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Abstract: Microfluidic Live-Cell Imaging (MLCI) yields data

onmicrobial cell factories. However, continuous acquisition

is challenging as high-throughput experiments often lack

real-time insights, delaying responses to stochastic events.

We introduce three components in the Experiment
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Automation Pipeline for Event-Driven Microscopy to Smart

Microfluidic Single-Cell Analysis (EAP4EMSIG): a fast,

accurate Multi-Layer Perceptron (MLP)-based autofocusing

method predicting the focus offset, an evaluation of

real-time segmentation methods and a real-time data

analysis dashboard. Our MLP-based autofocusing achieves

a Mean Absolute Error (MAE) of 0.105 μm with inference

times of 87 ms. Among eleven evaluated Deep Learning

(DL) segmentation methods, Cellpose reached a Panoptic

Quality (PQ) of 93.36 %, while a distance-based method was

fastest (121 ms, Panoptic Quality 93.02 %).

Keywords: deep learning; experiment automation; mi-

crofluidic; live-cell; segmentation; MLP-based autofocusing

Zusammenfassung: Die mikrofluidische Bildgebung leben-

der Zellen liefert Daten übermikrobielle Zellfabriken. Aller-

dings ist die kontinuierliche Datenerfassung eine Heraus-

forderung, da Hochdurchsatz-Experimente oft keine Echt-

zeiteinblicke bieten und so Reaktionen auf stochastische

Ereignisse verzögert werden. Wir stellen drei Komponen-

ten einer automatisierten Pipeline zur ereignisgesteuer-

ten Mikroskopie für die intelligente mikrofluidische Ein-

zelzellanalyse vor: eine schnelle und präzise MLP-basierte-

Autofokus-Methode, die den Fokusversatz vorhersagt; eine

Evaluation von Echtzeit-Segmentierungsverfahren; sowie

ein Dashboard für die Echtzeit-Datenanalyse. Unser MLP-

basierter Autofokus erzielt einenmittleren absoluten Fehler

von 0.105 μm bei einer Inferenzzeit von 87 ms. Unter elf

evaluierten Deep-Learning-Segmentierungsmethoden er-

reichte Cellpose eine Panoptische Qualität von 93.36 %,

während ein abstandsbasierter Ansatz mit 121 ms (Panop-

tische Qualität 93.02 %) am schnellsten war.

Schlagwörter: Deep Learning; Experimentautomati-

sierung; Mikrofluidik; Bildgebung lebender Zellen;

Segmentierung; MLP-basierte Autofokussierung
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1 Introduction

Microorganisms are ubiquitous and diverse life forms that

play a crucial role in ecological processes, human health,

and industrial applications [1]. The study of their behavior,

genetics and interactions at the single-cell level is therefore

of fundamental importance for advancements in biotech-

nology, environmental protection, and medicine [2], [3].

Microfluidic Live-Cell Imaging (MLCI) has established itself

as a powerful technology to observe dynamic processes in

microbial populations with high spatial and temporal res-

olution, thereby generating large amounts of experimental

data [4]. However, the effective use of this technology in

high-throughput experimental setups, where thousands of

microcultures are usually analyzed in parallel, poses tech-

nical challenges [5]. Therefore, real-time responsiveness is

crucial because delayed reactions to biological events (e.g.,

sudden changes in cell growth, cell stress responses) or

technical issues (e.g., focus drift, fluidic disturbances) can

irreversibly compromise data quality or even result in the

failure of the entire experiment.

To perform such aMLCI experiment, microfluidic chips

are used, which contain thousands of individual chambers

with parallel-grown microbe colonies. Microbes are typi-

cally injected into these chambers at the beginning of the

experiment. Due to variability in production, each chip can

have a slightly different shape in z, as well as in x and

y. While variations in the x- and y-dimensions of the chip

can be compensated by detecting the chamber via real-time

Deep Learning (DL) method [6], inaccuracies along the z-

axis require a dedicated focusing method. In terms of our

high-throughput experiment, a real-time one is essential

because a loss of focus could make it partially or entirely

infeasible to recognize the microorganisms. Therefore, aut-

ofocusing per chamber is essential for maximum informa-

tion extraction. However, existing autofocusing techniques

either rely on specialized hardware, which limits their flex-

ibility and increases costs, or depend on computationally

expensive image-based methods that are unsuitable for

real-time applications.

After refocusing, normally, the chamber would be

extracted via the mentioned detection method and the

microbes could then be extracted each via State-Of-The-

Art (SOTA) segmentation methods. But current SOTA meth-

ods, while highly accurate, often require extensive com-

putational resources, making them impractical for rapid

decision-making in high-throughput microfluidic experi-

mental setups.

If the microbes are extracted, they can be analyzed

in time-independent features like position, cell size, state

(lively/dead) and time-dependent features like growth rate.

This information must be made available to the biologist

conducting the experiment so that they can generate live

findings and adjust the experiment settings if necessary. A

significant limitation is the lack of integrated systems that

enable comprehensive real-time analysis of the acquired

data and allow researchers to react directly to relevant

biological or technical “events”. Such events can include

critical phases in the cell cycle, cellular stress responses,

morphological changes, as well as technical malfunctions

such as focus loss or problems with fluidics [7]. This lack of

direct feedback and control capabilities delays the adaptive

optimization of experiments and the acquisition of more

profound insights, especially when investigating stochastic

cellular processes.

This vision of smart microfluidic single-cell analysis,

therefore, requires event-drivenmicroscopy, where the sys-

tem autonomously or semi-autonomously reacts to detected

events. This represents an advancement over the estab-

lished workflow, where data is often analyzed only post-

experimentally. To realize this vision, a robust automa-

tion pipeline is needed that integrates fast and intelligent

components for image acquisition, processing and analysis.

