convolutions,
(iii) networks employing a top-down/bottom-up strategy, (iv) networks
that integrate global contextual information, and (v) networks that
enhance the receptive field and incorporate multi-scale context. Notable
examples within these categories include (i) FCN, (ii) DilatedNet and
DeeplLab, (iii) Deconvnet, U-Net, SegNet, FC-DenseNet, (iv) ParseNet,
GCN, and EncNet, and (v) DeepLabV2, DeepLabV3, PSPNet, and Gated-
SCNN. Their analysis offers an extensive overview of the field by
providing a detailed comparison of these architectures and their
respective advantages and limitations. Readers are encouraged to refer
to their review for a more detailed examination [22].

The introduction of transformers and their extension to vision data
have paved the way for their application to image semantic segmenta-
tion tasks. Transformer models are built upon the self-attention mech-
anism, which enables parallel data processing and the capture of long-
range dependencies. This key attention feature allows transformers to
selectively focus on relevant information, marking a substantial shift
from the sequential processing typical of earlier natural language pro-
cessing (NLP) models. Dosovitskiy et al. [23] extended the self-attention
mechanism to visual data by representing an image as a series of tokens
from 2D patches. This adaptation has recently prompted interest in
applying self-attention mechanisms to vision-related tasks. The initial
implementation of ViTs in semantic segmentation was introduced by
Zheng et al. [24] in their segmentation transformer (SETR) model,
which employs a pure transformer instead of the traditional encoder,
systematically reducing the spatial resolution of inputs. Since then,
several ViT architectures for semantic segmentation have been
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developed. Thisanke et al. [17] provide a detailed review and compar-
ison of significant ViT architectures used in semantic segmentation.
Their review offers insights into the increasing applications of ViTs in
this field.

The latest research in CV for semantic segmentation tasks continues
to be guided by the needs of specific domains, efficient architectures,
and data challenges. The following section discusses the applications of
semantic segmentation in AM, the domain of interest for the current
work.

2.2. Applications of semantic segmentation in additive manufacturing

AM technology is rapidly progressing toward industrial maturity.
The freedom in deposition mechanisms and material compositions en-
ables the development of new materials whose microstructure brings
unique challenges (e.g., segmentation of processing defects). Integrating
Al theory and ML applications with AM has expedited its development.
These applications are well documented in the open literature [25]. The
AM contexts to ML solutions cover a broad spectrum of data modalities
and information representations [26]. Among other applications, se-
mantic segmentation is of interest to the data-driven AM community for
in-process and post-process evaluation of quality for the deposited ma-
terial by investigating macro and microstructures. As a result, several
applications of image semantic segmentation models already exist in
AM, both for 2D and 3D data representation captured at different stages
(e.g., in-situ, ex-situ) of the AM process flow.

Applications of semantic segmentation in AM are predominantly
focused on in-process datasets (e.g., monitoring) and post-process
datasets (e.g., evaluation). In-process applications aim to swiftly iden-
tify defects and irregularities during manufacturing by segmenting the
relevant pixels. Scime et al. [27] designed a CNN-based semantic seg-
mentation architecture named dynamic segmentation CNN (DSCNN).
This model was designed for real-time segmentation at the native res-
olution of both visible-light and infrared imaging systems and is
adaptable across different machines, process technologies, and sensing
systems. Moreover, recent efforts in semantic segmentation within AM
have also concentrated on anomaly detection of powder beds in selective
laser sintering processes [28]. Other in-process applications involve
image segmentation under varying printing conditions of fused filament
fabrication processes [29] and segmenting areas of interest from in-situ
sensing representations [30]. A recent development in semantic seg-
mentation for in-situ defect detection addresses the challenge of
imbalanced datasets. Wang [31] introduced a class-aware semantic
contrast and attention amalgamation model tailored explicitly for se-
mantic segmentation. The proposed model demonstrated effective per-
formance in scenarios with data imbalance.

Semantic segmentation techniques are also gaining traction for post-
process datasets in AM as they facilitate rapid structure evaluation.
These techniques are of particular interest within the data-driven AM
community, as they enable the quantification of multi-scale features (e.
g., macro, meso, micro), which are crucial for quality assessments. Scott
et al. [11] integrated SEM images with synthetic thermal tomography
images using a common U-Net encoder. This network segmented defects
in the usual manner and classified their parameters by leveraging the
encoded features for a subsequent fully connected network. Their
approach enhanced the segmentation of thermal tomography results by
incorporating SEM images. It led to superior performance compared to
traditional methods. However, it did not address data scarcity and class
imbalance challenges.

Similarly, Rose et al. [13] implemented a convolution-based se-
mantic segmentation model to automate the segmentation of NiCrBSi-
WC MMC metallographic images. This model specifically segmented
carbide particles whilst designating the matrix as the background.
Although their research utilizes the same MMC as the current work, their
approach was limited to binary segmentation. It did not tackle class
imbalances in AMed optical metallographs, which was addressed in a
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Fig. 1. Steps to prepare SEM images for additively deposited Ni-WC MMC powder on steel substrate.

1000pm

Carbide Particles

Fig. 2. Stitched panoramic sample cross-section based on optical microscopy. The lower portion of the figure shows an overlaid ground truth mask. Carbide particles
and the surrounding matrix are highlighted owing to their relevance to this analysis. Optical microscopy does not effectively highlight the damage to reinforcement

carbide particles from higher thermal conditions during processing.

recent work [10]. To the best of the authors’ knowledge, no approach in
the open literature has yet focused on addressing challenges associated
with SEM images from Ni-WC MMCs, such as segmenting diluted and
reprecipitated carbides, representing anomalies of the processing con-
ditions [32].

Recent advancements in the segmentation of AMed metallographic
images have seen the adoption of ensemble methods to address the
complexities of segmenting multi-phase materials. Luengo et al. [33]

conducted detailed investigations using CNN-based architectures on
their publicly available MetalDAM SEM dataset, introduced alongside
their study. They developed an ensemble model tailored for semantic
segmentation tasks, where their stacking-based approach demonstrated
superior performance compared to the individual models. In parallel,
Biswas et al. [34] developed an ensemble comprising three dilated,
attention-guided U-Net models. The outputs of these models were
combined pixel-by-pixel to construct the final segmentation mask. While
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Fig. 3. A sample image from the SEM analysis captured with a BED-C signal at
1000x magnification. At the bottom, a labeled ground truth mask highlights
the dilution band and reprecipitated carbide particles. These two phases
highlight damage to the reinforcing carbide particles, and their quantification
can support decision-making during the process development.

both ensemble strategies yielded encouraging results, these did not
include the minority and challenging-to-segment precipitate class
within their predictions. These applications were also aimed at optical
microscopy images of AMed structures.

