| 001 | 1047299 | ||
| 005 | 20251023202112.0 | ||
| 024 | 7 | _ | |a 10.48550/ARXIV.2503.09244 |2 doi |
| 037 | _ | _ | |a FZJ-2025-04214 |
| 100 | 1 | _ | |a Paul, Richard D. |0 P:(DE-Juel1)175101 |b 0 |
| 245 | _ | _ | |a How To Make Your Cell Tracker Say 'I dunno!' |
| 260 | _ | _ | |c 2025 |b arXiv |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1761207040_20943 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 500 | _ | _ | |a RDP is funded by the Helmholtz School for Data Science in Life, Earth, and Energy (HDS-LEE). DR’s research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 548823575. This work was supported by the President’s Initiative and Networking Funds of the Helmholtz Association of German Research Centres [EMSIG ZT-I-PF-04-044]. |
| 520 | _ | _ | |a Cell tracking is a key computational task in live-cell microscopy, but fully automated analysis of high-throughput imaging requires reliable and, thus, uncertainty-aware data analysis tools, as the amount of data recorded within a single experiment exceeds what humans are able to overlook. We here propose and benchmark various methods to reason about and quantify uncertainty in linear assignment-based cell tracking algorithms. Our methods take inspiration from statistics and machine learning, leveraging two perspectives on the cell tracking problem explored throughout this work: Considering it as a Bayesian inference problem and as a classification problem. Our methods admit a framework-like character in that they equip any frame-to-frame tracking method with uncertainty quantification. We demonstrate this by applying it to various existing tracking algorithms including the recently presented Transformer-based trackers. We demonstrate empirically that our methods yield useful and well-calibrated tracking uncertainties. |
| 536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 650 | _ | 7 | |a Computer Vision and Pattern Recognition (cs.CV) |2 Other |
| 650 | _ | 7 | |a Quantitative Methods (q-bio.QM) |2 Other |
| 650 | _ | 7 | |a Applications (stat.AP) |2 Other |
| 650 | _ | 7 | |a FOS: Computer and information sciences |2 Other |
| 650 | _ | 7 | |a FOS: Biological sciences |2 Other |
| 700 | 1 | _ | |a Seiffarth, Johannes |0 P:(DE-Juel1)176923 |b 1 |
| 700 | 1 | _ | |a Rügamer, David |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Scharr, Hanno |0 P:(DE-Juel1)129394 |b 3 |
| 700 | 1 | _ | |a Nöh, Katharina |0 P:(DE-Juel1)129051 |b 4 |
| 700 | 1 | _ | |a Scharr, Hanno |0 P:(DE-Juel1)129394 |b 5 |u fzj |
| 773 | _ | _ | |a 10.48550/ARXIV.2503.09244 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1047299 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)175101 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176923 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129394 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129051 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129394 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-8-20210421 |k IAS-8 |l Datenanalyse und Maschinenlernen |x 1 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-8-20210421 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|