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Abstract: Microfluidic Live-Cell Imaging (MLCI) yields data
on microbial cell factories. However, continuous acquisition
is challenging as high-throughput experiments often lack
real-time insights, delaying responses to stochastic events.
We introduce three components in the Experiment
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Automation Pipeline for Event-Driven Microscopy to Smart
Microfluidic Single-Cell Analysis (EAP4EMSIG): a fast,
accurate Multi-Layer Perceptron (MLP)-based autofocusing
method predicting the focus offset, an evaluation of
real-time segmentation methods and a real-time data
analysis dashboard. Our MLP-based autofocusing achieves
a Mean Absolute Error (MAE) of 0.105 pm with inference
times of 87 ms. Among eleven evaluated Deep Learning
(DL) segmentation methods, Cellpose reached a Panoptic
Quality (PQ) of 93.36 %, while a distance-based method was
fastest (121 ms, Panoptic Quality 93.02 %).

Keywords: deep learning; experiment automation; mi-
crofluidic; live-cell; segmentation; MLP-based autofocusing

Zusammenfassung: Die mikrofluidische Bildgebung leben-
der Zellen liefert Daten iiher mikrobielle Zellfabriken. Aller-
dings ist die kontinuierliche Datenerfassung eine Heraus-
forderung, da Hochdurchsatz-Experimente oft keine Echt-
zeiteinblicke bieten und so Reaktionen auf stochastische
Ereignisse verzogert werden. Wir stellen drei Komponen-
ten einer automatisierten Pipeline zur ereignisgesteuer-
ten Mikroskopie fiir die intelligente mikrofluidische Ein-
zelzellanalyse vor: eine schnelle und prazise MLP-basierte-
Autofokus-Methode, die den Fokusversatz vorhersagt; eine
Evaluation von Echtzeit-Segmentierungsverfahren; sowie
ein Dashboard fiir die Echtzeit-Datenanalyse. Unser MLP-
basierter Autofokus erzielt einen mittleren absoluten Fehler
von 0.105 pm bei einer Inferenzzeit von 87 ms. Unter elf
evaluierten Deep-Learning-Segmentierungsmethoden er-
reichte Cellpose eine Panoptische Qualitdt von 93.36 %,
wéhrend ein abstandsbasierter Ansatz mit 121 ms (Panop-
tische Qualitat 93.02 %) am schnellsten war.

Schlagwoérter: Deep  Learning;  Experimentautomati-
sierung; Mikrofluidik; Bildgebung lebender Zellen;
Segmentierung; MLP-basierte Autofokussierung
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1 Introduction

Microorganisms are ubiquitous and diverse life forms that
play a crucial role in ecological processes, human health,
and industrial applications [1]. The study of their behavior,
genetics and interactions at the single-cell level is therefore
of fundamental importance for advancements in biotech-
nology, environmental protection, and medicine [2], [3].
Microfluidic Live-Cell Imaging (MLCI) has established itself
as a powerful technology to observe dynamic processes in
microbial populations with high spatial and temporal res-
olution, thereby generating large amounts of experimental
data [4]. However, the effective use of this technology in
high-throughput experimental setups, where thousands of
microcultures are usually analyzed in parallel, poses tech-
nical challenges [5]. Therefore, real-time responsiveness is
crucial because delayed reactions to biological events (e.g.,
sudden changes in cell growth, cell stress responses) or
technical issues (e.g., focus drift, fluidic disturbances) can
irreversibly compromise data quality or even result in the
failure of the entire experiment.

To perform such a MLCI experiment, microfluidic chips
are used, which contain thousands of individual chambers
with parallel-grown microbe colonies. Microbes are typi-
cally injected into these chambers at the beginning of the
experiment. Due to variability in production, each chip can
have a slightly different shape in z, as well as in x and
y. While variations in the x- and y-dimensions of the chip
can be compensated by detecting the chamber via real-time
Deep Learning (DL) method [6], inaccuracies along the z-
axis require a dedicated focusing method. In terms of our
high-throughput experiment, a real-time one is essential
because a loss of focus could make it partially or entirely
infeasible to recognize the microorganisms. Therefore, aut-
ofocusing per chamber is essential for maximum informa-
tion extraction. However, existing autofocusing techniques
either rely on specialized hardware, which limits their flex-
ibility and increases costs, or depend on computationally
expensive image-based methods that are unsuitable for
real-time applications.

After refocusing, normally, the chamber would be
extracted via the mentioned detection method and the
microbes could then be extracted each via State-Of-The-
Art (SOTA) segmentation methods. But current SOTA meth-
ods, while highly accurate, often require extensive com-
putational resources, making them impractical for rapid
decision-making in high-throughput microfluidic experi-
mental setups.

If the microbes are extracted, they can be analyzed
in time-independent features like position, cell size, state
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(lively/dead) and time-dependent features like growth rate.
This information must be made available to the biologist
conducting the experiment so that they can generate live
findings and adjust the experiment settings if necessary. A
significant limitation is the lack of integrated systems that
enable comprehensive real-time analysis of the acquired
data and allow researchers to react directly to relevant
biological or technical “events”. Such events can include
critical phases in the cell cycle, cellular stress responses,
morphological changes, as well as technical malfunctions
such as focus loss or problems with fluidics [7]. This lack of
direct feedback and control capabilities delays the adaptive
optimization of experiments and the acquisition of more
profound insights, especially when investigating stochastic
cellular processes.

This vision of smart microfluidic single-cell analysis,
therefore, requires event-driven microscopy, where the sys-
tem autonomously or semi-autonomously reacts to detected
events. This represents an advancement over the estab-
lished workflow, where data is often analyzed only post-
experimentally. To realize this vision, a robust automa-
tion pipeline is needed that integrates fast and intelligent
components for image acquisition, processing and analysis.
Current solutions in experiment automation [8]-[15] often
cover only partial aspects or are not sufficiently modular
and adaptive for the specific requirements of MLCI with a
focus on event-driven approaches.

To achieve this, we are building on our work Experi-
ment Automation Pipeline for Event-Driven Microscopy to
Smart Microfluidic Single-Cell Analysis (EAPAEMSIG) [5] and
improving the autofocus, segmentation, and real-time dash-
board modules mentioned above:

1. Anovel, Multi-Layer Perceptron (MLP)-based real-time
autofocusing method designed to ensure continuously
high image quality: In contrast to existing approaches,
our proposed autofocusing method leverages a simpli-
fied MLP architecture that directly predicts the opti-
mal focus offset from rapidly computable image fea-
tures, thereby achieving both high-precision and real-
time performance without the need for additional
hardware.

2. A comprehensive evaluation of SOTA DL segmentation
methods to identify suitable models for event-driven
analysis: Since developing a new segmentation method
is beyond the scope of this paper, we instead perform
a detailed comparative evaluation of existing SOTA
segmentation models — task-specific, domain-specific,
and foundation models - to identify the most suitable
approach balancing accuracy and computational cost
for real-time applications in MLCI.
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3. A new real-time data analysis dashboard that allows
biologists to monitor ongoing experiments in detail,
visualizes analysis results in real-time, and offers
enhanced control options to react directly to detected
events. All proposed methods and evaluations are rig-
orously validated through extensive benchmarking on
representative microbial image datasets, ensuring the
robustness and practical relevance of the results.

By integrating these components, we aim to enhance
automated, event-driven analysis of microbial single cells.
In the following, we will describe the methodology of these
three components in detail, evaluate their performance,
and discuss their importance in the context of intelligent
experiment automation.

2 Related work

The successful automation of MLCI for insightful, high-
throughput single-cell analysis of microbes hinges on over-
coming challenges in experiment control, image acquisition,
and real-time data processing. This section reviews the SOTA
in these interconnected domains, starting with Experiment
Automation Pipelines (EAPs) and the emergence of event-
driven microscopy. We then delve into specific challenges
and advances in real-time autofocusing and real-time image
segmentation, critically evaluating existing approaches to
highlight the research gaps that motivate the contributions
of this paper.