The applications of semantic segmentation in AM are mostly limited
to fully CNNs, while transformer architectures are gaining traction due
to their global context modeling and flexibility, necessitating a sys-
tematic investigation of key ViT architectures and associated methods.
Moreover, there is a need to generate material specific datasets to
accelerate engineering applications of AI in AM. The current work
covers these gaps through segmenting SEM images and quantitatively
analyzing anomalies of AMed MMC structures to optimize the process-
ing parameters by limiting damage to reinforcement particles (diluted
carbides and reprecipitated hard phases in SEM).

3. SEM dataset generation

The SEM images presented in this study were obtained through DED-
based processing of Ni-WC MMC powders. Fig. 1 shows the major phases
of the processing pipeline for SEM dataset generation, starting with the
deposition process (Phase A).

The DED system consisted of a 6-kW fiber laser, a twin-disk powder
feeder, and a modified milling platform for substrate positioning. Before
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conducting the experiments, the laser was calibrated using a beam
profiler to attain the optimal spot size (approximately 5.5 mm) suitable
for wear-resistant overlay applications of Ni-WC MMCs. Additionally,
the powder feed rate was precisely adjusted to within a tolerance of +1
g/min by modifying the hopper’s rotational speed. Following the cali-
bration phase, the system was prepared for the experimental trials. Steel
substrates were first milled and marked with reference lines aligned with
the deposition direction at 0, 25 %, 50 %, 75 %, and 100 % along the
deposition length (e.g., 200 mm). These reference lines facilitated the
correlation of sensor data with metallographic evaluations. Subse-
quently, the test plates underwent cleaning with acetone and were
preheated using a propane torch to temperatures exceeding 260 °C.
After preheating, the plates were allowed to cool to approximately
260 °C to enhance deposition quality. Any oxides that formed on the
plate surfaces during preheating were removed using a wire wheel. The
deposition head was then positioned at the starting point, and the
appropriate nozzle spacing was established before depositing the beads
on the steel substrates.

For the metallographic examination of individual beads within the
dataset, the beads were sectioned perpendicular to the deposition di-
rection (Phase B in Fig. 1). The sectioned samples were subsequently
embedded in Bakelite to facilitate the metallographic analysis. Post-
embedding, the samples underwent a series of grinding steps using
progressively finer SiC papers (80 grit, 120 grit, 220 grit, 500 grit, and
1200 grit) to achieve a flat, smooth surface and minimize the grinding
artifacts. The grinding and polishing of the samples were performed
using the Saphir 550 grinding and polishing system manufactured by
ATM Qness GmbH. This equipment maintained a consistent applied
force of 200 N for each abrasive grain over two minutes. Following the
grinding process, the samples were polished for eight minutes under a
force of 25 N to eliminate any residual grinding marks. To make the
heat-affected zone (HAZ) in the cross-section more noticeable, the
samples were etched with Nital (approximately 3 % nitric acid in
ethanol) for ten seconds and subsequently cleaned with ethanol to
remove any etching residues. The prepared samples were then examined
using an Olympus BX53M microscope at a magnification of 10x (Phase
C in Fig. 1). Optical microscopic images were automatically captured
using Olympus Stream Motion software, which employed an autofocus
and stitching technique to achieve a resolution of 0.97 pm per pixel. A
typical resulting cross-section is shown in Fig. 2 alongside the labeled
ground truth.

A subset of samples was identified for SEM analysis, and the analysis
was carried out on JEOL-JCM 7000 NeoScope Benchtop SEM (Phase D in
Fig. 1). Specifically, during optical microscopy, the samples with
premise for having diluted and reprecipitated carbide particles were
selected for further investigation with SEM. Each selected sample was
first individually mounted on the stage of the SEM, and an electrically
conductive, non-porous carbon tape was used to act as a conducting path
to prevent electric charge buildup on the sample surface (which would
lower the image quality/resolution). The SEM chamber was then evac-
uated to establish high vacuum conditions. When applicable, the view
was adjusted to visualize the samples in the correct orientation with the
bead reinforcement area set upside. Manual adjustment for visual con-
ditions was preferred over automatic focus as it provided better results
at the expense of effort. The low-angle detector C of backscattered
electrons (BED—C) was found to work best for obtaining compositional
images of the cross-section under focus, though different signals were
tested. The landing voltage and working distance were fixed at 15.0 kV
and 12.8 mm, respectively. All samples were analyzed across a range of
magnification levels (270x, 500x, 600x, 700x, 800x, 1000x), and
subsequently, the images were recorded for ML modeling. Out of the
analyzed cross-sections, sample #29 led to the most representative
carbide defects and was selected for the subsequent modeling. The main
objective of ML is to assist with high throughput and accurate quanti-
tative metallography. Therefore, labeled higher magnification images
(1000x, 800x, 700x) were used for training while validating and
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Fig. 5. Original and augmented crops on a sample input image from the SEM dataset.

testing the models at lower magnification (600x) to mimic real-world
SEM analysis.

Fig. 2 shows an optical microscopy image for a sample cross-section.
The phases of interest are labeled in the sample and highlighted in the
overlaid mask. Among these, carbide presence is of particular interest as
it determines the quality of overlayed deposition for functional parts.
While optical microscopy has significance for efficiently evaluating the
quality of depositions for practical applications, it is difficult to visualize
the carbide degradations and quantify their presence. Fig. 3 shows a
sample SEM image from a deposited cross-section. The unique phases

are labeled and represented by the overlaid mask. The carbide dilution
band and reprecipitated carbides are highlighted, as these two are
closely related to the anomalies of the processing parameters at higher
thermal conditions.

The melting and subsequent re-solidification of the Ni-Cr-B-Si ma-
trix, which contains substantial quantities of tungsten and carbon,
induce significant modifications in the carbide morphology. These
structural changes result in a considerable reduction in the abrasion
resistance as well as the impact toughness. Since tungsten carbide is the
primary wear-resistant component within the MMGC, it is critical to
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minimize any thermal degradation of this carbide. The proportion of
undamaged tungsten carbide in the deposit is the most critical factor in
determining the relative performance of the deposition after porosity.
Since porosity is easily detected optically, the SEM analysis focuses on
segmenting the two types of reinforcement degradation namely dilution
band and reprecipitated carbides [10]. These degradation phases are
clearly visible in SEM images, which enable their segmentation and
quantification to support process characterization.

The images were labeled (Fig. 1 Phase E) in the web-based software
tool Supervisely [35], whose interface is shown in Fig. 4. A brushing tool
was used at pixel resolution (20 pixels) to label the SEM phases of in-
terest manually. To optimize the time-consuming labeling effort, the
labeling order was carefully selected, starting with the matrix where the
entire image was masked as the matrix class. This was possible through

Convolution Operation
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the overlay feature, which allows multiple pixel labels with preference
given to the most recent value. Following this, entire carbide particles
(including non-diluted phases) were labeled as the dilution band, which
was subsequently updated by drawing an inner enclosure of the carbide
mask on the existing dilution mask. This strategy made separating the
dilution band from carbide particles easier by eliminating any repetition
of effort when labeling intricate boundaries of dilution bands. Finally,
the reprecipitated carbides were labeled, which represented the main
portion of the labeling effort. Porosities did not contribute to the
decision-making for the labeling sequence due to their highly sparse
presence and, as such, these were eventually removed from the subse-
quent comparison study to keep the focus on the carbide defects.
Moreover, porosities can be quantified through optical microscopy to an
acceptable degree, eliminating the need to include them in SEM seg-
mentation task. The “Export with Masks” option was used for the data
export process. An older version (e.g., 2.0.6) was chosen to ensure that
the machine mask order corresponded with the interface’s default
display. This selection was crucial because newer versions of the
application exhibit a tendency for smaller area objects to overwrite
larger ones, which could compromise the integrity of the annotations.