Current solutions in experiment automation [8]–[15] often

cover only partial aspects or are not sufficiently modular

and adaptive for the specific requirements of MLCI with a

focus on event-driven approaches.

To achieve this, we are building on our work Experi-

ment Automation Pipeline for Event-Driven Microscopy to

SmartMicrofluidic Single-Cell Analysis (EAP4EMSIG) [5] and

improving the autofocus, segmentation, and real-time dash-

board modules mentioned above:

1. A novel, Multi-Layer Perceptron (MLP)-based real-time

autofocusing method designed to ensure continuously

high image quality: In contrast to existing approaches,

our proposed autofocusing method leverages a simpli-

fied MLP architecture that directly predicts the opti-

mal focus offset from rapidly computable image fea-

tures, thereby achieving both high-precision and real-

time performance without the need for additional

hardware.

2. A comprehensive evaluation of SOTA DL segmentation

methods to identify suitable models for event-driven

analysis: Since developing a new segmentation method

is beyond the scope of this paper, we instead perform

a detailed comparative evaluation of existing SOTA

segmentation models – task-specific, domain-specific,

and foundation models – to identify the most suitable

approach balancing accuracy and computational cost

for real-time applications in MLCI.
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3. A new real-time data analysis dashboard that allows

biologists to monitor ongoing experiments in detail,

visualizes analysis results in real-time, and offers

enhanced control options to react directly to detected

events. All proposed methods and evaluations are rig-

orously validated through extensive benchmarking on

representative microbial image datasets, ensuring the

robustness and practical relevance of the results.

By integrating these components, we aim to enhance

automated, event-driven analysis of microbial single cells.

In the following, we will describe the methodology of these

three components in detail, evaluate their performance,

and discuss their importance in the context of intelligent

experiment automation.

2 Related work

The successful automation of MLCI for insightful, high-

throughput single-cell analysis of microbes hinges on over-

coming challenges in experiment control, image acquisition,

and real-timedata processing. This section reviews the SOTA

in these interconnected domains, starting with Experiment

Automation Pipelines (EAPs) and the emergence of event-

driven microscopy. We then delve into specific challenges

and advances in real-time autofocusing and real-time image

segmentation, critically evaluating existing approaches to

highlight the research gaps that motivate the contributions

of this paper.

2.1 Experiment Automation Pipeline and
rise of event-driven microscopy

EAPs are becoming increasingly vital in life science research

to enhance reproducibility, increase throughput, and man-

age complex experimental workflows [16]. In the context of

MLCI, which generates vast quantities of image data, robust

automation is essential [17], [18].

Recently, the paradigm of event-driven microscopy has

gained traction, aiming tomake experimental systemsmore

intelligent and responsive. Several efforts have sought to

incorporate such principles. For instance, tools like Cyber-

Sco.Py [9] and MicroMator [10] have pioneered event-based

conditional microscopy and reactive microscopy work-

flows, respectively, allowing the system to adapt acquisition

based on detected image features. Dedicated systems for

event-driven acquisition [12] have further demonstrated the

potential to enrich experimental datasets by intelligently

responding to observed phenomena.

However, while these event-driven systems showcase

the value of responsive experiment control, they often

focus on specific aspects of the image acquisition work-

flow or possess certain limitations when considering a

holistic, innovative single-cell analysis pipeline for MLCI.

For example, some systems might be tailored to particu-

lar hardware setups, offer limited modularity for easily

integrating diverse, new analytical tools (such as the here

presented advanced real-time autofocusing and versatile

segmentation capabilities required for immediate down-

stream decision-making), or might not provide comprehen-

sive, user-friendly dashboards designed for biologist-in-the-

loop interaction during complex experiments. A significant

hurdle often remains in the seamless integration of rapid

image processing (for both event detection and quantitative

analysis) with immediate feedback to microscope control

and interactive data visualization.

Beyond these specialized event-driven systems, a

broader range of EAP tools relevant to microscopy exists

(see Table 1 for an overview, referencing [11] and its

content). While tools for cybergenetic control (e.g., Chee-

tah [13]) advance control paradigms, and platforms like

PYthon Microscopy Environment (PYME) [8] support spe-

cialized niches such as super-resolution, many general

microscope control software packages (e.g., Pycro-Manager

[14], Python-Microscope [15]) provide essential low-level

control but often lack the integrated high-level intelligence

for event-driven experiment planning or sophisticated real-

time data analysis specifically tailored to single-cell MLCI.

Evenmore comprehensive pipeline approaches like Experi-

ment Automation Pipeline for Dynamic Processes (EAPDP)

[11] have primary objectives differing from the specific,

combined needs of smart, event-drivenmicrobial single-cell

analysis, which requires rapid, adaptive image acquisition

coupled with immediate on-the-fly processing, event detec-

tion and visualization.

To the best of our knowledge, despite these valuable

contributions, there is still a clear lack of a complete,

modular, extendable, and adaptable pipeline in the field

of MLCI that specifically and seamlessly integrates rapid,

intelligent, and hardware-agnostic autofocus; robust, real-

time capable segmentation suitable for reliable event trig-

gering and quantitative analysis; and an intuitive, interac-

tive dashboard for real-time monitoring, in-depth analysis

and event-based intervention capabilities [5]. This identi-

fied gap strongly motivates the continued development and

enhancement of our EAP4EMSIG system and the specific

contributions presented in this paper.
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Table 1: Overview of SOTA EAP methods based on the implemented modules along with their limitations regarding the context of this work. PYthon

Microscopy Environment (PYME), Experiment Automation Pipeline for Dynamic Processes (EAPDP).