2.1 Experiment Automation Pipeline and
rise of event-driven microscopy

EAPs are becoming increasingly vital in life science research
to enhance reproducibility, increase throughput, and man-
age complex experimental workflows [16]. In the context of
MLCI, which generates vast quantities of image data, robust
automation is essential [17], [18].

Recently, the paradigm of event-driven microscopy has
gained traction, aiming to make experimental systems more
intelligent and responsive. Several efforts have sought to
incorporate such principles. For instance, tools like Cyber-
Sco.Py [9] and MicroMator [10] have pioneered event-based
conditional microscopy and reactive microscopy work-
flows, respectively, allowing the system to adapt acquisition
based on detected image features. Dedicated systems for
event-driven acquisition [12] have further demonstrated the
potential to enrich experimental datasets by intelligently
responding to observed phenomena.
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However, while these event-driven systems showcase
the value of responsive experiment control, they often
focus on specific aspects of the image acquisition work-
flow or possess certain limitations when considering a
holistic, innovative single-cell analysis pipeline for MLCI.
For example, some systems might be tailored to particu-
lar hardware setups, offer limited modularity for easily
integrating diverse, new analytical tools (such as the here
presented advanced real-time autofocusing and versatile
segmentation capabilities required for immediate down-
stream decision-making), or might not provide comprehen-
sive, user-friendly dashboards designed for biologist-in-the-
loop interaction during complex experiments. A significant
hurdle often remains in the seamless integration of rapid
image processing (for both event detection and quantitative
analysis) with immediate feedback to microscope control
and interactive data visualization.

Beyond these specialized event-driven systems, a
broader range of EAP tools relevant to microscopy exists
(see Table 1 for an overview, referencing [11] and its
content). While tools for cybergenetic control (e.g., Chee-
tah [13]) advance control paradigms, and platforms like
PYthon Microscopy Environment (PYME) [8] support spe-
cialized niches such as super-resolution, many general
microscope control software packages (e.g., Pycro-Manager
[14], Python-Microscope [15]) provide essential low-level
control but often lack the integrated high-level intelligence
for event-driven experiment planning or sophisticated real-
time data analysis specifically tailored to single-cell MLCI.
Even more comprehensive pipeline approaches like Experi-
ment Automation Pipeline for Dynamic Processes (EAPDP)
[11] have primary objectives differing from the specific,
combined needs of smart, event-driven microbial single-cell
analysis, which requires rapid, adaptive image acquisition
coupled with immediate on-the-fly processing, event detec-
tion and visualization.

To the best of our knowledge, despite these valuable
contributions, there is still a clear lack of a complete,
modular, extendable, and adaptable pipeline in the field
of MLCI that specifically and seamlessly integrates rapid,
intelligent, and hardware-agnostic autofocus; robust, real-
time capable segmentation suitable for reliable event trig-
gering and quantitative analysis; and an intuitive, interac-
tive dashboard for real-time monitoring, in-depth analysis
and event-based intervention capabilities [5]. This identi-
fied gap strongly motivates the continued development and
enhancement of our EAPAEMSIG system and the specific
contributions presented in this paper.
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Table 1: Overview of SOTA EAP methods based on the implemented modules along with their limitations regarding the context of this work. PYthon
Microscopy Environment (PYME), Experiment Automation Pipeline for Dynamic Processes (EAPDP).

Method Modules Limitations
Microscope Real-time Real-time Real-time
control image processing data analysis experiment planner
CyberSco.Py [9] 4 v v v Supports only U-Net
MicroMator [10] v v v v Not actively used
Event-driven acquisition [12] v v v Other modules absent
Cheetah [13] v v v v Supports only U-Net
Pycro-Manager [14] v v v Other modules absent
Python-Microscope [15] 4 v Other modules absent
PYME [8] v v v Focus on
super-resolution
EAPDP [11] v v v v Focus on dynamic

process modelling

2.2 Challenges and advances in automated
autofocusing for event-driven MLCI

The successful execution of event-driven MLCI, as
motivated above, is critically dependent on consistently
acquiring high-quality images. Maintaining optimal focus
over many positions and long time periods is essential,
especially when imaging microbial cells in dynamic
microfluidic chambers. These setups can be challenging
due to low contrast, changing cell densities, and varying
media conditions. Traditional autofocusing approaches are
broadly categorized into hardware-based and image-based
approaches [19], [20].

Hardware-based methods, utilizing additional sensors
[20], can offer precision and speed. However, they typically
increase system complexity and cost [19] and may lack the
flexibility to easily integrate into highly adaptable, software-
centric event-driven workflows.

Image-based methods analyze image content to find the
optimal focal plane using various metrics [21]. While cost-
effective, they often struggle with the low-contrast samples
typical of some microbial cultures and can be computation-
ally intensive, especially if requiring the processing of entire
Z-stacks for each focusing event [22]. Furthermore, a critical
limitation of traditional metrics, such as those based on
image gradients (e.g., Sobel, Laplacian variance) or contrast,
is their inability to determine the direction of the required
focus adjustment. These methods can measure image sharp-
ness but cannot distinguish between a positive and a nega-
tive focus deviation. This lack of directionality makes them
unsuitable for rapid, closed-loop convergence, as the sys-
tem would oscillate without knowing whether to move the
objective up or down. For these reasons, a learning-based
paradigm that can predict both the magnitude and direction

of the focus offset is essential for robust, real-time control.
This computational load frequently renders them too slow
(i.e., exceeding latency requirements of tens of milliseconds)
for the rapid, iterative focus adjustments essential in real-
time, event-driven MLCIL.

Machine Learning (ML), particularly DL, offers promis-
ing alternatives by enabling models to predict optimal focus
directly from image data, potentially from single frames
[23], [24]. While Neural Network (NN) models can be inte-
grated into automation pipelines [18], challenges include
the need for extensive annotated datasets for training com-
plex architectures (e.g., deep Convolutional Neural Net-
works (CNNs) or Transformers) and ensuring robust per-
formance on novel organisms or experimental variations
[25]. Furthermore, many existing ML-based autofocus meth-
ods might still rely on Z-stack analysis or employ models
whose complexity does not meet the stringent low-latency
requirements of an event-driven system. This highlights the
need for lightweight, extremely fast (e.g., <100 ms predic-
tion time), yet accurate ML models for focus offset predic-
tion, like the MLP-based approach proposed in this paper,
which can operate efficiently without specialized hardware,
ideally using features from rapidly acquired images to pre-
dict the focus offset directly.

2.3 Real-time image segmentation for
microbial single-cell analysis in
event-driven workflows

For event-driven MLCI to enable smart single-cell analysis,
the rapid and accurate segmentation of individual micro-
bial cells within potentially dense and structurally com-
plex colonies is fundamental. This enables the extraction
of quantitative single-cell data (e.g., cell size, morphology,
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growth rate) and the real-time detection of cellular events,

which can then trigger experimental interventions. Clas-

sic image processing methods [26], [27] are generally ill-

suited for these tasks because they require manual fea-

ture engineering and parameter tuning. They also struggle
with changes in imaging conditions and cell appearance

[28], making them impractical for high-throughput, real-

time applications. DL-based methods have become the SOTA

for most biomedical image segmentation tasks due to their
superior accuracy and robustness [29]. For preliminary
tasks such as detecting the region of interest (e.g., the growth
chamber itself), established object detection models like You

Only Look Once (YOLO) [6] offer strong performance and

speed [30] and can be readily integrated. However, for the

more challenging task of segmenting individual microbial
cells, a careful selection of models is required:

— Task-specific models: Approaches like the distance-
based method [31] trained on data from microbes sim-
ilar to ours [32] (see Section 4) and Omnipose [33] are
often highly optimized for cell segmentation. While
achieving excellent accuracy, their performance in
terms of raw speed for true real-time feedback (i.e., sub-
100 ms processing), generalization to microbial species
significantly different from their training data, and
ease of deployment in integrated event-driven systems
need to be critically assessed for each specific MLCI
application.

