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Nils Friederich5,6 , Angelo Jovin Yamachui Sitcheu5 , Ralf Mikut5 , 
Hanno Scharr4 , Alexander Grünberger3,7 , and Katharina Nöh1 
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Abstract. Tracking the development of living cells in live-cell time-
lapses reveals crucial insights into single-cell behavior and presents 
tremendous potential for biomedical and biotechnological applications. 
In microbial live-cell imaging (MLCI), a few to thousands of cells have 
to be detected and tracked within dozens of growing cell colonies. The 
challenge of tracking cells is heavily influenced by the experiment param-
eters, namely the imaging interval and maximal cell number. For now, 
tracking benchmarks are not widely available in MLCI and the effect of 
these parameters on the tracking performance are not yet known. There-
fore, we present the largest publicly available and annotated dataset for 
MLCI, containing more than 1.4 million cell instances, 29k cell tracks, 
and 14k cell divisions. With this dataset at hand, we generalize existing 
tracking metrics to incorporate relevant imaging and experiment param-
eters into experiment-aware metrics. These metrics reveal that current 
cell tracking methods crucially depend on the choice of the experiment 
parameters, where their performance deteriorates at high imaging inter-
vals and large cell colonies. Thus, our new benchmark quantifies the 
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influence of experiment parameters on the tracking quality, and gives the 
opportunity to develop new data-driven methods that generalize across 
imaging and experiment parameters. The benchmark dataset is publicly 
available at https://zenodo.org/doi/10.5281/zenodo.7260136. 

Keywords: Microbial Cell Tracking · Benchmark · Robustness 
Metrics · Live-Cell Imaging 

1 Introduction 

Detecting objects, segmenting their visual appearance into pixel-precise masks 
and tracking their movement through time is a fundamental challenge of com-
puter vision providing crucial scene understanding necessary for autonomous 
driving [ 11], pedestrian management [ 27], sports or robotics [ 11]. Especially, in 
biomedical imaging, tracking the development of individual living cells allows 
gaining insights into the basic principles of life and diseases. For instance, 
single-cell tracking allows studying virus infections [ 34], pathogenic bacteria [ 15], 
cell aging [ 26], and cell interactions [ 14,41] at the single-cell level. In partic-
ular, microbial live-cell imaging (MLCI) is a technology that performs high-
throughput screening of the temporal developments of individual cells (see 
Fig. 1). Herein, living microbial cells are introduced into microfluidic chip devices 
and trapped within thousands of micrometer-sized microfluidic structures called 
cultivation chambers. Within these structures, the cells grow in monolayers while 
their temporal development is recorded using automated microscopy. The micro-
scope scans the cultivation chambers one by one, takes an image and repeatedly 
performs this within a loop, recording a time-lapse that captures the temporal 
development of the independent cell colonies. As a result, a single MLCI exper-
iment records dozens of time-lapses and produces hundreds of gigabytes of raw 
imaging data. Clearly, automated segmentation and tracking methods are essen-
tial to extract information from the time-lapse images and to gain insights into 
microbial colony development and single-cell behavior. 

However, tracking living microbial cells presents unique challenges distinct 
from those usually encountered in general object tracking. First, living microbial 
cells divide frequently, with division times ranging from a few minutes to hours. 
In MLCI experiments, few cells grow exponentially into dense and large colonies 
with up to thousands of cells captured in a single microscopy image (Fig. 1E) 
while their total number is limited by the size of the cultivation chamber. Sec-
ond, microbial cells in phase-contrast microscopy are visually hard to distin-
guish, making it hard to track them by their appearance (see Fig. 1D). Third, 
the time-lapse recordings are affected by parameters such as the choice of the 
imaging interval between two consecutive phase contrast images and the num-
ber of concurrently monitored cultivation chambers. Moreover, both parameters 
are interdependent: lower imaging intervals usually simplify the tracking chal-
lenge but enforce shorter movement cycles of the microscope and, consequently, 
limit the number of concurrently monitored cultivation chambers. Notably, the
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Fig. 1. Data acquisition in microbial live-cell imaging. A microfluidic cultivation 
device is mounted to an automated microscope (A, B). The device contains hundreds to 
thousands of rectangular cultivation chambers (C) that are imaged one-by-one, moving 
the microscope stage and capturing images at a series of time-points (D). This imaging-
and-movement loop, indicated by the purple line (C), is repeated with a pre-set imaging 
interval and leads to time-lapse recordings capturing the temporal development of the 
cell colony from a few cells up to several thousands (E). The images in (E) depict a 
80 × 90µm region. The figure is adapted from Blöbaum et al. [  4]. 