A total of four SEM images (each 1280 pixels by 960 pixels) were
labeled at magnifications 1000x, 800x, 700x, and 600 x, producing 45
crops (50 % x-y overlap) in total, with each crop size of 512 pixels by 512
pixels. Subsequently, this labeled dataset was then augmented (Fig. 1
Phase E) using flips (horizontal and vertical), rotates (random 90 de-
grees), elastic transform (alpha = 1.0, sigma = 50.0, linear interpola-
tion), grid distortion (num_steps = 5, distort limit = +0.3, linear
interpolation), contrast (0.3, 0.4), and brightness (0.2, 0.3). The specific
contrast and brightness levels were based on visual validation, as higher
values lead to invalid augmentations (e.g., leading to no difference be-
tween the dilution band and the carbide body). All augmentations were
implemented using the Albumentations library [36]. This process
resulted in 405 crops for the comparison process. Fig. 5 illustrates the
applied augmentations against the original sample crop through
visualizations.

4. Segmentation operations and architectures

This section discusses the segmentation operations and architectures.
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Fig. 7. Pictorial comparison between a convolution operation (left) and a self-attention operation (right). Unlike convolution, which applies the same kernel across
the entire image grid to generate feature maps, the self-attention operation considers all relevant input components when generating output for each input element.
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Table 1

Segmentation architectures under comparison. In the table, ‘L’" refers to layers
in the architecture, ‘P’’ refers to patch size of the input used in the transformer
backbone, ‘W’ specifies the attention window size for Swin-based transformer
backbones. ‘b0’ represents the SegFormer variant used in the comparison.

Architecture # Encoder/ Method/ Parameters Reference
backbone decoder
Reference .
CNN ResNet (50 L) DeepLabV3+ 43,655,648 [39]
Transformer 1 Swm‘fvl;a)se P4 UPerNet 121,238,503 [43]
Transformer 2 VITP(llgrge SETR 309,351,977 [24]
Transformer 3 ViT (Base P16) DPT 109,674,708 [44]
Transformer 4 MiT (b0 P4) SegFormer 3,719,018 [45]
Transformer 5 ViT (Base P16) Segmenter 102,385,162 [46]
Transformer 6 Swin Sx;‘;all P4 MaskFormer 63,095,272 [471
Transformer 7 Swin ‘(,\Slx;;all P4 Mask2Former 68,777,896 [48]

The comparison is being done between fully convolutional network
(reference CNN) and ViTs. ViT architectures can include convolutional
and fully connected layers in addition to self-attention blocks [37]. This
discussion on architectures follows basic convolution and self-attention
operations. An architecture contains both the encoder (or backbone),
which usually extracts the features from input images, as well as the
specific segmentation method (or segmentation head or decoder), which
converts the extracted features into final predicted masks. These dis-
cussions are limited to transformer-based architectures, whereas the
details on the reference CNN architecture can be found in the original
ResNet backbone [38] and segmentation method papers [39].

4.1. Convolution and self-attention

Fig. 6 compares a typical convolutional layer with an attention layer.
The first step of a convolutional layer is a kernel-sliding operation that
computes dot products between the kernel values and the covered image
grid region. The results of this linear transformation go through a non-
linear activation function, which enables an architecture employing
convolutions to learn non-linear relationships between inputs and out-
puts. Pooling (max-pooling or average-pooling) is often applied to the
resulting grids and helps to reduce the spatial dimensions. Finally,
before the resulting feature maps are fed to the next convolutional layer,
normalization (e.g., batch, instance, layer) is typically used to stabilize
the learning process by normalizing the output of activation functions.
Eq. 1 represents the convolution operation.

kK k¢
yli,j,c] = Z Z Zw[m n,c).xfi+m,j+n,c]+b[c] (@))
m=-k n=—k C
Where:
¥[i,j, c]: The output feature map at spatial position (i,j) and channel c.
w([m, n, ¢|: Convolution filter weights of kernel size k x k
x[i+m,j+n,c]: Input feature map at position (i+m,j+n) and
channel ¢
b[c]: Bias term for channel c
C': Number of input channels
Unlike the fixed convolutional filters, which apply the same trans-
formations across an entire image, the self-attention operation enables
dynamic computation of the relevance for an input element based on all
other elements in the entire input sequence. The attention layer begins
by transforming the input sequence into queries (Q), keys (K), and
values (V) through learned linear projections. Next, the dot product
between Q and transposed K is calculated to determine how much each
input relates to the others. The attention scores are scaled by dividing
with the square root of the dimensionality of K to ensure numerical
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stability. These scaled scores are then passed through a Softmax function
to normalize them into attention weights. The attention weights are
finally multiplied with the corresponding V and summed to produce the
output for each input. The exact sequence of steps is repeated for all
input sequence elements. As illustrated in Fig. 7, while convolutional
filters focus on local spatial patterns with fixed receptive fields, self-
attention considers the entire input grid (e.g., Input #n contributing to
output #1), allowing it to capture long-range dependencies across an
image. For vision data, this capability makes self-attention particularly
effective in modeling global relationships, but it also requires flattening
the image into patch embeddings, adding encodings to retain positional
information, and handling higher computational costs compared to
convolution.
Egs. 2-5 represent the aforementioned self-attention operation.

di
Score(qi, ki) = gi.ki = Z Q[i,d].K]j,d] @
a1
Score(q;, ki)
Scaled Score(g;, k;) = ————~ 3)
(9, ki) N
a; = softmax (&L\/Eighki) ) @
k
N
Output(i) = Zaij.vj 5)
=1

Where:

gi and k; are query and key vectors for input positions i and j

dy represents the dimensionality of the key vectors

ajj represents the attention weight between positions i and j

v; is the value vector at position j and N represents the input elements
in the sequence

4.2. Vision transformer encoders or backbones

Table 1 lists the reference CNN and candidate transformer archi-
tectures alongside their encoders and decoders. A diverse set of encoders
was selected to evaluate the varying capabilities in feature extraction for
SEM image segmentation. The reference encoder (ResNet-50) represents
a widely used convolution-based backbone and is often regarded as a
benchmark for semantic segmentation. Among the transformer en-
coders, the ViT backbone (Base and Large variants) extracts fixed reso-
lution features through its global context modeling whereas the shifted
window (Swin) backbone (Base and Small variants) extracts hierarchical
multi-scale features through local attention in shift windows. The mix
transformer or MiT backbone (b0 variant) also extracts multi-scale
features but balances the performance with efficiency through its
lightweight design. This functionality could be ideal for real-time or
industrial applications. In the future, large encoders like BERT pre-
training of images transformers (BEiT [41]) can be considered for
comparison employing pertained encoder checkpoints. Moreover,
depending on the findings, encoders smaller than MiT such as the
MobileViT encoder (Extra Small variant with 2.3 million parameters
[42]) can also be investigated. As a result, the current selection provides
representative capabilities to investigate transformer backbones for
segmenting SEM images of AMed MMCs.