— Domain-specific models: Well-known models like
StarDist [34], Cellpose 3 [35], and the Contour Pro-
posal Network (CPN) [36] offer good generalization in
biomedical imaging. However, their balance of accu-
racy versus computational cost is a key concern for
real-time microbial MLCI. Their out-of-the-box perfor-
mance on specific challenges, such as segmenting low-
contrast microbes or distinguishing individual cells in
extremely dense colonies under rapid imaging condi-
tions, may vary and thus warrants investigation.

— Foundation Models (FMs) Large-scale models like Seg-
ment Anything Model (SAM), incl. its variants [37], [38],
Florence-2 [39], BiomedParse [40], and 4M21 [41], offer
impressive generalization. However, for precise, real-
time instance segmentation of small, densely packed
microbial cells, their substantial computational foot-
print typically makes them too slow. Moreover, their
generalist nature might require significant prompting
or fine-tuning to achieve the instance-level accuracy
needed for reliable single-cell analysis, differing from
their typical “segment anything” behavior.
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Given this landscape, and the critical need for solutions
that balance high accuracy with very low latency for
event-driven workflows in microbial MLCI, a systematic
comparative evaluation of these leading DL segmentation
approaches — as undertaken in this paper — is essential to
identify the most suitable candidates. This review of the
related work highlights the existing gaps and challenges
in developing fully integrated, intelligent, and event-driven
EAPs for microbial single-cell analysis, thereby motivating
the specific contributions of EAPAEMSIG detailed in the sub-
sequent sections.

3 Methodology

The methods presented in this paper enhance our previ-
ously introduced EAPAEMSIG [5]. This modular pipeline (see
Figure 1), designed for automated, event-driven microflu-
idic live-cell experiments, comprises eight interconnected
modules. Briefly, these include (1) image acquisition; (2) real-
time image processing for single-cell instance segmentation;
(3) data and metadata management via an Open Microscopy
Environment Remote Objects (OMERO) database; (4 & 5)
management of simulated cell data from CellSium [43]
(where ground truth is inherently known) and support for
semi-automatic annotation using ObiWan-Microbi [44]; (6)
real-time data analysis with event detection and a dash-
board; (7) a real-time experiment planner; and (8) a micro-
scope control module.

Building on our previous evaluation of robotic middle-
ware [5], we have now effectively adopted the Dataflow-
Oriented Robotic Architecture (DORA) as the backbone of
our EAP. The decision to transition from Robot Operating
System (ROS) to DORA was motivated on the one hand
by the complexity of installing and maintaining ROS [45],
and on the other hand by DORA’s superior support for
asynchronous, low-latency communication between dis-
tributed modules, as well as its composable and scalable
architecture.

This work introduces novel methodologies and evalua-
tions for three critical components within the EAPAEMSIG
framework: MLP-based autofocusing, real-time image pro-
cessing (specifically, the evaluation of segmentation meth-
ods), and real-time data analysis. These are detailed in the
following sections.

3.1 MLP-based autofocusing

Maintaining optimal focus is essential for acquiring high-
quality image data in time-resolved MLCI. We propose



DE GRUYTER OLDENBOURG

Real-Time Image Processing

ChamberlD Detection

Segmentation

Image Acquisition

Microscope Control

pManager Autofocusing

Biological

Real-Time Experiment Planner

N. Friederich et al.: EAPAEMSIG === 813

Evaluation

ObiWan-Microbi 6000

5000

4000

3000

2000

1000

0
06:00 07:56 09:21 10:35 11:48 12:55 13:19 13:39

—Cell Size [um] ——Growth Rate [cell/min]

—=Cell Count

Real-Time Data Analysis

9

Event Detection

Imagin
g g Dashboard

Figure 1: EAPAEMSIG visualization. The pipeline consists of eight modules, represented by the light blue boxes and the OMERO database, arranged in
a cyclical process. The microbial images in the figure come from a dataset presented in [42]. The images from the experiment chip are from an internal

dataset. Adapted from [5].

a regression-based deep learning approach that predicts
the focus offset from rapidly computable image features,
enabling fast and accurate adjustments without the need for
additional, specialized microscope hardware.

3.1.1 Defining “perfect focus” and ground truth
acquisition

The ground truth for our model was established in a two-
stage process. First, for each field of view, an experienced
microscopist manually adjusted the objective to find the
visually optimal focus. This position served as the center-
point (zy) for the subsequent automated acquisition. A
symmetric z-stack was then acquired around this point.
For annotation, the mid-frame of this stack was systemat-
ically defined as the ‘perfect focus’ and all other frames
were labeled with their known physical distance from this
center.

3.1.2 Model architecture and feature extraction

We selected an MLP as our NN architecture, prioritizing
both computational efficiency and inherent ease of use. This
architecture offers a balance between predictive perfor-
mance and ease of implementation, making it highly acces-
sible for domain experts such as microbiologists. Its simpler
structure allows for more straightforward understanding,
troubleshooting, or retraining as new data becomes avail-
able. In contrast to more complex architectures like trans-
formers, which, while powerful, often come with higher
computational demands and a more intricate setup, our
choice of an MLP provides a more efficient and user-friendly
solution. This facilitates transparent integration into exper-
imental pipelines and supports broader adoption by the
scientific community.

Our MLP takes as input features from a single image
(the current, potentially out-of-focus view). We extract a set
of features known to correlate with image focus:
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— Image Pyramids: Laplacian and Gaussian pyramids
capture multiscale edge and intensity information.

—  Wavelet Transforms: Bi-orthogonal wavelets (types 1.1
and 1.3) analyze texture and detail at different frequen-
cies and orientations.

— Image Characteristics: Information about image orien-
tation and resolution are also included as features.

These extracted features form the input vector for the MLP.
The MLP consists of two hidden layers with Rectified Linear
Unit (ReLU) activation functions, AdamW optimizer with a
learning rate of 3 X 10~* and an output layer that predicts
a single continuous value: the focus offset (in pm), including
its direction (positive or negative), required to reach the
optimal focal plane.

3.1.3 Training and validation

To enhance robustness, data augmentation techniques,
including random flips and rotations, were applied during
training. The model was trained using Mean Absolute Error
(MAE) as the loss function, and K-fold cross-validation was
employed to ensure robustness.

3.1.4 Real-time operation

In operation, the trained MLP predicts the focus offset
from the features of a single, currently acquired image in
under 100 ms. This predicted offset is then relayed to the
microscope control module. While a single prediction is
designed to bring the image close to optimal focus, often
within the depth of the field, an iterative process is imple-
mented for enhanced robustness. This iterative capability
enables the system to reliably correct larger initial devia-
tions from focus and actively compensate for potential focal
drift resulting from environmental factors or mechanical
settling over extended experimental durations.

3.2 Real-time image processing

Accurate instance segmentation of individual microbial
cellsis crucial for extracting quantitative data and detecting
cellular events in real-time. Given the time constraints of
event-driven microscopy (target processing time <100 ms
for this work), this section outlines the methodology for
evaluating existing SOTA DL segmentation methods rather
than developing a new one.

The image processing workflow first involves identi-
fying the current chamber of interest within the acquired
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image. This can be achieved using established methods,
such as classical template matching, or contemporary DL-
based object detectors, like YOLO, selected based on the
specific experimental setup’s speed and accuracy require-
ments. Microfluidic structures extraneous to the growth
chamber are then computationally removed.

Subsequently, the content of the identified chamber,
primarily the microbial cells, is segmented to delineate
individual cell instances using a suitable segmentation
algorithm. Our goal was to identify models that strike a bal-
ance between accuracy and low latency. Given the diverse
landscape of segmentation models and their varying trade-
offs between accuracy, speed, and generalization capabil-
ities for microbial imagery (as discussed in Section 2.3),
a systematic benchmark is essential to identify the most
suitable candidates for our real-time pipeline. For this, we
conducted a benchmark (detailed in Section 4.2) compar-
ing various SOTA DL segmentation models (task-specific,
domain-specific and foundation models, as reviewed in
Section 2.3) on a representative microbial dataset. The eval-
uation focuses on their zero-shot performance in terms of
Segmentation Quality (SQ) (e.g., Panoptic Quality (PQ)) and
inference speed, to identify candidates suitable for integra-
tion into our real-time EAP4EMSIG pipeline.