Method
Modules

Limitations

Microscope

control

Real-time

image processing

Real-time

data analysis

Real-time

experiment planner

CyberSco.Py [9] ✓ ✓ ✓ ✓ Supports only U-Net

MicroMator [10] ✓ ✓ ✓ ✓ Not actively used

Event-driven acquisition [12] ✓ ✓ ✓ Other modules absent

Cheetah [13] ✓ ✓ ✓ ✓ Supports only U-Net

Pycro-Manager [14] ✓ ✓ ✓ Other modules absent

Python-Microscope [15] ✓ ✓ Other modules absent

PYME [8] ✓ ✓ ✓ Focus on

super-resolution

EAPDP [11] ✓ ✓ ✓ ✓ Focus on dynamic

process modelling

2.2 Challenges and advances in automated
autofocusing for event-driven MLCI

The successful execution of event-driven MLCI, as

motivated above, is critically dependent on consistently

acquiring high-quality images. Maintaining optimal focus

over many positions and long time periods is essential,

especially when imaging microbial cells in dynamic

microfluidic chambers. These setups can be challenging

due to low contrast, changing cell densities, and varying

media conditions. Traditional autofocusing approaches are

broadly categorized into hardware-based and image-based

approaches [19], [20].

Hardware-based methods, utilizing additional sensors

[20], can offer precision and speed. However, they typically

increase system complexity and cost [19] and may lack the

flexibility to easily integrate into highly adaptable, software-

centric event-driven workflows.

Image-basedmethods analyze image content to find the

optimal focal plane using various metrics [21]. While cost-

effective, they often struggle with the low-contrast samples

typical of some microbial cultures and can be computation-

ally intensive, especially if requiring the processing of entire

Z-stacks for each focusing event [22]. Furthermore, a critical

limitation of traditional metrics, such as those based on

image gradients (e.g., Sobel, Laplacian variance) or contrast,

is their inability to determine the direction of the required

focus adjustment. Thesemethods canmeasure image sharp-

ness but cannot distinguish between a positive and a nega-

tive focus deviation. This lack of directionality makes them

unsuitable for rapid, closed-loop convergence, as the sys-

tem would oscillate without knowing whether to move the

objective up or down. For these reasons, a learning-based

paradigm that can predict both themagnitude and direction

of the focus offset is essential for robust, real-time control.

This computational load frequently renders them too slow

(i.e., exceeding latency requirements of tens ofmilliseconds)

for the rapid, iterative focus adjustments essential in real-

time, event-driven MLCI.

Machine Learning (ML), particularly DL, offers promis-

ing alternatives by enablingmodels to predict optimal focus

directly from image data, potentially from single frames

[23], [24]. While Neural Network (NN) models can be inte-

grated into automation pipelines [18], challenges include

the need for extensive annotated datasets for training com-

plex architectures (e.g., deep Convolutional Neural Net-

works (CNNs) or Transformers) and ensuring robust per-

formance on novel organisms or experimental variations

[25]. Furthermore, many existingML-based autofocusmeth-

ods might still rely on Z-stack analysis or employ models

whose complexity does not meet the stringent low-latency

requirements of an event-driven system. This highlights the

need for lightweight, extremely fast (e.g., <100 ms predic-

tion time), yet accurate ML models for focus offset predic-

tion, like the MLP-based approach proposed in this paper,

which can operate efficiently without specialized hardware,

ideally using features from rapidly acquired images to pre-

dict the focus offset directly.

2.3 Real-time image segmentation for
microbial single-cell analysis in
event-driven workflows

For event-driven MLCI to enable smart single-cell analysis,

the rapid and accurate segmentation of individual micro-

bial cells within potentially dense and structurally com-

plex colonies is fundamental. This enables the extraction

of quantitative single-cell data (e.g., cell size, morphology,
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growth rate) and the real-time detection of cellular events,

which can then trigger experimental interventions. Clas-

sic image processing methods [26], [27] are generally ill-

suited for these tasks because they require manual fea-

ture engineering and parameter tuning. They also struggle

with changes in imaging conditions and cell appearance

[28], making them impractical for high-throughput, real-

time applications. DL-basedmethods have become the SOTA

for most biomedical image segmentation tasks due to their

superior accuracy and robustness [29]. For preliminary

tasks such as detecting the region of interest (e.g., the growth

chamber itself), established object detectionmodels like You

Only Look Once (YOLO) [6] offer strong performance and

speed [30] and can be readily integrated. However, for the

more challenging task of segmenting individual microbial

cells, a careful selection of models is required:

– Task-specific models: Approaches like the distance-

based method [31] trained on data from microbes sim-

ilar to ours [32] (see Section 4) and Omnipose [33] are

often highly optimized for cell segmentation. While

achieving excellent accuracy, their performance in

terms of raw speed for true real-time feedback (i.e., sub-

100 ms processing), generalization to microbial species

significantly different from their training data, and

ease of deployment in integrated event-driven systems

need to be critically assessed for each specific MLCI

application.

– Domain-specific models: Well-known models like

StarDist [34], Cellpose 3 [35], and the Contour Pro-

posal Network (CPN) [36] offer good generalization in

biomedical imaging. However, their balance of accu-

racy versus computational cost is a key concern for

real-time microbial MLCI. Their out-of-the-box perfor-

mance on specific challenges, such as segmenting low-

contrast microbes or distinguishing individual cells in

extremely dense colonies under rapid imaging condi-

tions, may vary and thus warrants investigation.