imaging procedure itself may influence the growth behavior of the cells. While 
phase contrast imaging is not considered to impact microbial growth, fluores-
cence imaging may lead to phototoxicity and -bleaching effects [ 16]. Therefore, 
MLCI experiments are usually conducted with relatively low imaging rates. This 
leads to frequent cell divisions and larger cell displacement between consecutive 
frames. Consequently, we argue that MLCI not only needs robust and highly 
automated cell tracking, but also informed choices of experiment parameters, 
namely the imaging interval and the upper cell count limit. 

In recent years, the rapid development in deep learning (DL) methods has 
driven segmentation and tracking methods [ 9,13,19,20,28,42– 44]. Moreover, the 
increased availability of large-scale datasets such as ImageNet [ 29], KITTI [ 11], 
CityScapes [ 6], SA-1B [ 19], and LAION-5B [ 31] has shown to be a crucial 
driver for method development. Within the life sciences, we have seen a similar 
rapid development of methods. DL segmentation approaches have been devel-
oped [ 7,18,30,35,40], driven by annotated datasets [ 5, 8,12,32,35,39]. For cell 
tracking, special methods have been developed that incorporate cell divisions 
[ 10,17,22,23,25,32,36]. However, public datasets for cell tracking [ 1,32,39] pri-
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marily focus on microscopy images with eukaryotic cells. In contrast to microbial 
cells, eukaryotes usually show more distinctive visual features, less frequent cell 
division and the images contain fewer cell instances. For microbial cells, only 
few tracking datasets [ 26] are available, making it difficult to train data-driven 
tracking methods and benchmarking suitable experiment parameters. Due to the 
lack of datasets, the importance of the experiment parameters for high-quality 
automated tracking has not been investigated before. 

Therefore, we establish a novel benchmark for cell tracking in MLCI and 
extend existing tracking metrics with experiment parameters to quantify their 
effect on the tracking performance. Our contributions are threefold: (1) we intro-
duce a new annotated time-lapse dataset, recorded with low imaging interval for 
the segmentation and tracking of Corynebacterium glutamicum cells contain-
ing roughly 1.4 million cell masks and about 14k cell divisions. (2) We intro-
duce experiment-aware metrics that extend existing metrics and incorporate the 
choice of the imaging interval and the maximum number of cells into the eval-
uation. (3) We evaluate state-of-the-art (SOTA) tracking methods using our 
devised metrics across a broad range of experiment parameters. We thereby 
show that the performance of SOTA tracking algorithms deteriorates, especially 
at lower imaging rates and higher cell counts. Notably, this fact that has not yet 
been quantified by the CTC community. Therefore, our benchmark represents 
a step forward to towards fully automated and robust data-driven microbial 
single-cell tracking and raises awareness about the importance of experiment 
parameters for cell tracking in MLCI experiments. 

2 Related Work 

Benchmark Datasets. Benchmark dataset for cell segmentation cover differ-
ent cell tissues, morphologies and imaging modalities [ 5, 8,32,35]. The availabil-
ity of additional tracking information for full time-lapse recordings is much less 
common. The cell tracking challenge combines datasets of various cell types 
and provides partial dense segmentation and full tracking information [ 25,39]. 
Schwartz et al. introduced the DynamicNuclearNet dataset containing roughly 
600K segmented nuclei instances with roughly 2k cell divisions [ 32]. Van Vliet 
et al. provide a dataset of six genetic variants of Escherichia coli in 39 time-lapse 
videos containing roughly 100k cell instances and 9k cell divisions. Anjum et al. 
introduce the CTMC challenge dataset contains roughly 2 million cell detections 
within 2.9k cell tracks and 457 cell division events [ 1]. Their segmentation anno-
tation is restricted to bounding boxes and on average 13 cells are visible within 
a microscope image. 