3.3 Real-time data analysis

This module leverages the data generated from real-time
image processing (e.g., cell masks, cell size, growth rates)
to provide immediate insights and enable expert inter-
vention during ongoing experiments. It comprises two
main submodules: event detection and a data analysis
dashboard.

3.3.1 Event detection

The event detection submodule is designed to identify pre-
defined biological or technical occurrences at various lev-
els (cultivation chip, chamber or individual cell). Events
are defined based on rules specified by domain experts.
These expert-defined rules are typically implemented as
logical conditions or thresholds applied to quantitative data
extracted from the image processing pipeline (e.g., cell count
exceeding a defined limit, growth rate changes surpass-
ing a specific speed, or image quality metrics from the
autofocus module falling below a set value for a defined
duration). These events can be categorized into two main

types:
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- Technical Events: Issues such as focus loss (character-
ized by persistent large offsets reported by the aut-
ofocus system or a decline in image quality metrics
below acceptable thresholds), chamber defects (identi-
fied through image analysis that assesses the integrity
of the chamber, revealing structural issues that may
compromise performance), or fluidic anomalies can
occur and potentially disrupt the imaging process and
affect sample quality. For detecting such focus loss
events using image-derived features, we define the fol-
lowing rule: an out-of-focus event is triggered if the
MLP-based autofocus module reports a predicted offset
greater than 0.5 pm for three consecutive time points in
a given chamber.

— Biological Events: Significant changes in microbial
behavior, such as rapid alterations in growth rates,
cell death exceeding a certain percentage (identified
via morphological changes or specific stains if used),
or specific morphological transitions. For example, to
identify a rapid growth event, indicative of accelerated
proliferation, we establish a detection rule. This event is
triggered if the cell count (i.e., the number of individual
cells identified through instance segmentation by the
real-time segmentation module) shows an increase of
at least 10 % relative to the preceding time point for a
given chamber.

Upon detection of events, the system can trigger automated
responses (via the real-time experiment planner module)
or notify the user, for instance, via Slack! messages to a
dedicated channel, enabling timely intervention.

3.3.2 Data analysis dashboard

The dashboard provides a user-friendly interface for biol-
ogists to monitor experiments, visualize data in real-time
and manage experimental parameters. Key methodological
considerations in its design include:

— Modular Architecture: Ensuring new features, visual-
izations, or control elements can be integrated without
overhauling the existing codebase, making it adaptable
to diverse experimental needs.

— Intuitive User Interface: Designed for ease of use by
biologists, offering clear visualizations (e.g., heatmaps
of chip status, time-series plots of cellular metrics per
chamber) and straightforward controls.

— Real-time Feedback: Displaying up-to-date informa-
tion on experiment status, key cellular metrics (cell

1 https://slack.com/.
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count, size, growth rate, focus score), and detected
events.

— Interactive Control: Allowing users to adjust experi-
mental parameters or trigger specific actions based
on observed data, facilitating biologist-in-the-loop
operation.

4 Experiments

This chapter presents the experimental test of the three
key modules introduced in Section 3. For each module, we
describe the experimental setup, present the results and
provide a discussion of the findings.

4.1 MLP-based autofocusing
4.1.1 Experimental setup

The images were captured using a Nikon TI microscope
equipped with a Nikon Plan Apo A 20%/0.75 NA objective (air
immersion). For each field of view, a z-stack was acquired
with a defined step size of 0.1 pm over a range of —5 pm
to 5pm. It is essential to note that these images were
acquired under low-variance conditions, originating from
a single, long-running experiment type where factors such
as the microfluidic chip design, illumination, and tempera-
ture remained consistent. To ensure the physical capability
for fine-grained adjustments, we confirmed with the man-
ufacturer (Nikon) that the microscope’s z-drive features a
mechanical step resolution of 0.025 pm and a positioning
accuracy of 0.065 pm. Initially, 5 % of the total 13,000 high-
resolution images (2,560 X 2,160 pixels) were reserved for
testing the autofocusing MLP-based model (see Section 3.1)
using a stack-based splitting strategy to prevent data leak-
age, ensuring that all frames from the same experiment
remained grouped together. Subsequently, a further split
was applied to the remaining 95 % of the dataset, resulting
in 76 % of the total data used for training and 19 % for
validation.

Model performance was primarily assessed using the
MAE by comparing the predicted z-offset values with the
ground truth z-offsets. All models were implemented using
TensorFlow/Keras and trained and evaluated on an NVIDIA
RTX 3090 GPU, reflecting a realistic laboratory hardware
deployment.

4.1.2 Results and discussion

The performance of the trained MLP-based autofocusing
model on the independent test set is detailed in Figure 2 to 4.
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Figure 2: Comparison of predicted and actual focus offset values. The
scatter plot shows the focus offset predicted by the MLP model (Y-axis) in
relation to the ground truth values (X-axis) for the test dataset. The red
dashed line represents a perfect match. The model achieves a high
determination coefficient R of 0.998 and a MAE of 0.105 um.

This scatter plot of predicted values versus ground truth
focusing offset (see Figure 2) demonstrates a strong linear
correlation. The model achieved a high coefficient of deter-
mination R? of 0.998, indicating that the predictions align
closely with the ideal one-to-one relationship. The overall
MAE for the test set was 0.105 pm. These results indicate a
precise system, with the reported MAE is remarkably close
to the 0.1 pm z-stack sampling interval used for training.
This sub-step-size accuracy is possible because the MLP,
trained as a regressor, learns to interpolate the optimal focus
position by analyzing continuous changes in image features.
This predictive capability is physically supported by the
microscope’s hardware, which has a positioning accuracy
(0.065 pm) finer than the sampling interval.

A more detailed analysis of the prediction error is pro-
vided in Figure 4. The histogram of absolute errors (see
Figure 3) shows a right-skewed distribution, with the vast
majority of errors being very small, bellow 0.2 pm, confirm-
ing that substantial prediction errors are rare.

The MLP-based autofocusing model, trained as
described in Section 3.1.3, achieved a final test MAE of
0.105 pm with a standard deviation of 0.15 pm. The 25th,
50th (median), and 90th percentiles of the absolute error
were 0.036 pm, 0.074 pm, and 0.232 pm, respectively, with a
99th percentile of 0.440 pm and a maximum observed error
of 0.68 pm (see Figure 3). These results indicate a generally
precise system: most prediction errors fall well below
0.153 pm, which is tolerably close to z-stack acquisition step
size of 0.1 pm and within a fraction of the microscope’s
mechanical step resolution of 0.025 pm (see Figure 4).
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Figure 3: Distribution of the absolute prediction error. The histogram
shows the frequency distributions of absolute errors on the test dataset.
The right-skewed distribution illustrates that the majority of prediction
errors are very small, clustering near zero, while larger errors are
infrequent.
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Figure 4: Absolute prediction error by percentile. The figure quantifies
the error distribution on the test dataset. The curve shows the absolute
error values for each percentile. For instance, the median error (50th
percentile) is 0.074 um, while 75 % of all errors are below 0.153 pm. The
99th percentile is 0.44 pm.

In terms of speed, the model predicts focus adjust-
ments with an average inference time of 87 ms per image
on the GPU, meeting our real-time requirements. This per-
formance, combined with the low MAE, underscores the
model’s suitability for closed-loop focus control in high-
throughput MLCI experiments.

The presented low MAE and high speed demonstrate
the model’s effectiveness for its intended application. How-
ever, it is crucial to frame these results within the con-
text of the model’s design and training data. The MLP-
based approach was trained on data with low experimental
variance (see Section 3.1.3) and therefore performs as an
experiment-specific model.