– FoundationModels (FMs) Large-scalemodels like Seg-

ment Anything Model (SAM), incl. its variants [37], [38],

Florence-2 [39], BiomedParse [40], and 4M21 [41], offer

impressive generalization. However, for precise, real-

time instance segmentation of small, densely packed

microbial cells, their substantial computational foot-

print typically makes them too slow. Moreover, their

generalist nature might require significant prompting

or fine-tuning to achieve the instance-level accuracy

needed for reliable single-cell analysis, differing from

their typical “segment anything” behavior.

Given this landscape, and the critical need for solutions

that balance high accuracy with very low latency for

event-driven workflows in microbial MLCI, a systematic

comparative evaluation of these leading DL segmentation

approaches – as undertaken in this paper – is essential to

identify the most suitable candidates. This review of the

related work highlights the existing gaps and challenges

in developing fully integrated, intelligent, and event-driven

EAPs for microbial single-cell analysis, thereby motivating

the specific contributions of EAP4EMSIG detailed in the sub-

sequent sections.

3 Methodology

The methods presented in this paper enhance our previ-

ously introduced EAP4EMSIG [5]. Thismodular pipeline (see

Figure 1), designed for automated, event-driven microflu-

idic live-cell experiments, comprises eight interconnected

modules. Briefly, these include (1) image acquisition; (2) real-

time image processing for single-cell instance segmentation;

(3) data andmetadatamanagement via an OpenMicroscopy

Environment Remote Objects (OMERO) database; (4 & 5)

management of simulated cell data from CellSium [43]

(where ground truth is inherently known) and support for

semi-automatic annotation using ObiWan-Microbi [44]; (6)

real-time data analysis with event detection and a dash-

board; (7) a real-time experiment planner; and (8) a micro-

scope control module.

Building on our previous evaluation of robotic middle-

ware [5], we have now effectively adopted the Dataflow-

Oriented Robotic Architecture (DORA) as the backbone of

our EAP. The decision to transition from Robot Operating

System (ROS) to DORA was motivated on the one hand

by the complexity of installing and maintaining ROS [45],

and on the other hand by DORA’s superior support for

asynchronous, low-latency communication between dis-

tributed modules, as well as its composable and scalable

architecture.

This work introduces novel methodologies and evalua-

tions for three critical components within the EAP4EMSIG

framework: MLP-based autofocusing, real-time image pro-

cessing (specifically, the evaluation of segmentation meth-

ods), and real-time data analysis. These are detailed in the

following sections.

3.1 MLP-based autofocusing

Maintaining optimal focus is essential for acquiring high-

quality image data in time-resolved MLCI. We propose
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Figure 1: EAP4EMSIG visualization. The pipeline consists of eight modules, represented by the light blue boxes and the OMERO database, arranged in

a cyclical process. The microbial images in the figure come from a dataset presented in [42]. The images from the experiment chip are from an internal

dataset. Adapted from [5].

a regression-based deep learning approach that predicts

the focus offset from rapidly computable image features,

enabling fast and accurate adjustmentswithout the need for

additional, specialized microscope hardware.

3.1.1 Defining “perfect focus” and ground truth

acquisition

The ground truth for our model was established in a two-

stage process. First, for each field of view, an experienced

microscopist manually adjusted the objective to find the

visually optimal focus. This position served as the center-

point (z0) for the subsequent automated acquisition. A

symmetric z-stack was then acquired around this point.

For annotation, the mid-frame of this stack was systemat-

ically defined as the ‘perfect focus’ and all other frames

were labeled with their known physical distance from this

center.

3.1.2 Model architecture and feature extraction

We selected an MLP as our NN architecture, prioritizing

both computational efficiency and inherent ease of use. This

architecture offers a balance between predictive perfor-

mance and ease of implementation, making it highly acces-

sible for domain experts such asmicrobiologists. Its simpler

structure allows for more straightforward understanding,

troubleshooting, or retraining as new data becomes avail-

able. In contrast to more complex architectures like trans-

formers, which, while powerful, often come with higher

computational demands and a more intricate setup, our

choice of anMLPprovides amore efficient anduser-friendly

solution. This facilitates transparent integration into exper-

imental pipelines and supports broader adoption by the

scientific community.

Our MLP takes as input features from a single image

(the current, potentially out-of-focus view). We extract a set

of features known to correlate with image focus:
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– Image Pyramids: Laplacian and Gaussian pyramids

capture multiscale edge and intensity information.

– Wavelet Transforms: Bi-orthogonal wavelets (types 1.1

and 1.3) analyze texture and detail at different frequen-

cies and orientations.

– Image Characteristics: Information about image orien-

tation and resolution are also included as features.

These extracted features form the input vector for the MLP.

The MLP consists of two hidden layers with Rectified Linear

Unit (ReLU) activation functions, AdamW optimizer with a

learning rate of 3 × 10−4 and an output layer that predicts

a single continuous value: the focus offset (in μm), including
its direction (positive or negative), required to reach the

optimal focal plane.

3.1.3 Training and validation

To enhance robustness, data augmentation techniques,

including random flips and rotations, were applied during

training. The model was trained using Mean Absolute Error

(MAE) as the loss function, and K-fold cross-validation was

employed to ensure robustness.

3.1.4 Real-time operation

In operation, the trained MLP predicts the focus offset

from the features of a single, currently acquired image in

under 100 ms. This predicted offset is then relayed to the

microscope control module. While a single prediction is

designed to bring the image close to optimal focus, often

within the depth of the field, an iterative process is imple-

mented for enhanced robustness. This iterative capability

enables the system to reliably correct larger initial devia-

tions from focus and actively compensate for potential focal

drift resulting from environmental factors or mechanical

settling over extended experimental durations.

3.2 Real-time image processing

Accurate instance segmentation of individual microbial

cells is crucial for extracting quantitative data and detecting

cellular events in real-time. Given the time constraints of

event-driven microscopy (target processing time <100 ms

for this work), this section outlines the methodology for

evaluating existing SOTA DL segmentation methods rather

than developing a new one.