Tracking Methods. In the predominant tracking-by-detection scheme, cells are 
first detected in the microscopy time-lapse and then linked across frames to build 
biologically valid cell tracks. Thus, tracking-by-detection is usually formulated 
as a graph problem, where nodes represent the cell detections at specific points 
in time and edges link cell detections through time. Therefore, Jaqaman et al.
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[ 17] formulated tracking as a linear assignment problem (LAP) where cell detec-
tions are linked into segments, which are then linked to incorporate cell division 
events. Theorell et al. [  36] extended this approach into multi hypothesis tracking 
(MHT), where cell linking costs are derived from biological models and track-
ing predictions are sampled using a particle filter approach. In contrast, Löffler 
et al. [  23] formulated a coupled minimum cost flow and correct segmentation 
errors during the tracking. All these methods require hand-tuned parameters to 
compute the costs of linking cells. 

Data-driven approaches promise to derive these linking costs purely from 
training data. Ben-Haim et al. [  2] use a graph neural network (GNN) to predict 
cell linking costs and utilize features computed from contrastive visual embed-
dings. However, cell divisions are performed heuristically among the cells’ neigh-
borhood. Similarly, Schwartz et al. [  32] utilize a graph attention network to 
predict linking costs used for building a LAP. Gallusser et al. [  10] extract cell 
detection features and use a transformer network to predict the linking costs. 
The tracking graph is constructed using a greedy scheme or optimizing an integer 
linear program (ILP) for minimizing linking costs. O’Connor et al. [  26] predict 
the dense evolution of cell mask to the next time point for every cell instance 
using a U-Net architecture. Cells are then linked by their mask overlap. While 
Gallusser et al. and O’Connor et al. have been using microbial datasets, the 
other data-driven approaches have focused on tracking eukaryotic cells. 

Tracking Metrics. General object tracking metrics such as MOTA [ 3] and  
HOTA [ 21] have been established for tracking a wide range of objects, but lack 
the consideration of object division crucial in cell tracking. Thus, specialized 
tracking metrics have been developed and established in cell tracking, especially 
by the cell tracking challenge (CTC) [ 39]. Herein, we distinguish technical and 
biological tracking metrics. Technical tracking metrics such as the TRA and LNK 
are based on the Acyclic Oriented Graph Matching (AOGM) [ 24]. The AOGM 
is a weighted sum of costs for the minimal set of operations to transform the 
predicted segmentation and tracking into the ground truth segmentation and 
tracking. While the TRA metric scores both segmentation and tracking errors, 
the LNK metric solely rates errors in cell linking. Biological metrics are moti-
vated by biological events that are of special interest. For instance, the complete 
tracks score (CT) measures the number of completely correctly reconstructed cell 
tracks from the first detection of a cell to its division or disappearance. More-
over, the mitotic branch correctness (MC) rates the quality of reconstructing cell 
division events. 

3 Benchmark Dataset 

In this work, we present a new MLCI benchmark dataset for microbial single-cell 
tracking, briefly termed ‘Tracking one-in-a-million’ (TOIAM). The dataset con-
sists of microscopy time-lapses of growing C. glutamicum that show a character-
istic ‘snapping’ division behavior, adding another challenge to the cell tracking. 
The images are recorded using phase contrast imaging at low imaging intervals of
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one image per minute. The recorded microscopy frames were annotated with cell 
segmentation masks and tracking information using a semi-automated workflow. 
We highlight the special characteristic of microbial datasets that are crucial to 
consider for robust cell tracking. 