Its primary strength lies in maintaining focus during
long-running experiments where the core setup (e.g., chip
type, illumination, temperature) remains stable. In such sce-
narios, the model can reliably compensate for focus drift
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over hours or days. Conversely, the model is not designed
to generalize across different experimental setups. If a user
changes the chip or significantly alters other environmental
conditions, its performance would likely degrade, necessi-
tating retraining. This highlights a deliberate trade-off: the
current MLP provides a real-time, computationally inexpen-
sive solution for stable experiments, while a more general-
purpose autofocusing tool would require more complex
models (e.g., CNNs) and a significantly more diverse training
dataset.

4.2 Real-time image processing:
segmentation

4.2.1 Experimental setup

The performance of eleven SOTA DL segmentation meth-
ods (as categorized in Section 2.3) was evaluated on the
benchmark dataset presented by Seiffarth et al. [42], [46],
which contains 4,000 images of Corynebacterium glutam-
icum microcolonies from five video sequences, representing
typical MLCI experiments. Ground truth instance segmenta-
tion masks are provided with the dataset. The benchmark
was performed on an Ubuntu 22.04 workstation with an
Intel Core i9-13900 CPU, an NVIDIA RTX 3090 GPU, and
64 GB RAM. All models were evaluated using their default
settings to ensure a fair comparison of their out-of-the-box
capabilities.

Segmentation accuracy was assessed using Average
Precision (AP), including AP@50 and AP@75 and PQ [47],
which comprises SQ and Recognition Quality (RQ). These
metrics were calculated using TorchMetrics. As AP-based
metrics require confidence scores, they could not be com-
puted for all evaluated methods. Average inference times
were measured using 32 bit floating-point precision, defined
as the duration from inputting the image to receiving the
model’s prediction as an instance mask, including any nec-
essary post-processing.

4.2.2 Results and discussion

The qualitative and quantitative results of the segmenta-
tion benchmark are presented in Figure 5 and Table 2,
respectively.

Among the evaluated methods, Cellpose 3 achieved the
highest PQ of 93.58 % and RQ of 99.46 %, largely due to its
automatic cell diameter estimation. However, this came at

N. Friederich et al.: EAPAEMSIG == 817

the cost of significantly longer inference times (1,115 ms),
making it nearly ten times slower than the Distance-based
method. The Distance-based method, while achieving a
slightly lower PQ of 93.02 %, was the fastest among the
highly accurate models at 121 ms. This substantial speed
advantage is likely due to its comparatively simpler model
architecture, which requires fewer computational steps
than the more complex network used by Cellpose 3. Omni-
pose also performed well with a PQ of 93.36 % and an
inference time of 271 ms. Visually, the results from Cellpose
3, Omnipose and the Distance-based method were nearly
indistinguishable, all reliably detecting microcolonies and
their constituent cells. Given its speed and high accuracy,
the Distance-based method presents the best option for real-
time applications, followed closely by Omnipose.

As anticipated, the Foundation Models (FMs) (SAM, SAM
2, SAM 2.1, 4M21, Florence-2, BiomedParse) were generally
unsuitable for this specific real-time instance segmentation
task. They primarily identified the microcolony as a whole
rather than resolving individual cells, and their inference
times were often unacceptably high (e.g., >100 s for 4M21).
This is likely due to these models being trained on vastly
different and broader datasets, not optimized for the fine-
grained instance segmentation of small, densely packed
microbial cells without specific prompting or fine-tuning.
BiomedParse, trained on medical objects like organs, failed
to segment microcolonies effectively. StarDist, optimized for
bright objects on dark backgrounds, struggled with the dark
microcolonies against a dark background in our dataset.
CPN, while faster than Cellpose 3, had difficulty with densely
packed regions.

Regarding the PQ metric, we acknowledge that for very
small and densely packed objects like bacteria, PQ can be
sensitive to minor contour inaccuracies, potentially impact-
ing the absolute scores [48]. However, PQ is a widely adopted
metric in cell segmentation benchmarks, and its compo-
nents (SQ and RQ) provide valuable insights into both seg-
mentation and detection aspects [49], [50]. Furthermore, the
relative performance rankings and the substantial differ-
encesin inference times observed in our benchmark remain
informative for selecting suitable models. The AP metrics
reported in Table 2, where available, offer an additional
perspective on performance.

This benchmark highlights the critical trade-off
between segmentation quality and inference speed,
emphasizing the need to select models based on specific
experimental requirements for real-time, event-driven
MLCL
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Figure 5: The original image (a) and the zero-shot instance segmentation predictions for one sample image from [42] (b to I). (a) Original. (b)
Omnipose [33]. (c) Distance [31]. (d) CellPose 3 [35]. (e) StarDist [34]. (f) CPN [36]. (g) SAM [37]. (h) SAM 2 [38]. (i) SAM 2.1 [38]. (j) 4M21 [41]. (k) Florence

2 [39]. (I) BiomedParse [40].

Table 2: AP results, PQ results comprising SQ score and RQ score as well as inference times (Inf.) evaluated on the benchmark dataset [42] best in
bold. When calculating the metric, falsely detected backgrounds were not removed and evaluated as false positives during the AP calculation. The
models were used according to basic configurations for fair comparison. The values in bold are the best across all methods, provided that results were
available. To ensure a fair comparison, we define inference time as the duration from inputting the image to receiving the model’s prediction as an
instance mask with confidence scores. This includes post-processing needed by certain methods, such as converting predicted contours to a
pixel-wise mask. The inference time is measured using 32 bit floating-point precision.

Methods \ metrics AP 1 [%] AP@50 1 [%] AP@75 1 [%] PQ 1 [%] PQ-SQ 1 [%] PQ-RQ 1 [%] @Inf. [ms/img] |
Omnipose [33] - - - 93.36 93.95 99.35 271
Distance-based [31] - - - 93.02 93.48 99.50 121
Cellpose 3 [35] - - - 93.58 94.07 99.46 1,115
StarDist [34] 0 0 0 36.29 72.87 40.93 7,686
CPN [36] 62.32 95.51 81.70 85.75 87.79 97.63 185
SAM [37] 3.47 4.76 4.70 6.26 84.16 7.36 1,994
SAM 2 [38] 0.27 0.33 0.32 4.85 78.49 6.89 1,566
SAM 2.1[38] 1.79 2.64 245 6.00 76.10 7.98 1,546
4M21[41] - - - 38.11 47.80 39.86 103,025
Florence 2 [39] - - - 42.00 83.78 43.16 4,294
BiomedParse [40] 0.03 0.07 0 37.63 78.48 4112 266

4.3 Real-time data analysis

The real-time data analysis module, encompassing event
detection and an interactive dashboard (described method-
ologically in Section 3.3), was tested in experimental runs
to demonstrate its functionality. To achieve this, a time-
lapse experiment was conducted to grow E. coli micro-
colonies, capturing a series of images over a period of

time. The acquired images were then replayed through
the image acquisition module at a constant frame rate,
effectively simulating live experiments. This replay served
as the entry point for the EAPAEMSIG pipeline, enabling
us to systematically test and validate each component of
the pipeline under conditions that closely mimic real-time
operation. Pre-defined triggers for common biological and
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Figure 6: EAPAEMSIG dashboard: experiment monitoring interface. The primary interface for monitoring experiments, highlighted in the red box,
allows users to select the cultivation chip and microscope to initiate an experiment or load a predefined protocol. The heatmap, structured according
to the cultivation chip’s layout, visually represents the status of each cultivation chamber based on the selected metric, in this case, cell count. The
yellow box contains the context window that is displayed when hovering over the chamber. Clicking on a chamber opens a detailed view (blue box),
which includes the raw region of interest and the segmented image.
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Figure 7: Detailed view of a selected chamber. The view displays time-series data for key metrics, including cell count, cell size, growth rate, and focus
score, providing users with comprehensive insights into the chamber’s performance over time.
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technical events related to the performed experiment were
established.