The image processing workflow first involves identi-

fying the current chamber of interest within the acquired

image. This can be achieved using established methods,

such as classical template matching, or contemporary DL-

based object detectors, like YOLO, selected based on the

specific experimental setup’s speed and accuracy require-

ments. Microfluidic structures extraneous to the growth

chamber are then computationally removed.

Subsequently, the content of the identified chamber,

primarily the microbial cells, is segmented to delineate

individual cell instances using a suitable segmentation

algorithm. Our goal was to identify models that strike a bal-

ance between accuracy and low latency. Given the diverse

landscape of segmentation models and their varying trade-

offs between accuracy, speed, and generalization capabil-

ities for microbial imagery (as discussed in Section 2.3),

a systematic benchmark is essential to identify the most

suitable candidates for our real-time pipeline. For this, we

conducted a benchmark (detailed in Section 4.2) compar-

ing various SOTA DL segmentation models (task-specific,

domain-specific and foundation models, as reviewed in

Section 2.3) on a representative microbial dataset. The eval-

uation focuses on their zero-shot performance in terms of

Segmentation Quality (SQ) (e.g., Panoptic Quality (PQ)) and

inference speed, to identify candidates suitable for integra-

tion into our real-time EAP4EMSIG pipeline.

3.3 Real-time data analysis

This module leverages the data generated from real-time

image processing (e.g., cell masks, cell size, growth rates)

to provide immediate insights and enable expert inter-

vention during ongoing experiments. It comprises two

main submodules: event detection and a data analysis

dashboard.

3.3.1 Event detection

The event detection submodule is designed to identify pre-

defined biological or technical occurrences at various lev-

els (cultivation chip, chamber or individual cell). Events

are defined based on rules specified by domain experts.

These expert-defined rules are typically implemented as

logical conditions or thresholds applied to quantitative data

extracted from the imageprocessing pipeline (e.g., cell count

exceeding a defined limit, growth rate changes surpass-

ing a specific speed, or image quality metrics from the

autofocus module falling below a set value for a defined

duration). These events can be categorized into two main

types:
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– Technical Events: Issues such as focus loss (character-

ized by persistent large offsets reported by the aut-

ofocus system or a decline in image quality metrics

below acceptable thresholds), chamber defects (identi-

fied through image analysis that assesses the integrity

of the chamber, revealing structural issues that may

compromise performance), or fluidic anomalies can

occur and potentially disrupt the imaging process and

affect sample quality. For detecting such focus loss

events using image-derived features, we define the fol-

lowing rule: an out-of-focus event is triggered if the

MLP-based autofocus module reports a predicted offset

greater than 0.5 μm for three consecutive time points in

a given chamber.

– Biological Events: Significant changes in microbial

behavior, such as rapid alterations in growth rates,

cell death exceeding a certain percentage (identified

via morphological changes or specific stains if used),

or specific morphological transitions. For example, to

identify a rapid growth event, indicative of accelerated

proliferation,we establish a detection rule. This event is

triggered if the cell count (i.e., the number of individual

cells identified through instance segmentation by the

real-time segmentation module) shows an increase of

at least 10 % relative to the preceding time point for a

given chamber.

Upon detection of events, the system can trigger automated

responses (via the real-time experiment planner module)

or notify the user, for instance, via Slack1 messages to a

dedicated channel, enabling timely intervention.

3.3.2 Data analysis dashboard

The dashboard provides a user-friendly interface for biol-

ogists to monitor experiments, visualize data in real-time

and manage experimental parameters. Key methodological

considerations in its design include:

– Modular Architecture: Ensuring new features, visual-

izations, or control elements can be integrated without

overhauling the existing codebase, making it adaptable

to diverse experimental needs.

– Intuitive User Interface: Designed for ease of use by

biologists, offering clear visualizations (e.g., heatmaps

of chip status, time-series plots of cellular metrics per

chamber) and straightforward controls.

– Real-time Feedback: Displaying up-to-date informa-

tion on experiment status, key cellular metrics (cell

1 https://slack.com/.

count, size, growth rate, focus score), and detected

events.

– Interactive Control: Allowing users to adjust experi-

mental parameters or trigger specific actions based

on observed data, facilitating biologist-in-the-loop

operation.

4 Experiments

This chapter presents the experimental test of the three

key modules introduced in Section 3. For each module, we

describe the experimental setup, present the results and

provide a discussion of the findings.

4.1 MLP-based autofocusing

4.1.1 Experimental setup

The images were captured using a Nikon TI microscope

equippedwith aNikon Plan Apo𝜆 20×/0.75 NA objective (air
immersion). For each field of view, a z-stack was acquired

with a defined step size of 0.1 μm over a range of −5 μm
to 5 μm. It is essential to note that these images were

acquired under low-variance conditions, originating from

a single, long-running experiment type where factors such

as the microfluidic chip design, illumination, and tempera-

ture remained consistent. To ensure the physical capability

for fine-grained adjustments, we confirmed with the man-

ufacturer (Nikon) that the microscope’s z-drive features a

mechanical step resolution of 0.025 μm and a positioning

accuracy of 0.065 μm. Initially, 5 % of the total 13,000 high-

resolution images (2,560 × 2,160 pixels) were reserved for

testing the autofocusing MLP-based model (see Section 3.1)

using a stack-based splitting strategy to prevent data leak-

age, ensuring that all frames from the same experiment

remained grouped together. Subsequently, a further split

was applied to the remaining 95 % of the dataset, resulting

in 76 % of the total data used for training and 19 % for

validation.