The transformer backbones considered in this study, ViT, Swin, and
MiT, represent distinct approaches to encoding features for vision tasks.
The ViT backbone uses a consistent patch size of 16 x 16 to generate
non-overlapping patches and applies linear embedding to produce
tokenized representations. ViT computes self-attention globally across
all patches, maintaining a fixed resolution throughout its layers, as
illustrated in Fig. 8. In contrast, the Swin backbone employs a hierar-
chical encoder with a patch size of 4 x 4 and applies shifted windows to
compute attention locally. It incorporates patch merging in deeper
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Fig. 8. Transformer-based backbones employed in the semantic segmentation architectures of this study. The red and grey patches symbolically highlight the
extraction of features with global and local attention as well as at varying scales. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

layers, progressively reducing spatial resolution by 4, 8, and 16 factors,
enabling multi-scale feature extraction. Finally, the MiT backbone
builds on these principles with overlapping patches for tokenization and
a hierarchical encoder comprising four transformer blocks. These blocks
produce multi-level feature maps at scales 1/4, 1/8, 1/16, and 1/32 of
the original image dimensions. To maintain feature consistency with
non-overlapping patches, MiT employs overlapped patch merging. This
design ensures both spatial continuity and efficient self-attention across
varying resolutions, as symbolically depicted in Fig. 8.

4.3. Segmentation methods

Similar to the transformer encoders, the decoders in Table 1 repre-
sent a diverse selection with methods that have been proposed to work
specifically with transformer encoders. DeepLabV3+ is based on atrous
convolutions that expand the receptive field and capture multi-scale
context and thus serves as a strong CNN reference for comparison.
Unified perceptual parsing network (UPerNet) can integrate hierarchical
feature maps from Swin transformer backbone to accomplish multi-scale
fusion. ViT for dense prediction (DPT) uses a transformer-based archi-
tecture to improve global context aggregation and has been proposed for
dense prediction tasks like semantic segmentation and depth estimation.
SegFormer contains a lightweight multi-layer perceptron (MLP) decoder
to process features from MiT encoder. This design has been shown to
maintain performance while offering simplicity. Segmenter extends
pure transformer architectures through mask embeddings for dense
pixel-level classification and can demonstrate the potential of attention
mechanism for SEM segmentation. SETR is another pure transformer-
based decoder and has been used in conjunction with a ViT encoder
for semantic segmentation. Finally, MaskFormer and its extension
Mask2Former have been proposed for universal segmentation tasks
(combining semantic, panoptic and instance segmentation) and repre-
sent advancements in decoder designs. This diverse selection of decoders
can be extended in the future by adding more transformer-based
methods for semantic segmentation (e.g., HRFormer [49],

Data2VecVision [50]).

Vision transformer for dense prediction or DPT introduces an
approach for dense or pixel-level prediction tasks (e.g., semantic seg-
mentation, depth estimation) by replacing traditional convolutional
backbones with transformer-based architectures. As depicted in Fig. 9
(A), the DPT framework begins by transforming an input image into a
sequence of patches. These patches are generated using a linear
embedding process or derived from a ResNet-50-based hybrid feature
extractor, with positional embeddings added for spatial context. The
transformer backbone processes these tokens at a uniform and high
resolution across multiple stages, enabling a global receptive field that
captures fine-grained details and broader spatial relationships. To
construct full-resolution predictions, the architecture reassembles to-
kens into feature maps at varying scales (e.g., 1/32, 1/16, 1/8, and 1/4
of the original image resolution) through hierarchical fusion modules.
These modules (shown in green between transformer and fusion mod-
ules in Fig. 9 (A)) progressively refine the features using convolutional
units and up-sampling. DPT uses a mix of hierarchical features and
convolution-based decoding to produce precise and globally consistent
outputs. This makes it very useful for dense vision tasks (e.g.,
segmentation).

The segmentation transformer or SETR presents an alternative
approach to semantic segmentation by treating it as a sequence-to-
sequence prediction task, departing from the conventional encoder-
decoder FCN framework. Instead of relying on progressive down-
sampling and convolutions to capture semantic context, SETR utilizes
a pure transformer-based encoder that processes an image as a sequence
of fixed-size patches, while maintaining the original spatial resolution.
This design allows for global context modeling at every layer of the
transformer by improving the ability to capture fine-grained details and
large receptive fields. Fig. 9 (B) shows that the architecture begins by
embedding non-overlapping image patches into tokens, which are later
enhanced with positional embeddings. These tokens are passed through
multiple transformer layers to generate comprehensive feature repre-
sentations. For pixel-wise segmentation, the architecture employs
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papers referenced in Table 1.

decoder designs, such as progressive up-sampling (SETR-PUP), which
reshapes and incrementally upscales feature maps to restore the original
image resolution, and multi-level feature aggregation (SETR-MLA),
which integrates features from different transformer layers to enhance
spatial accuracy. This framework eliminates the dependence on con-
volutional layers, achieving context-aware segmentation through the
transformer’s global attention mechanism.

10

Transformer for semantic segmentation or Segmenter model in-
troduces a transformer-based approach to semantic segmentation by
leveraging global context at each network layer. Unlike traditional
convolutional methods, Segmenter builds on the ViT architecture,
adapting it for segmentation tasks by treating image patches as tokens
and projecting them into embeddings. As illustrated in Fig. 9 (C), the
model consists of an encoder that transforms input images into patches,
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Fig. 10. Components of MMSegmentation forward function implemented for a model instance—figure adapted from official MMSegmentation documentation.

followed by the addition of positional information. These embeddings
are passed through a transformer encoder to capture global contextual
information. The output embeddings are then processed by a mask
transformer decoder, which generates class-specific masks via scalar
products, resulting in the final segmentation map. While a linear
decoder provides robust baseline performance, the mask transformer
decoder further enhances segmentation accuracy by generating detailed
class masks. This architecture demonstrates the potential of transformer-
based models in semantic segmentation by enabling fine-grained and
globally coherent predictions.