4.3.1 Event detection demonstration

The event detection submodule was configured with rules
to identify exemplary events. As stated in Section 3.3.1, an
out-of-focus event was triggered if the MLP-based autofocus
module reported a predicted offset greater than 0.5 pm for
three consecutive time points of a specific chamber. A rapid
growth event was triggered if the cell count in a specific
chamber increased by more than 10 % within consecutive
time points. Upon triggering, the system effectively gen-
erated and dispatched notifications to our Slack commu-
nication channel. The event detector itself requires only
approximately 100 ms to check for new events within a
chamber and send notifications via both Slack and inter-
nal logs. These log times are prominently displayed on our
dashboard (Figures 6 and 7), showcasing the system’s ability
to alert users to critical events in real-time and facilitating
prompt intervention.

4.3.2 Dashboard functionality demonstration

The EAP4EMSIG dashboard (methodology detailed in
Section 3.3.2) provides comprehensive visualization and
control features, as demonstrated in Figures 6 and 7.
Figure 6 (red box) presents the primary experiment
monitoring interface, where users can select the cultivation
chip and microscope to either initiate an experiment
or load a predefined protocol. Experiment management
is facilitated through control buttons labeled “Start”,
“Pause/Resume”, and “Stop”. The heatmap, structured
according to the cultivation chip’s layout, visually
represents the status of each cultivation chamber based
on selected metrics, including cell count, cell size, event
occurrences, and focus score.

Hovering over a chamber on the heatmap reveals a
context window that displays the current visual state of the
chamber along with additional details (Figure 6 yellow box).
As illustrated in Figures 6 and 7, clicking on a chamber
opens a detailed view. This view includes the raw region
of interest from the image alongside the segmented image,
highlighting individual cells (Figure 6, blue box). Addition-
ally, time-series data for key metrics, including cell count,
cell size, growth rate, and focus score, are presented. These
plots visualize the expected dynamics of microbial growth,
such as the exponential increase in cell count, while derived
metrics like the growth rate naturally exhibit higher volatil-
ity. A sidebar displays experiment metadata and allows for
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data export. This empowers users to track the history of
individual chambers and filter messages, enabling in-depth
analysis of ongoing experiments and supporting informed
decision-making.

The presented functionalities demonstrate the
dashboard’s capacity to provide biologist-in-the-loop
control and real-time insights, significantly enhancing the
ability to oversee and interpret complex MLCI experiments
efficiently. The pipeline has been in routine operation since
01/2025 and is being continuously expanded based on user
feedback.

5 Conclusion

This paper presents an in-depth exploration and enhance-
ment of three key modules within the EAPAEMSIG system,
aiming to advance real-time, event-driven microscopy for
microfluidic single-cell analysis.

First, we introduced a novel real-time autofocusing
module based on a computationally efficient MLP. This
module achieves a MAE of 0.105 pm with prediction times
under 87 ms on standard GPU (NVIDIA RTX 3090) hardware.
These results underscore its capability for precise and rapid
image acquisition, which is critical for effective downstream
image analysis in high-throughput experiments. We have
also discussed the importance of understanding this MAE
in the context of the optical system’s depth of field and the
methodology for defining ground truth. Future research will
focus on developing models that are even more robust to
variations in experimental conditions, potentially requir-
ing minimal retraining, and further optimizing inference
speed for live imaging applications. The modular design
ensures that as improved autofocus models become avail-
able, they can be integrated with minimal changes to the
overall framework.

Second, we conducted a comprehensive zero-shot
benchmark of eleven SOTA DL segmentation models,
encompassing task-specific, domain-specific, and founda-
tion model categories. Our findings reveal that while foun-
dation models demonstrate broad applicability in many
domains, they were largely unsuitable for our specific task
of real-time, instance-level segmentation of microbial cells,
primarily due to low accuracy in resolving individual cells
and unacceptably high processing times. In contrast, task-
specific models like Omnipose and particularly the Distance-
based method, along with the domain-specific model Cell-
pose 3, delivered excellent segmentation quality with PQ
scores exceeding 93 %. The Distance-based method distin-
guished itself with a remarkably fast processing time of
121 ms. While we acknowledge the discussions regarding
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the sensitivity of PQ for small, dense objects, the relative
performance differences and inference speeds observed
provide crucial guidance for model selection. Future work
will explore methods to automatically select the suitable
model based on the recorded data such as in [51]-[54],
strategies to accelerate processing times further, such as
model conversion to specialized inference formats (e.g., Ten-
sorRT) or quantization to lower-precision formats, aiming
to consistently meet the sub-100 ms target for the suitable
segmentation model.

Finally, the real-time data analysis module, featuring
event detection capabilities and an interactive dashboard,
was presented. By providing a user-friendly interface for
monitoring, real-time data visualization, and experimental
control, this module significantly enhances biologists’ abil-
ity to oversee and interpret ongoing experiments efficiently.
The demonstration highlighted its potential for facilitating
biologist-in-the-loop decision-making and reacting to crit-
ical events. Future enhancements will include integration
with electronic lab notebooks (e.g., eLabFTW) to streamline
experiment documentation and reporting.

In summary, the advancements presented for these
three modules make a significant contribution to the over-
arching goal of creating a more intelligent, responsive,
and automated pipeline for microfluidic single-cell analysis.
Continued research will focus on improving the robustness
and accuracy of the autofocusing module, refining strategies
for the automated selection of optimal segmentation meth-
ods based on image characteristics, further enhancing seg-
mentation speed, and expanding the functionalities of the
real-time data analysis platform. New models and pipeline
integrations are currently under development and will be
detailed in forthcoming publications.

Acknowledgments: The authors used the Allanguage mod-
els Gemini 2.5 (Google) and ChatGPT 4.1 (OpenAl) to improve
the language and style of this manuscript. The authors take
full responsibility for the final content of this publication.
Research ethics: Not applicable.

Informed consent: Not applicable.

Author contributions: The authors have accepted responsi-
bility for the entire content of this manuscript and approved
its submission. We describe here the individual contribu-
tions: conceptualization: NF, AJYS, JS, RM; methodology: NF,
AJYS, EY, DK, HS, JS, KN, RM; software: NF, AJYS, AN, EY,
MB, LS, BA, JS; investigation: NF, AJYS, JS; resources: JS, KN;
writing — original draft: NF, AJYS, MP, MB, ON, EY, JS; writing
- review & editing: NF, AJYS, AN, MP, EY, MB, LS, BA, TL, ON,
NK, HS, JS, KN, RM; supervision: DK, HS, KN, RM; project
administration: DK, HS, KN, RM; funding acquisition: DK,
HS, EY, KN, RM.

N. Friederich et al.: EAPAEMSIG === 821

Use of Large Language Models, AI and Machine Learning
Tools: The authors used the Al language models Gemini 2.5
(Google) and ChatGPT 4.1 (OpenAl) to improve the language
and style of this manuscript. The authors take full responsi-
bility for the final content of this publication.

Conflict of interest: The authors state no conflict of interest.
Research funding: This work was supported by the
President’s Initiative and Networking Funds of the
Helmholtz Association of German Research Centers [Grant
EMSIG ZT-I-PF-04-44]. The Helmholtz Association funds
this project under the “Helmholtz Imaging Platform”,
the authors N. Friederich, A. J. Yamachui Sitcheu and R.
Mikut under the program “Natural, Artificial and Cognitive
Information Processing (NACIP)”, the authors N. Friederich
and A. J. Yamachui Sitcheu through the graduate school
“Helmholtz Information & Data Science School for Health
(HIDSS4Health)” and the author Johannes Seiffarth through
the graduate school “Helmholtz School for Data Science in
Life, Earth and Energy (HDS-LEE)”.

Data availability: The code is available via GitHub for
the MLP-based Autofocusing (https://github.com/hip-
satomi/MLP-Autofocusing) and segmentation evaluation
(https://github.com/hip-satomi/Instance-Segmentation-
Benchmark).