Model performance was primarily assessed using the

MAE by comparing the predicted z-offset values with the

ground truth z-offsets. All models were implemented using

TensorFlow/Keras and trained and evaluated on an NVIDIA

RTX 3090 GPU, reflecting a realistic laboratory hardware

deployment.

4.1.2 Results and discussion

The performance of the trained MLP-based autofocusing

model on the independent test set is detailed in Figure 2 to 4.

https://slack.com/
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Figure 2: Comparison of predicted and actual focus offset values. The

scatter plot shows the focus offset predicted by the MLP model (Y-axis) in

relation to the ground truth values (X-axis) for the test dataset. The red

dashed line represents a perfect match. The model achieves a high

determination coefficient R2 of 0.998 and a MAE of 0.105 μm.

This scatter plot of predicted values versus ground truth

focusing offset (see Figure 2) demonstrates a strong linear

correlation. The model achieved a high coefficient of deter-

mination R2 of 0.998, indicating that the predictions align

closely with the ideal one-to-one relationship. The overall

MAE for the test set was 0.105 μm. These results indicate a
precise system, with the reported MAE is remarkably close

to the 0.1 μm z-stack sampling interval used for training.

This sub-step-size accuracy is possible because the MLP,

trained as a regressor, learns to interpolate the optimal focus

position by analyzing continuous changes in image features.

This predictive capability is physically supported by the

microscope’s hardware, which has a positioning accuracy

(0.065 μm) finer than the sampling interval.
A more detailed analysis of the prediction error is pro-

vided in Figure 4. The histogram of absolute errors (see

Figure 3) shows a right-skewed distribution, with the vast

majority of errors being very small, bellow 0.2 μm, confirm-
ing that substantial prediction errors are rare.

The MLP-based autofocusing model, trained as

described in Section 3.1.3, achieved a final test MAE of

0.105 μm with a standard deviation of 0.15 μm. The 25th,

50th (median), and 90th percentiles of the absolute error

were 0.036 μm, 0.074 μm, and 0.232 μm, respectively, with a
99th percentile of 0.440 μmand amaximum observed error

of 0.68 μm (see Figure 3). These results indicate a generally

precise system: most prediction errors fall well below

0.153 μm, which is tolerably close to z-stack acquisition step
size of 0.1 μm and within a fraction of the microscope’s

mechanical step resolution of 0.025 μm (see Figure 4).

Figure 3: Distribution of the absolute prediction error. The histogram

shows the frequency distributions of absolute errors on the test dataset.

The right-skewed distribution illustrates that the majority of prediction

errors are very small, clustering near zero, while larger errors are

infrequent.

Figure 4: Absolute prediction error by percentile. The figure quantifies

the error distribution on the test dataset. The curve shows the absolute

error values for each percentile. For instance, the median error (50th

percentile) is 0.074 μm, while 75 % of all errors are below 0.153 μm. The
99th percentile is 0.44 μm.

In terms of speed, the model predicts focus adjust-

ments with an average inference time of 87 ms per image

on the GPU, meeting our real-time requirements. This per-

formance, combined with the low MAE, underscores the

model’s suitability for closed-loop focus control in high-

throughput MLCI experiments.

The presented low MAE and high speed demonstrate

the model’s effectiveness for its intended application. How-

ever, it is crucial to frame these results within the con-

text of the model’s design and training data. The MLP-

based approach was trained on data with low experimental

variance (see Section 3.1.3) and therefore performs as an

experiment-specific model.

Its primary strength lies in maintaining focus during

long-running experiments where the core setup (e.g., chip

type, illumination, temperature) remains stable. In such sce-

narios, the model can reliably compensate for focus drift
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over hours or days. Conversely, the model is not designed

to generalize across different experimental setups. If a user

changes the chip or significantly alters other environmental

conditions, its performance would likely degrade, necessi-

tating retraining. This highlights a deliberate trade-off: the

currentMLPprovides a real-time, computationally inexpen-

sive solution for stable experiments, while a more general-

purpose autofocusing tool would require more complex

models (e.g., CNNs) and a significantlymore diverse training

dataset.

4.2 Real-time image processing:
segmentation

4.2.1 Experimental setup

The performance of eleven SOTA DL segmentation meth-

ods (as categorized in Section 2.3) was evaluated on the

benchmark dataset presented by Seiffarth et al. [42], [46],

which contains 4,000 images of Corynebacterium glutam-

icummicrocolonies fromfive video sequences, representing

typicalMLCI experiments. Ground truth instance segmenta-

tion masks are provided with the dataset. The benchmark

was performed on an Ubuntu 22.04 workstation with an

Intel Core i9-13900 CPU, an NVIDIA RTX 3090 GPU, and

64 GB RAM. All models were evaluated using their default

settings to ensure a fair comparison of their out-of-the-box

capabilities.

Segmentation accuracy was assessed using Average

Precision (AP), including AP@50 and AP@75 and PQ [47],

which comprises SQ and Recognition Quality (RQ). These

metrics were calculated using TorchMetrics. As AP-based

metrics require confidence scores, they could not be com-

puted for all evaluated methods. Average inference times

weremeasured using 32 bit floating-point precision, defined

as the duration from inputting the image to receiving the

model’s prediction as an instance mask, including any nec-

essary post-processing.

4.2.2 Results and discussion

The qualitative and quantitative results of the segmenta-

tion benchmark are presented in Figure 5 and Table 2,

respectively.