The Masked-attention mask transformer or Mask2Former is a uni-
versal architecture designed to handle a broad spectrum of image seg-
mentation tasks, including panoptic, instance, and semantic
segmentation. Unlike traditional approaches that necessitate specialized
architectures for each segmentation task, Mask2Former unifies these
under a single framework. The model architecture in Fig. 9 (D) com-
prises three key components: a backbone, a pixel decoder, and a trans-
former decoder. Masked attention within the transformer decoder leads
to localized features by limiting cross-attention to predicted mask re-
gions. This functionality improves the efficiency of feature extraction
and enhances the handling of small objects. The pixel decoder processes
multi-scale features, feeding them to the transformer decoder in a layer
by layer fashion. By removing redundant computation through learn-
able query features and reordered self- and cross-attention layers,
Mask2Former achieves superior performance across various segmenta-
tion benchmarks.

The Unified perceptual parsing network or UPerNet provides a ver-
satile multi-task architecture capable of recognizing various visual ele-
ments within an image, including scene contexts, objects, materials, and
textures. UPerNet effectively captures hierarchical multi-scale features
by integrating a feature pyramid network (FPN) and a pyramid pooling
module (PPM). The architecture presented in Fig. 9 (E) processes fused
feature maps at different scales and directs them to distinct output heads
for scene and object-level segmentation. In the context of semantic
segmentation, this fusion mechanism enhances spatial coherence and
captures fine-grained details. By focusing exclusively on semantic seg-
mentation, this framework takes advantage of UPerNet’s ability to
combine features hierarchically, which enables precise and reliable
segmentation results.

MaskFormer introduces a unified framework for tackling semantic
and panoptic segmentation tasks by leveraging a mask classification
approach rather than the traditional per-pixel classification paradigm.
As depicted in Fig. 9 (F), the architecture utilizes a backbone to extract
image features F, which are processed by a pixel decoder to generate
per-pixel embeddings. A transformer decoder utilizes these features and
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produces per-segment embeddings Q that correspond to a set of binary
mask predictions and their associated global class labels. This unified
approach simplifies the segmentation pipeline by treating each binary
mask as a standalone prediction. It allows the same model and training
procedure to address semantic and instance-level segmentation tasks. By
integrating segmentation inference through a dot product of mask and
pixel embeddings, MaskFormer achieves strong empirical results in
scenarios involving many classes.

SegFormer offers a simple and efficient framework for semantic
segmentation. It combines a hierarchical transformer encoder with a
lightweight MLP decoder. As illustrated in Fig. 9 (G), the transformer
encoder extracts multi-scale features using overlapping patch embed-
dings and a series of hierarchical transformer blocks. These blocks
progressively reduce the spatial resolution from & x % to £ x ¥ (H
represents image height, W represents image width). Notably, Seg-
Former eliminates the need for positional encodings, which helps avoid
interpolation issues when the testing resolution differs from the training
resolution. The lightweight MLP decoder directly fuses features across
multiple levels using feed-forward layers and up-sampling operations.
This approach integrates local and global attention mechanisms. The
framework provides variants from MiT-b0 (3.7 million parameters) to
MiT-b5 (82.0 million parameters), which successively demonstrate su-
perior efficiency and accuracy compared to prior methods. This com-
bination of simplicity and performance makes SegFormer a robust
choice for semantic segmentation tasks.

5. Training experiments

The dataset was split into 75 % training samples, 15 % validation
samples, and 15 % test samples for the experiments. The test and train
splits were composed of only the crops coming from the lowest magni-
fication (e.g., 600x). This was done to evaluate the potential of ML for
high-throughput segmentation, since a montage-based data extraction
can support fast SEM analysis of printed bead cross-sections at lower
magnifications, while also reasonably capturing the carbide defects.

The MMSegmentation framework of OpenMMLab was used to
conduct the experiments [51-53]. The MMSegmentation framework
provides a modular and flexible pipeline for semantic segmentation, as
illustrated in Fig. 10. The data preprocessor first processes input images
to generate normalized inputs for the backbone. Subsequently, the
backbone extracts hierarchical feature maps. Optional neck modules
further refine these feature maps before being passed to the decode
head. The head is responsible for producing segmentation logits. The
logits serve as the raw predictions of the model and provide valuable
information on the confidence of each class prediction. In “loss” mode,
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Fig. 11. Validation curves for percentage mean Dice Coefficient and percentage mean IoU on dilution band and reprecipitated carbides across the models

under comparison.

the decode head computes the primary segmentation loss. The logits
from the decode head are post-processed in “predict” mode to produce
final segmentation masks. When adapting models for specific tasks,
decode and auxiliary heads are modified by adjusting the number of
classes or by introducing task-specific loss functions. This modularity
allows for efficient customization and performance optimization across
diverse segmentation datasets and applications.

All MMSegmentation models were implemented using Python pro-
gramming language and the PyTorch deep learning framework. For each
model, the default configurations were adapted to meet the needs of our
dataset, which included setting the crop size to 512 by 512 pixels and
updating the preprocessor to handle the mean and standard deviation of
the dataset. The decoder head was updated by defining five custom
classes (e.g., matrix, porosity, carbide particles, dilution band, and
reprecipitated carbides) for SEM image segmentation. The class label
values were zero-indexed to meet the requirements of the library. As
mentioned in Section 3, the porosity class (index 1) was ignored in the
training process due to its sparse presence and irrelevance to the SEM
image analysis. A batch size of 4 was used across all experiments. All
models were trained for 5000 iterations with a 20-step validation in-
terval leading to 250 sets of validation metrics during training. One
model checkpoint with updated weights was saved at the end (e.g.,
5000th iteration), while the checkpoints with the best mean metrics
were also saved. Instead of using pre-trained weights from MMSeg-
mentation checkpoints, these were randomly initialized to mitigate the
impact of different pre-trained configurations (different datasets, ob-
jectives, and normalization conventions) on comparison results. These
differences could advantage particular backbones for reasons unrelated
to performance on SEM images. Across all experiments, five different
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seed values (e.g., 1, 2, 3, 4, 5) were used to compare the effect of
different weight initialization and dataset shuffling, while keeping
everything the same in the model configuration.

During training, a stochastic gradient descent (SGD) optimizer was
used to lower the training error in the process of iterative improvement.
A learning rate of 0.01, a momentum of 0.9, and a weight decay of
0.0005 were used during the optimization process. A combination of
schedulers was used to dynamically adjust the value of the learning rate,
which started with a linear warm-up (iteration < 1000) followed by a
cosine annealing schedule (iteration >1000). This combination sup-
ported stable initial training, followed by a gradual reduction in the
learning rate to enable smooth convergence and to avoid any local
minima.