References

[11 American Society for Microbiology, “Microbes and climate change
— science, people & impacts,” American Society for Microbiology,
Washington D.C., Report on an American Academy of
Microbiology Virtual Colloquium held on Nov. 5, 2021.

[2] M. Ganesan, et al., “Bioremediation by oil degrading marine
bacteria: An overview of supplements and pathways in key
processes,” Chemosphere, vol. 303, no. Pt 1, 2022, Art. no. 134956.

[3] J. M. Nduko and S. Taguchi, “Microbial production of
biodegradable lactate-based polymers and oligomeric building
blocks from renewable and waste resources,” Front. Bioeng.
Biotechnol., vol. 8, 2020, Art. no. 618077.

[4] A.R.Hanna, S.]. Shepherd, D. Issadore, and M. J. Mitchell,
“Microfluidic generation of diverse lipid nanoparticle libraries,”
Nanomedicine (Lond.), vol. 19, no. 6, pp. 455—457,2024.

[5] N. Friederich, et al., “EAP4EMSIG — experiment automation
pipeline for event-driven microscopy to smart microfluidic
single-cells analysis,” in Proceedings — 35. Workshop Computational
Intelligence: Berlin, 21.-22. November 2024, vol. 24, KIT Scientific
Publishing, 2024, pp. 169—192.

[6] ). Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016,
pp. 779—-788.

[71 H.Shroff, I. Testa, F. Jug, and S. Manley, “Live-cell imaging
powered by computation,” Nat. Rev. Mol. Cell Biol., vol. 25, no. 6,
pp. 443—463,2024.


https://github.com/hip-satomi/MLP-Autofocusing
https://github.com/hip-satomi/MLP-Autofocusing
https://github.com/hip-satomi/Instance-Segmentation-Benchmark
https://github.com/hip-satomi/Instance-Segmentation-Benchmark

822 =—— N. Friederich et al.: EAP4EMSIG

[8]

[9

[a]

[

(2]

n3]

n4]

(3]

[e]

(7

(18]

(9]

[20]

[21]

[22]

[23]

[24]

[23]

[26]

[27]

[28]

[29]

D. Baddeley, et al., Python-Microscopy/Python-Microscopy: Release
23.06.15 (Version 23.06.15) [Software], Zenodo, 2023.

L. Chiron, et al., “Py an open-source software for event-based,
conditional microscopy,” Sci. Rep., vol. 12, no. 1, 2022, Art. no. 11579.
Z.R. Fox, et al., “Enabling reactive microscopy with MicroMator,”
Nat. Commun., vol. 13, no. 1, p. 2199, 2022.

N. Friederich, et al., “Al-based automated active learning for
discovery of hidden dynamic processes: A use case in light
microscopy,” in Proceedings-33. Workshop Computational
Intelligence: Berlin, 23.-24. November 2023, vol. 23, KIT Scientific
Publishing, 2023, pp. 31-51.

D. Mahecic, W. L. Stepp, C. Zhang, J. Griffié, M. Weigert, and S.
Manley, “Event-driven acquisition for content-enriched
microscopy,” Nat. Methods, vol. 19, no. 10, pp. 1262—1267, 2022.

E. Pedone, et al., “Cheetah: A computational toolkit for cyber-
genetic control,” ACS Synth. Biol., vol. 10, no. 5, pp. 979—989, 2021.
H. Pinkard, et al., “Pycro-Manager: Open-source software for
customized and reproducible microscope control,” Nat. Methods,
vol. 18, no. 3, pp. 226 —228, 2021.

D. M. S. Pinto, et al., “Python-microscope — a new open-source
python library for the control of microscopes,” J. Cell Sci., vol. 134,
no. 19, 2021, Art. no. jcs258955. https://doi.org/10.1242/jcs.258955.
1. Holland and ). A. Davies, “Automation in the life science research
laboratory,” Front. Bioeng. Biotechnol., vol. 8, 2020, Art. no. 571777.
Z.Gao and Y. Li, “Enhancing single-cell biology through advanced
ai-powered microfluidics,” Biomicrofiuidics, vol. 17, no. 5, 2023, Art.
no. 051301.

P. Huang, et al., “Transformative laboratory medicine enabled by
microfluidic automation and artificial intelligence,” Biosens.
Bioelectron., vol. 271, p. 117046, 2024.

Z. Bian, et al., “Autofocusing technologies for whole slide imaging
and automated microscopy,” J. Biophot., vol. 13, no. 12, 2020, Art.
no. e202000227.

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for
microscope,” Opt. Eng., vol. 41, no. 6, pp. 1289—1294, 2002.

Y. Sun, S. Duthaler, and B. J. Nelson, “Autofocusing in computer
microscopy: Selecting the optimal focus algorithm,” Microsc. Res.
Tech., vol. 65, no. 3, pp. 139—149, 2004.

L. Shih, “Autofocus survey: A comparison of algorithms,” in Digital
Photography I1I, vol. 6502, SPIE, 2007, pp. 90—100.

C. Herrmann, et al., “Learning to autofocus,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 2230—2239.

). Liao, et al., “Deep learning-based single-shot autofocus method
for digital microscopy,” Biomed. Opt. Express, vol. 13, no. 1,

pp. 314—327,2021.

F. Padovani, B. Mairhdrmann, P. Falter-Braun, J. Lengefeld, and K.
M. Schmoller, “Segmentation, tracking and cell cycle analysis of
live-cell imaging data with cell-ACDC,” BMC Biol., vol. 20, no. 1,

p. 174, 2022.

J. P. Lewis, et al., “Fast template matching,” in Vision Interface,

vol. 95, Quebec City, QC, Canada, 1995, pp. 15—19.

N. Otsu, et al., “A threshold selection method from gray-level
histograms,” Automatica, vol. 11, nos. 285—296, pp. 23—27, 1975.
R. Wang, T. Lei, R. Cui, B. Zhang, H. Meng, and A. K. Nandi,
“Medical image segmentation using deep learning: A survey,” IET
Image Process., vol. 16, no. 5, pp. 1243 —-1267, 2022.

M. S. Fasihi and W. B. Mikhael, “Overview of current biomedical
image segmentation methods,” in 2076 International Conference on

[30]

(31

32]

[33]

341

[35]

[36]

371

(38]

391

[40]

[41]

DE GRUYTER OLDENBOURG

Computational Science and Computational Intelligence (CSCI), 2016,
pp. 803—808.

N. Friederich and A. Specker, “Security fence inspection at airports
using object detection,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2024, pp. 310—319.

T. Scherr, K. Léffler, M. Béhland, and R. Mikut, “Cell segmentation
and tracking using CNN-based distance predictions and a
graph-based matching strategy,” PLoS One, vol. 15, no. 12, 2020,
Art. no. e0243219.

T. Scherr, et al., “microbeSEG: A deep learning software tool with
OMERO data management for efficient and accurate cell
segmentation,” PLoS One, vol. 17, no. 11, 2022, Art. no. e0277601.
K. J. Cutler, et al., “Omnipose: A high-precision
morphology-independent solution for bacterial cell
segmentation,” Nat. Methods, vol. 19, no. 11, pp. 1438 —1448, 2022.
U. Schmidt, M. Weigert, C. Broaddus, and G. Myers, “Cell detection
with star-convex polygons,” in Medical Image Computing and
Computer-Assisted Intervention — MICCAI 2018, Springer, 2018,

pp. 265—273.

C. Stringer and M. Pachitariu, “Cellpose3: One-click image
restoration for improved cellular segmentation,” Nat. Methods, vol.
22, no. 3, pp. 592—599, 2025.

E. Upschulte, S. Harmeling, K. Amunts, and T. Dickscheid, “Contour
proposal networks for biomedical instance segmentation,” Med.
Image Anal., vol. 77, 2022, Art. no. 102371.

A. Kirillov, et al., “Segment anything,” arXiv:2304.02643, 2023.

N. Ravi, et al., “SAM 2: Segment anything in images and videos,”
arXiv preprint arXiv:2408.00714, 2024.

B. Xiao, et al., “Florence-2: Advancing a unified representation for a
variety of vision tasks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 4818 —4829.