Among the evaluated methods, Cellpose 3 achieved the

highest PQ of 93.58 % and RQ of 99.46 %, largely due to its

automatic cell diameter estimation. However, this came at

the cost of significantly longer inference times (1,115 ms),

making it nearly ten times slower than the Distance-based

method. The Distance-based method, while achieving a

slightly lower PQ of 93.02 %, was the fastest among the

highly accurate models at 121 ms. This substantial speed

advantage is likely due to its comparatively simpler model

architecture, which requires fewer computational steps

than the more complex network used by Cellpose 3. Omni-

pose also performed well with a PQ of 93.36 % and an

inference time of 271 ms. Visually, the results from Cellpose

3, Omnipose and the Distance-based method were nearly

indistinguishable, all reliably detecting microcolonies and

their constituent cells. Given its speed and high accuracy,

the Distance-basedmethod presents the best option for real-

time applications, followed closely by Omnipose.

As anticipated, the FoundationModels (FMs) (SAM, SAM

2, SAM 2.1, 4M21, Florence-2, BiomedParse) were generally

unsuitable for this specific real-time instance segmentation

task. They primarily identified the microcolony as a whole

rather than resolving individual cells, and their inference

times were often unacceptably high (e.g., >100 s for 4M21).

This is likely due to these models being trained on vastly

different and broader datasets, not optimized for the fine-

grained instance segmentation of small, densely packed

microbial cells without specific prompting or fine-tuning.

BiomedParse, trained on medical objects like organs, failed

to segmentmicrocolonies effectively. StarDist, optimized for

bright objects on dark backgrounds, struggled with the dark

microcolonies against a dark background in our dataset.

CPN,while faster than Cellpose 3, had difficultywith densely

packed regions.

Regarding the PQmetric, we acknowledge that for very

small and densely packed objects like bacteria, PQ can be

sensitive to minor contour inaccuracies, potentially impact-

ing the absolute scores [48]. However, PQ is awidely adopted

metric in cell segmentation benchmarks, and its compo-

nents (SQ and RQ) provide valuable insights into both seg-

mentation and detection aspects [49], [50]. Furthermore, the

relative performance rankings and the substantial differ-

ences in inference times observed in our benchmark remain

informative for selecting suitable models. The AP metrics

reported in Table 2, where available, offer an additional

perspective on performance.

This benchmark highlights the critical trade-off

between segmentation quality and inference speed,

emphasizing the need to select models based on specific

experimental requirements for real-time, event-driven

MLCI.
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Figure 5: The original image (a) and the zero-shot instance segmentation predictions for one sample image from [42] (b to l). (a) Original. (b)

Omnipose [33]. (c) Distance [31]. (d) CellPose 3 [35]. (e) StarDist [34]. (f) CPN [36]. (g) SAM [37]. (h) SAM 2 [38]. (i) SAM 2.1 [38]. (j) 4M21 [41]. (k) Florence

2 [39]. (l) BiomedParse [40].

Table 2: AP results, PQ results comprising SQ score and RQ score as well as inference times (Inf.) evaluated on the benchmark dataset [42] best in

bold. When calculating the metric, falsely detected backgrounds were not removed and evaluated as false positives during the AP calculation. The

models were used according to basic configurations for fair comparison. The values in bold are the best across all methods, provided that results were

available. To ensure a fair comparison, we define inference time as the duration from inputting the image to receiving the model’s prediction as an

instance mask with confidence scores. This includes post-processing needed by certain methods, such as converting predicted contours to a

pixel-wise mask. The inference time is measured using 32 bit floating-point precision.

Methods ∖metrics AP ↑ [%] AP@50 ↑ [%] AP@75 ↑ [%] PQ ↑ [%] PQ-SQ ↑ [%] PQ-RQ ↑ [%] ∅Inf. [ms/img] ↓

Omnipose [33] – – – 93.36 93.95 99.35 271

Distance-based [31] – – – 93.02 93.48 . 

Cellpose 3 [35] – – – . . 99.46 1,115

StarDist [34] 0 0 0 36.29 72.87 40.93 7,686

CPN [36] . . . 85.75 87.79 97.63 185

SAM [37] 3.47 4.76 4.70 6.26 84.16 7.36 1,994

SAM 2 [38] 0.27 0.33 0.32 4.85 78.49 6.89 1,566

SAM 2.1 [38] 1.79 2.64 2.45 6.00 76.10 7.98 1,546

4M21 [41] – – – 38.11 47.80 39.86 103,025

Florence 2 [39] – – – 42.00 83.78 43.16 4,294

BiomedParse [40] 0.03 0.07 0 37.63 78.48 41.12 266

4.3 Real-time data analysis

The real-time data analysis module, encompassing event

detection and an interactive dashboard (described method-

ologically in Section 3.3), was tested in experimental runs

to demonstrate its functionality. To achieve this, a time-

lapse experiment was conducted to grow E. coli micro-

colonies, capturing a series of images over a period of

time. The acquired images were then replayed through

the image acquisition module at a constant frame rate,

effectively simulating live experiments. This replay served

as the entry point for the EAP4EMSIG pipeline, enabling

us to systematically test and validate each component of

the pipeline under conditions that closely mimic real-time

operation. Pre-defined triggers for common biological and
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Figure 6: EAP4EMSIG dashboard: experiment monitoring interface. The primary interface for monitoring experiments, highlighted in the red box,

allows users to select the cultivation chip and microscope to initiate an experiment or load a predefined protocol. The heatmap, structured according

to the cultivation chip’s layout, visually represents the status of each cultivation chamber based on the selected metric, in this case, cell count. The

yellow box contains the context window that is displayed when hovering over the chamber. Clicking on a chamber opens a detailed view (blue box),

which includes the raw region of interest and the segmented image.

Figure 7: Detailed view of a selected chamber. The view displays time-series data for key metrics, including cell count, cell size, growth rate, and focus

score, providing users with comprehensive insights into the chamber’s performance over time.
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technical events related to the performed experiment were

established.