Three different evaluation metrics were used to compare the per-
formance of models during training and on the test set: accuracy,
intersection over union (IoU), and f-score or Dice Coefficient. Accuracy
measures the proportion of accurately classified pixels against the entire
image or dataset. The IoU metric, also known as the Jaccard Index, is a
class-sensitive measure and less dependent on the total number of pixels.
The Dice Coefficient, also known as the f-score, quantifies the extent of
overlap between two distinct sets. In semantic segmentation tasks, the
Dice Coefficient measures the similarity between the predicted seg-
mentation results and ground truth. This metric is highly responsive to
the degree of overlap between the prediction and the ground truth mask,
making it especially effective for semantic segmentation where precise
overlap is essential. While mean IoU and f-score were recorded for all
models, special attention was given to models’ performance on seg-
menting the dilution band from the carbide particles and reprecipitated
phases from the matrix by recording per-class metrics. We also used a
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Table 2 Table 8
Mean test metrics for DeepLabV3+ with standard error across all five runs. Mean test metrics for Segmenter with standard error across all five runs.
Metrics mloU + SE mDice &+ SE mAcc + SE Metrics mloU + SE mDice + SE mAcc £ SE
Class Class
Matrix 91.87 £ 0.01 95.76 + 0.01 95.76 + 0.05 Matrix 74.76 £ 0.02 85.56 + 0.01 89.44 + 0.11
Carbide particles 97.69 + 0.02 98.83 + 0.01 98.58 + 0.05 Carbide particles 97.00 + 0.02 98.48 + 0.01 98.39 + 0.02
Dilution band 77.47 £0.16 87.31 £ 0.10 90.11 £+ 0.25 Dilution band 63.64 + 0.14 77.78 £ 0.10 77.25 + 0.15
Reprecipitated carbides 80.56 + 0.13 89.24 + 0.08 87.95 + 0.16 Reprecipitated carbides 41.31 £0.10 58.47 £ 0.10 52.22 + 0.29

Table 3 Table 9
Mean test metrics for SegFormer with standard error across all five runs. Mean test metrics for SETR with standard error across all five runs.
Metrics mloU =+ SE mbDice + SE mAcc + SE Metrics mloU =+ SE mDice + SE mAcc + SE
Class Class
Matrix 92.60 + 0.01 96.16 + 0.00 95.95 + 0.08 Matrix 75.96 + 0.04 86.34 + 0.03 87.41 £ 0.28
Carbide particles 98.09 + 0.02 99.04 + 0.01 98.80 + 0.05 Carbide particles 97.51 + 0.03 98.74 + 0.01 98.37 + 0.05
Dilution band 80.19 + 0.06 89.00 + 0.04 93.21 £ 0.10 Dilution band 70.78 £ 0.23 82.89 + 0.16 87.23 + 0.25
Reprecipitated carbides 82.05 + 0.04 90.14 + 0.02 88.18 +£ 0.13 Reprecipitated carbides 51.58 + 0.36 68.05 + 0.31 64.16 + 0.84
TP+ TN
Table 4 . . ) Accuracy = ————————— 6)
Mean test metrics for Mask2Former with standard error across all five runs. TP + TN + FP + FN
Metrics mloU + SE mDice + SE mAcc + SE Where:
Class TP = True Positives are the number of pixels correctly predicted as
Matrix 89.94 +£1.13 94.69 + 0.63 98.68 + 0.30 belonglng to the targ.et class. . .
Carbide particles 08.07 + 0.02 09.03 + 0.01 08.69 + 0.04 TN = True Negatives are the number of pixels correctly predicted as
Dilution band 80.31 +0.18 89.08 + 0.11 87.84 + 0.39 not belonging to the target class.
Reprecipitated carbides 77.12 + 3.57 86.89 + 2.40 79.89 + 4.24 FP = False Positives are the number of pixels incorrectly predicted as

Table 5
Mean test metrics for MaskFormer with standard error across all five runs.
Metrics mloU + SE mbDice + SE mAcc + SE
Class
Matrix 90.86 + 0.71 95.21 + 0.39 97.63 + 0.59
Carbide particles 97.97 £ 0.04 98.98 + 0.02 98.39 £ 0.07
Dilution band 78.12 £ 1.13 87.70 £ 0.71 87.10 +£ 1.88
Reprecipitated carbides 81.48 +1.34 89.77 + 0.83 86.65 + 2.34

Table 6
Mean test metrics for UPerNet with standard error across all five runs.
Metrics mloU + SE mDice + SE mAcc + SE
Class
Matrix 92.75 £ 0.01 96.24 + 0.01 96.10 + 0.02
Carbide particles 98.02 + 0.01 99.00 + 0.01 98.55 + 0.02
Dilution band 82.04 £ 0.43 90.13 £ 0.26 94.29 + 0.08
Reprecipitated carbides 83.92 + 0.37 91.25 + 0.22 89.97 + 0.44
Table 7
Mean test metrics for DPT with standard error across all five runs.
Metrics mloU + SE mbDice + SE mAcc + SE
Class
Matrix 91.57 + 0.02 95.60 + 0.01 95.57 + 0.03
Carbide particles 97.00 + 0.03 98.48 + 0.02 97.47 + 0.04
Dilution band 74.57 £0.18 85.43 £ 0.12 91.47 £ 0.09
Reprecipitated carbides 79.13 + 0.08 88.35 + 0.05 87.25 + 0.07

confusion matrix to visualize and compare the performance of models
across different classes, as it highlights which classes were consistently
confused for other classes by the models. Egs. 6-8 show basic formulas
of these metrics with parametric explanations.

belonging to the target class.
FN = False Negatives the number of pixels incorrectly predicted as
not belonging to the target class.

PG| P
IoU = - 7
Y TIPUG T TP FPEN )
Where:

P and G are the predicted and ground truth sets respectively.

PN G is the intersection (overlap) between prediction and ground
truth.

P UG is the union of the prediction and ground truth.

2|PNG| 2TP

= 8
IP[+|G| 2TP +FP+FN ®

Dice =

6. Discussions and findings

Fig. 11 (A-D) shows the performance of models on the validation set
during training. The plots are limited to 4000 iterations to highlight key
regions of performance improvement, as the order of performance for all
models remained the same for the rest of the training. The plots high-
light the overall mean Dice (mDice) and mean IoU (mloU) metrics for
carbide defect categories, namely dilution band and reprecipitated
carbides, as the overall mean may not be representative of performance
on these two categories of interest. UPerNet, with a Swin backbone,
performs the best in segmenting both categories. For dilution band
segmentation on the validation set, mIoU and mDice show that Seg-
Former and Mask2Former perform similarly, as the second-best seg-
mentation models. These are followed by MaskFormer and
DeepLabV3+, where the former model performs slightly better. DPT,
SETR, and Segmenter maintain the last three positions, with Segmenter
being the lowest-performing model.