T. Zhao, et al., “A foundation model for joint segmentation,
detection and recognition of biomedical objects across nine
modalities,” Nat. Methods, vol. 22, no. 1, pp. 166—176, 2025.

R. Bachmann, et al., “4M-21: An any-to-any vision model for tens of
tasks and modalities,” arXiv 2024, 2024.

[42] ]. Seiffarth, et al., “Tracking one-in-a-million: Large-scale

[43]

benchmark for microbial single-cell tracking with
experiment-aware robustness metrics,” in European Conference on
Computer Vision, Springer, 2024.

C. C. Sachs, K. Ruzaeva, J. Seiffarth, W. Wiechert, B. Berkels, and K.
N. CellSium, “Versatile cell simulator for microcolony ground truth
generation,” Bioinform. Adv., vol. 2, no. 1, 2022, Art. no. vbac053.

[44] ). Seiffarth, et al., “OMERO-based integrated workflow for

[45]

annotating microbes in the cloud,” SoftwareX, vol. 26, 2024, Art. no.
101638.

A. Fischer-Nielsen, Z. Fu, T. Su, and A. Wasowski, “The forgotten
case of the dependency bugs: On the example of the robot
operating system,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software
Engineering in Practice, 2020, pp. 21—30.

[46] ]. Seiffarth, et al., “Data for — tracking one in a million:

[47]

[48]

Performance of automated tracking on a large-scale microbial
data set,” 2022. https://doi.org/10.5281/zenodo.7260137.

A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollar, “Panoptic
segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 9404 —9413.
A. Foucart, O. Debeir, and C. Decaestecker, “Panoptic quality
should be avoided as a metric for assessing cell nuclei


https://doi.org/10.1242/jcs.258955
https://doi.org/10.5281/zenodo.7260137

DE GRUYTER OLDENBOURG

segmentation and classification in digital pathology,” Sci. Rep.,
vol. 13, no. 1, p. 8614, 2023.

[49] D. Liu, D.Zhang, Y. Song, H. Huang, and W. Cai, “Panoptic feature
fusion net: A novel instance segmentation paradigm for
biomedical and biological images,” IEEE Trans. Image Process.,
vol. 30, pp. 2045—2059, 2021.

[50] R.Verma, et al., “MoNuSAC2020: A multi-organ nuclei
segmentation and classification challenge,” IEEE Trans. Med.
Imaging, vol. 40, no. 12, pp. 3413 —3423, 2021.

[51] P.Godau and L. Maier-Hein, “Task fingerprinting for Meta learning
in biomedical image analysis,” in Medical Image Computing and
Computer-Assisted Intervention — MICCAI 2021, Springer, 2021,
pp. 436—446.

[52] P.Godau, A. Srivastava, T. Adler, and L. Maier-Hein, “Beyond
knowledge silos: Task fingerprinting for democratization of
medical imaging ai,” arXiv preprint arXiv:2412.08763, 2024.

[53] M. Molina-Moreno, M. P. Schilling, M. Reischl, and R. Mikut, “ASAP:
Automatedutomated style-aware similarity measurement for
selection of annotated pre-training datasets in 2D biomedical
imaging,” IEEE Access, vol. 13, pp. 54794—54807, 2025.

[54] A.Y.Sitcheu, N. Friederich, S. Baeuerle, O. Neumann, M. Reischl,
and R. Mikut, “MLOps for scarce image data: A use case in
microscopic image analysis,” in Proceedings-33. Workshop
Computational Intelligence: Berlin, 23.-24. November 2023, vol. 23,
KIT Scientific Publishing, 2023, pp. 169—189.

Bionotes

Nils Friederich

Institute for Automation and Applied
Informatics (IAI), Karlsruhe Institute of
Technology, Karlsruhe, Germany and Institute
of Biological and Chemical Systems (IBCS),
Karlsruhe Institute of Technology, Karlsruhe,
Germany

nils.friederich@kit.edu

Nils Friederich (M. Sc.) is a doctoral researcher at the Karlsruhe Institute
of Technology (KIT), specializing in machine learning for image analysis.
His research encompasses deep learning, computer vision, and MLOps,
with a particular focus on applications in automated microscopy and
biomedical image processing.

Angelo Jovin Yamachui Sitcheu
Institute for Automation and Applied
Informatics (IAI), Karlsruhe Institute of
Technology, Karlsruhe, Germany
angelo.sitcheu@kit.edu

Angelo Jovin Yamachui Sitcheu (M. Sc.) is a doctoral researcher in the
department for Automated Image and Data Analysis at the Institute for
Automation and Applied Informatics at the Karlsruhe Institute of
Technology. His research focuses on machine learning for image analysis
and computer vision.

N. Friederich et al.: EAPAEMSIG === 823

Johannes Seiffarth

Institute of Bio- and Geosciences (IBG-1),
Forschungszentrum Julich GmbH, Julich,
Germany; and Computational Systems
Biology (AVT-CSB), RWTH Aachen University,
Aachen, Germany
j.seiffarth@fz-juelich.de

2N

Johannes Seiffarth (M. Sc.) studied Computer Science at RWTH Aachen
and is a PhD student in the group Modeling of Biochemical Networks and
Cells at the Institute of Bio- and Geosciences, IBG-1: Biotechnology at
Forschungszentrum Jilich. Research interests: Smart microscopy,
Event-driven live-cell imaging, Deep Learning based cell segmentation &
tracking, Quantitative single-cell analysis, Real-time live-cell analysis.

Katharina N6h

Institute of Bio- and Geosciences (IBG-1),
Forschungszentrum Julich GmbH, Julich,
Germany

k.noeh@fz-juelich.de

Dr. Katharina N6h is heading the group Modeling of Biochemical
Networks and Cells at the Institute of Bio- and Geosciences, IBG-1:
Biotechnology at Forschungszentrum Jilich. Research interests: Microbial
single-cell analysis, Automation of live-cell imaging experiments,
Bayesian statistics, Metabolic Modeling, Uncertainty quantification.

Ralf Mikut

Institute for Automation and Applied
Informatics (IAI), Karlsruhe Institute of
Technology, Karlsruhe, Germany
ralf.mikut@kit.edu

Prof. Dr.-Ing. Ralf Mikut is the head of the Department for Automated
Image and Data Analysis at the Institute for Automation and Applied
Informatics at the Karlsruhe Institute of Technology. Research interests:
Computational Intelligence; Data Analytics; Applied Artificial Intelligence
for Biology, Chemistry, Medical Engineering, Manufacturing and Energy
Systems.


mailto:nils.friederich@kit.edu
mailto:angelo.sitcheu@kit.edu
mailto:j.seiffarth@fz-juelich.de
mailto:k.noeh@fz-juelich.de
mailto:ralf.mikut@kit.edu

	1 Introduction
	2 Related work
	2.1 Experiment Automation Pipeline and rise of event-driven microscopy
	2.2 Challenges and advances in automated autofocusing for event-driven MLCI
	2.3 Real-time image segmentation for microbial single-cell analysis in event-driven workflows

	3 Methodology
	3.1 MLP-based autofocusing
	3.1.1  Defining tnqx201c;perfect focustnqx201d; and ground truth acquisition
	3.1.2  Model architecture and feature extraction
	3.1.3  Training and validation
	3.1.4  Real-time operation

	3.2 Real-time image processing
	3.3 Real-time data analysis
	3.3.1  Event detection
	3.3.2  Data analysis dashboard


	4 Experiments
	4.1 MLP-based autofocusing
	4.1.1  Experimental setup
	4.1.2  Results and discussion

	4.2 Real-time image processing: segmentation
	4.2.1  Experimental setup
	4.2.2  Results and discussion

	4.3 Real-time data analysis
	4.3.1  Event detection demonstration
	4.3.2  Dashboard functionality demonstration


	5 Conclusion
	Bionotes


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