4.3.1 Event detection demonstration

The event detection submodule was configured with rules

to identify exemplary events. As stated in Section 3.3.1, an

out-of-focus event was triggered if theMLP-based autofocus

module reported a predicted offset greater than 0.5 μm for

three consecutive time points of a specific chamber. A rapid

growth event was triggered if the cell count in a specific

chamber increased by more than 10 % within consecutive

time points. Upon triggering, the system effectively gen-

erated and dispatched notifications to our Slack commu-

nication channel. The event detector itself requires only

approximately 100 ms to check for new events within a

chamber and send notifications via both Slack and inter-

nal logs. These log times are prominently displayed on our

dashboard (Figures 6 and 7), showcasing the system’s ability

to alert users to critical events in real-time and facilitating

prompt intervention.

4.3.2 Dashboard functionality demonstration

The EAP4EMSIG dashboard (methodology detailed in

Section 3.3.2) provides comprehensive visualization and

control features, as demonstrated in Figures 6 and 7.

Figure 6 (red box) presents the primary experiment

monitoring interface, where users can select the cultivation

chip and microscope to either initiate an experiment

or load a predefined protocol. Experiment management

is facilitated through control buttons labeled “Start”,

“Pause/Resume”, and “Stop”. The heatmap, structured

according to the cultivation chip’s layout, visually

represents the status of each cultivation chamber based

on selected metrics, including cell count, cell size, event

occurrences, and focus score.

Hovering over a chamber on the heatmap reveals a

context window that displays the current visual state of the

chamber alongwith additional details (Figure 6 yellow box).

As illustrated in Figures 6 and 7, clicking on a chamber

opens a detailed view. This view includes the raw region

of interest from the image alongside the segmented image,

highlighting individual cells (Figure 6, blue box). Addition-

ally, time-series data for key metrics, including cell count,

cell size, growth rate, and focus score, are presented. These

plots visualize the expected dynamics of microbial growth,

such as the exponential increase in cell count, while derived

metrics like the growth rate naturally exhibit higher volatil-

ity. A sidebar displays experiment metadata and allows for

data export. This empowers users to track the history of

individual chambers and filter messages, enabling in-depth

analysis of ongoing experiments and supporting informed

decision-making.

The presented functionalities demonstrate the

dashboard’s capacity to provide biologist-in-the-loop

control and real-time insights, significantly enhancing the

ability to oversee and interpret complex MLCI experiments

efficiently. The pipeline has been in routine operation since

01/2025 and is being continuously expanded based on user

feedback.

5 Conclusion

This paper presents an in-depth exploration and enhance-

ment of three key modules within the EAP4EMSIG system,

aiming to advance real-time, event-driven microscopy for

microfluidic single-cell analysis.

First, we introduced a novel real-time autofocusing

module based on a computationally efficient MLP. This

module achieves a MAE of 0.105 μm with prediction times

under 87 ms on standard GPU (NVIDIA RTX 3090) hardware.

These results underscore its capability for precise and rapid

image acquisition,which is critical for effective downstream

image analysis in high-throughput experiments. We have

also discussed the importance of understanding this MAE

in the context of the optical system’s depth of field and the

methodology for defining ground truth. Future researchwill

focus on developing models that are even more robust to

variations in experimental conditions, potentially requir-

ing minimal retraining, and further optimizing inference

speed for live imaging applications. The modular design

ensures that as improved autofocus models become avail-

able, they can be integrated with minimal changes to the

overall framework.

Second, we conducted a comprehensive zero-shot

benchmark of eleven SOTA DL segmentation models,

encompassing task-specific, domain-specific, and founda-

tion model categories. Our findings reveal that while foun-

dation models demonstrate broad applicability in many

domains, they were largely unsuitable for our specific task

of real-time, instance-level segmentation of microbial cells,

primarily due to low accuracy in resolving individual cells

and unacceptably high processing times. In contrast, task-

specificmodels likeOmnipose andparticularly theDistance-

based method, along with the domain-specific model Cell-

pose 3, delivered excellent segmentation quality with PQ

scores exceeding 93 %. The Distance-based method distin-

guished itself with a remarkably fast processing time of

121 ms. While we acknowledge the discussions regarding
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the sensitivity of PQ for small, dense objects, the relative

performance differences and inference speeds observed

provide crucial guidance for model selection. Future work

will explore methods to automatically select the suitable

model based on the recorded data such as in [51]–[54],

strategies to accelerate processing times further, such as

model conversion to specialized inference formats (e.g., Ten-

sorRT) or quantization to lower-precision formats, aiming

to consistently meet the sub-100 ms target for the suitable

segmentation model.

Finally, the real-time data analysis module, featuring

event detection capabilities and an interactive dashboard,

was presented. By providing a user-friendly interface for

monitoring, real-time data visualization, and experimental

control, this module significantly enhances biologists’ abil-

ity to oversee and interpret ongoing experiments efficiently.

The demonstration highlighted its potential for facilitating

biologist-in-the-loop decision-making and reacting to crit-

ical events. Future enhancements will include integration

with electronic lab notebooks (e.g., eLabFTW) to streamline

experiment documentation and reporting.

In summary, the advancements presented for these

three modules make a significant contribution to the over-

arching goal of creating a more intelligent, responsive,

and automated pipeline formicrofluidic single-cell analysis.

Continued research will focus on improving the robustness

and accuracy of the autofocusingmodule, refining strategies

for the automated selection of optimal segmentation meth-

ods based on image characteristics, further enhancing seg-

mentation speed, and expanding the functionalities of the

real-time data analysis platform. New models and pipeline

integrations are currently under development and will be

detailed in forthcoming publications.
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