Notably, the SegFormer model, while being much smaller than the
other models, achieves top performance in the first 500 iterations.
However, its capacity may be restricted for learning complex patterns;
this could have limited its performance against the UPerNet model in the
following iterations. For segmentation of reprecipitated carbides on the
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Fig. 12. Confusion matrices on the test set for each model. Presented results correspond to best performing model on dilution band out of the five runs. DeepLabV3+
(Seed 3, 5000 iteration) SegFormer (Seed 5, 5000 iteration), Mask2Former (Seed 1, 5000 iteration), MaskFormer (Seed 4, 5000 iteration), UPerNet (Seed 4, 5000
iteration), DPT (Seed 5, 5000 iteration), Segmenter (Seed 3, 5000 iteration), SETR (Seed 5, 5000 iteration).

validation set, mIoU and mDice show that while SegFormer is still the
second-best model after UPerNet, it is not the case for Mask2Former, as
it struggles to learn and segment reprecipitated carbides throughout the
training. The SegFormer model is followed by MaskFormer and Deep-
LabV3+, and the performance of these three models is close to each
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other. The fifth model in the performance is DPT, where Mask2Former
model performs lower and takes the 6th spot in segmenting reprecipi-
tated carbides on the validation set. The last two performing models
remain the same as the dilution band. However, their performance is
significantly lower on reprecipitated carbides (77.46 mDice dilution
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Fig. 12. (continued).

band versus 57.71 mDice reprecipitated carbides for Segmenter, 83.53
mDice dilution band versus 68.51 mDice reprecipitated carbides for
SETR).

6.1. Results

Tables 2-9 present predictions for each class using mean IoU, mean
Dice, and mean Accuracy over the entire test set. The standard error or
SE, as in [54], highlights the variations in the performance across the
five runs for each model. In the case of the dilution band, while UPerNet
maintains top performance also on the test set, Mask2Former performs
slightly better than SegFormer, followed by Mask2Former. The CNN-
based DeepLabV3+ model is ranked 5th on the test set for its perfor-
mance in segmenting the dilution band followed by DPT, SETR, and
Segmenter. Notably, the two masked transformers (MaskFormer &
Mask2Former) have much higher standard errors than any other model.
In the case of reprecipitated carbides, SegFormer performs better than
both masked transformers after the UPerNet model. The CNN-based
DeepLabV3+ performs better than one of the masked transformers
and is ranked 3rd. This performance could be explained based on the
ability of the CNN models to better capture intricate shape features, as in
the case of reprecipitated carbides. The variability of masked trans-
formers across the five runs makes their performance less robust, giving
an edge to UPerNet and SegFormer as the two top-performing trans-
former models.

Fig. 12 shows the confusion matrices for the best-performing run on
the test set across all models. The values are averaged over the entire test
set and presented as a percentage of the total pixels in each class.
Notably, the lower performance for all models can be attributed to
classification errors related to the dilution band and reprecipitated
carbide pixels. Between these two classes, the misclassification of rep-
recipitated carbide pixels as matrix pixels represents the highest
misclassification error across all models. While MaskFormer has the
lowest misclassification (5.91 %) error in this regard, the results could
be subjected to high-performing run as indicated earlier by higher SEs.
This makes SegFormer (7.64 % misclassified reprecipitated carbides)
and UPerNet (7.88 % misclassified reprecipitated carbides) the two top-
performing models in this regard, with UPerNet still performing better
overall on reprecipitated carbides (90 % correctly classified pixels).
While the dilution band has the second highest misclassification errors
after the reprecipitated carbides; these are more distributed between the
matrix and carbide particles, suggesting that all models struggle simi-
larly when classifying dilution band pixels as either matrix or carbide
particles. On dilution band pixels, UPerNet has the highest performance
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(94.33 %), with the SegFormer model as a close second (93.46 %).

6.2. Observations

Figs. 13 and 14 show the iterative improvement on the validation set
during the training of the best (UPerNet) and worst (Segmenter) per-
forming models on a sample of the SEM image dataset from the AMed
Ni-WC MMCs. In this study, the interval selected contained the most
improvement in performance across all training iterations. Fig. 13 il-
lustrates how the Segmenter model fails to precisely capture the context
of the dilution band, leading to misclassification of dilution band pixels
with the matrix, carbide particles, or even with reprecipitated carbides.
It also struggles to learn and segment reprecipitated carbides, as several
of these are misclassified for matrix. Lastly, some of the reprecipitated
carbides were consistently misclassified as carbide particles, indicating
that overall, the model struggles to learn the class-wise fine intensity
gradients, leading to poor contextualization and the subsequent
localization.

Fig. 14, on the other hand, highlights how the top-performing
UPerNet model promptly captures the context of each class and re-
fines the precise localization of dilution band and reprecipitated carbide
pixels over the remaining training iterations. One notable similarity
between the two models in these visualizations is their struggle to
consistently segment the partial dilution band on the left (e.g., without
the associated carbide body). The Segmenter model consistently seg-
ments only a portion of the dilution band across the training iterations,
whereas the UPerNet model randomly captures it, while missing the
band altogether for most iterations. This observation could highlight the
dependence of the models on the neighborhood context but requires
focused investigation before conclusion.

For practical evaluation, the models were also qualitatively tested on
a larger crop (e.g., 1280 pixels by 960 pixels) at lower magnification (e.
g., x600) comprising validation and test sets. Fig. 15 presents the results
for the UPerNet model alongside the confusion matrix highlighting the
quantified pixels. The original predicted mask was updated to replace
the misclassified pixels with red before being laid on the input image.
Most of the misclassified labels lie at the carbide-dilution and
reprecipitate-matrix boundaries, highlighting the source of segmenta-
tion errors. Interestingly, the small, diluted carbide at the bottom was
partially misclassified due to its relatively dense structure resembling
carbide particles.

Fig. 16 shows the results for the best-performing run of the model
with overall low performance. Like the UPerNet mask, the Segmenter
mask was updated to replace the misclassified pixels with red before
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Ground Truth

Fig. 13. Iteration-wise visual validation of predictions from Segmenter with ViT backbone during the lowest performing run (seed 5) from iterantion#150 to
iteration#2050 in steps of 100 on a random validation crop (e.g., sem600_x256_y0_HorizontalFlip).

being laid on the original input image. In addition to poor performance
on challenges discussed earlier (e.g., separating phase boundaries), the
Segmenter model also struggled to accurately segment the dilution band
and matrix pixels. Most notably, 39,877 matrix pixels in the original
image were misclassified as reprecipitated carbide, whereas 78,166
reprecipitated carbide pixels were incorrectly predicted as matrix. These
misclassifications led to an overall lower performance of the model.

16

Similar to the UPerNet model, the Segmenter model was also able to
identify partially appearing dilution bands, indicating its ability to learn
without depending on the neighborhood context of the pixels.

The misclassification errors at phase boundaries can be attributed to
two main factors: (i) annotation ambiguity, and (ii) model limitations.
Since phase boundaries in SEM images often exhibit gradual intensity
transitions, making precise pixel-level delineation can be subjective
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Fig. 14. Iteration-wise visual validation of predictions from UPerNet with Swin backbone during the highest performing run (seed 4) from iterantion#250 to
iteration#2150 in steps of 100 on a random validation crop (e.g., sem600_x256_y0_HorizontalFlip).

even for experts leading to some degree of annotation ambiguity.
Moreover, certain model architectures (e.g., transformers), despite their
global context awareness, may still struggle to capture fine-grained
gradients at small scales. The future work could focus on boundary-
aware loss functions or multi-annotator labeling to reduce such ambi-
guities leading to reduced misclassifications at phase boundaries.
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6.3. Practical considerations and recommendations

The confidence in the prediction of a model when segmenting classes
of interest can be highlighted using logits. A logit is a raw model output
from its final layer before it is normalized through an activation func-
tion. Fig. 17 (A) presents the logits across all classes to compare the
confidence in models’ predictions under comparison for segmenting
SEM images. The models are significantly more confident when
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Fig. 15. UPerNet checkpoint from 5000th iteration taken from best performing seed for evaluation on a larger image (e.g., 1280 pixels by 960 pixels). Misclassified
pixels are highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Segmenter checkpoint from 5000th iteration taken from the best-performing seed for evaluation on a larger image (e.g., 1280 pixels by 960 pixels).
Misclassified pixels are highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

predicting the pixels for the carbide particles and matrix compared to
the dilution band and reprecipitated carbides with the lowest values
corresponding to the dilution band pixels.

The plots in Fig. 17 (B) present logit values as a percentage of the
global maximum. It can be seen that masked transformers are more
confident on “easy-to-predict” matrix and carbide particle pixels, but
their confidence fluctuates on the dilution band and reprecipitated
carbide pixels. This behavior could also be the reason for the high SE in
the predictions of MaskFormer and Mask2Former on the test set. Fig. 17
(C) shows the logit values as a percentage of the maximum value within
each pixel category or class. DPT, UPerNet, and SegFormer models have
the highest values for logits when predicting the dilution band pixels.
Out of these three models, the UPerNet and SegFormer models per-
formed the best in predicting the dilution band on the test set. On the
reprecipitated carbides, these two models have similar logit values.
Notably, the CNN-based DeepLabV3+ has slightly higher logit values
and its performance in predicting the reprecipitated carbide pixels on
the test set is also comparable to UPerNet and SegFormer. This can be
attributed to the inherent characteristics of CNNs, as these models are
especially effective when detecting patterns, edges, and shapes, features
that are representative of the reprecipitated carbide pixels.

We compared single-image (using larger micrograph of Fig. 15 and
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Fig. 16) inference runtimes on a workstation with an NVIDIA RTX 4090
GPU using PyTorch and MMSegmentation library. We report median
per-image latency (milliseconds) and the corresponding single-image
equivalent throughput in frames per second (FPS = 1000/median la-
tency in milliseconds) and include the 90th-percentile latency (p90), the
time by which 90 % of runs complete, to characterize tail-latency vari-
ability. SegFormer achieved a median 42.6 milliseconds per image (23.5
frames per second) with p90 = 51.4 milliseconds, whereas SETR
required 396.0 milliseconds per image (2.5 frames per second) with p90
= 453.6 milliseconds, corresponding to an approximately 9.3 times
speedup on GPU (8.8 times by p90). On CPU, SegFormer ranin 1.18 s per
image (0.85 frames per second; p90 = 1.23 s) versus 23.19 s (0.04
frames per second; p90 = 23.29 s) for SETR. This reflected a 19.7 times
speedup (18.9 times by p90). These measurements reflect repeated
inference on the same single image and frames per second is reported as
the single-image equivalent (1000 divided by median latency in
milliseconds).

Based on the findings, the UPerNet method with the Swin backbone
is recommended for segmenting SEM images from AMed MMCs in sce-
narios where accuracy and robustness are desired, such as lab-scale or
research and development setups. This recommendation is supported by
the performance of the model on challenging features of dilution bands
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Fig. 17. Logits from the final layer of each model. (A) average raw values, (B) percentage of global maximum, and (C) percentage of class-wise maximum.

and reprecipitated carbides. For industrial applications where compu- 7. Conclusions and future works

tational resources and productivity are critical, the SegFormer model is

recommended as a promising alternative due to its lighter design and In conclusion, widely used semantic segmentation methods and en-
competitive performance. Moreover, future works are recommended on coders based on transformers were evaluated and compared for seg-
hyperparameter variations, as well as lighter and high-capacity seg- menting damage to the carbide particles at higher thermal conditions in
mentation methods to build upon the findings of the current work. the case of AMed Ni-WC MMCs. The SEM images were used as the inputs

and augmentations were applied to enhance the dataset and make the
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models more robust to changing data distributions. Three transformer
backbones, namely ViT, MiT, and Swin, with different patch sizes and
depth variants, were used to extract the features from the SEM images
during training. These features were fed to different methods for seg-
menting the input images into pixels of the matrix, carbide particles,
dilution band, and reprecipitated carbides. Specifically, SegFormer,
MaskFormer, Mask2Formaer, UPerNet, DPT, Segmenter, and SETR
based methods were used for the semantic segmentation task. A refer-
ence CNN architecture, DeepLabV3+, with ResNet-50 backbone was
also included in the comparison. During training, all models, except
SETR and Segmenter, were found to reasonably learn the pixels of car-
bide anomalies. The masked transformers, MaskFormer and Mask2For-
maer, were found to fluctuate significantly across the five runs during
training. UPerNet and SegFormer were found to perform best on dilution
band (94.33 % and 93.46 % overall accuracy on test set, respectively)
and reprecipitated carbide (90.97 % and 88.52 % overall accuracy on
test set, respectively) classes. The low-performing models SETR and
Segmenter were found to struggle with the precise localization of the
dilution band features. The models were also tested on a large industrial
image mimicking high throughput analysis for process characterization.
The primary source of misclassification was found to be the segmenta-
tion errors arising from poor separation between the carbide-dilution
and matrix-reprecipitate boundaries. For practical considerations, the
models were also compared in terms of predicted raw logits from the last
layer before the post processing step for generating final mask. Much
higher logit values were observed for all models on carbide particles and
matrix pixels with the lowest logit values reported for the dilution band
pixels. The top-performing UPerNet and SegFormer models had com-
parable logit values across all four classes. For industrial deployment,
SegFormer can be preferred over UPerNet owing to its much smaller
size; however, from pure performance considerations, UPerNet, with its
higher capacity, could be more suited to handle changing data
distributions.

In the future, the current comparison can be made more robust by
extending through the following considerations:

- Within each selected model, more variations of key hyperparameters
(e.g., batch size, learning rate, optimizer) can be considered

- The effect of specific components (e.g., multi-feature backbones) can
be investigated in detail to evaluate their impact on the segmentation
task. Moreover, different available variants (small, base, large, and
extra large) of the existing encoders can be tested

- While the current study considered representative categories, the list

can be expanded to include more transformer-based architectures (e.

g., BEiT, Data2VecVision, HRFormer)

The developed models can also be blind tested on Ni-WC images from

other SEM setups to evaluate their generalizability in segmenting

carbide damages

To achieve absolute performance limits, more SEM data can be

generated through new experiments or relevant augmentations. The

enhanced dataset can improve the performance of selected models by

providing robust model generalization
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