3.1 Data Acquisition 

MLCI experiments are usually carried out in three steps [ 38]: First, the microbial 
organism is cultivated in a so-called preculture until reaching a certain biomass 
measured by the optical density (OD). Second, the cell suspension is introduced 
into a microfluidic cultivation chip, trapping individual cells within the cultiva-
tion chambers. Third, medium supply is connected to the microfluidic chip and 
the imaging routine is started recording hundreds of cultivation chambers at a 
specific imaging interval. 

In our case, we cultivated C. glutamicum (ATCC 13032) in BHI-medium at 
30 ◦C. From an overnight preculture, the main culture has been inoculated the 
next day starting with an OD600 of 0.05 and grown at 120 rpm to an OD600 of 
0.25. A microfluidic chip has been fabricated according to Täuber et al. [  37], and 
fixed to the microscope’s stage. The main culture cells were transferred to mono-
layer cultivation chambers (height of 720 nm) on the microfluidic chip within the 
inoculation procedure. Constant medium flow through the microfluidic device 
has been provided by pressure driven pumps with a pressure of 100 mbar on the 
medium reservoir. 

The time-lapse phase contrast images of five cultivation chambers have been 
recorded every minute using an inverted microscope (Nikon Eclipse Ti2) with a 
100x oil immersion objective and a DS-QI2 camera (Nikon) at 15 % relative DIA-
illumination intensity and 100 ms exposure time. The recording procedure has 
been performed for 800 minutes, leading to a total of 4, 000 recorded microscopy 
images. The recorded images provide a spatial resolution of 0.072 micrometers 
per image pixel in both spatial dimensions. 

3.2 Semi-automated Segmentation and Tracking Annotation 

To provide high quality annotation for the large number of recorded images 
with a limited amount of manual annotation workload, we decided to first per-
form an initial segmentation and tracking using Omnipose [ 7] and  UAT [  36], 
respectively. The result was subsequently corrected by an expert in the annota-
tion tool ObiWan-Microbi [ 33]. For cell segmentation, we focused on providing 
annotations for every single-cell. Therefore, over- and under-segmentation, false 
positive and false negative segmentations were corrected. Based on the corrected 
segmentation, the tracking edges were manually checked and corrected. Table 1 
shows the number of manual corrections carried out for the different time-lapse 
recordings. Only few manual segmentation corrections were performed. For cell 
tracking, the majority of corrections had to be performed towards the end of 
the time-lapse sequences, where the cell count and divisions events increased 
substantially and cells leave the field of view at the left and right image borders.
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Table 1. Amount of manual tracking correction actions to correct errors in the semi-
automated annotation workflow. A correction action is the addition and deletion of a 
tracking link or adding, deleting and editing of segmentation masks. 

Manual 
Correction 

Time-lapses 

0 1 2 3 4 Total 
Segmentation 143 319 202 1087 25 1,776 
Tracking 773 1,463 4,057 1,823 1,111 9,227 

3.3 Dataset Statistics 

The annotated dataset contains more than 1.4 million densely annotated cell 
instances, 29k cell tracks, and 14k cell divisions (see Table 2). Thus, our data set 
is large enough to be split into meaningful train, validation, test splits. Moreover, 
Fig. 2 shows that all five time-lapses show similar temporal developments of cell 
numbers, divisions and disappearances. Nevertheless, cell count and, thereby, 
the number of cell divisions are exponentially increasing throughout the time-
lapses (Fig. 1E) leading to a temporal imbalance. For instance, the large number 
of cells at the end of the time-lapses leads to 50% of the overall division events 
occurring in the last 100 minutes of the time-lapse recordings. Moreover, the 
number of cell disappearances is much higher towards the end of the time-lapse 
recordings as the colony exceeds the size of the cultivation chamber and cells 
leave the field of view (Fig. 2B, C). 

Table 2. Statistics for five time-lapse sequences in the benchmark dataset and its split 
into train, validation and test sets. The table shows the number of densely annotated 
segmentation masks (cell instances), cell tracks and cell divisions. 

Split Time-lapse 
Index 

# Images # Cell Instances # Cell Tracks  # Cell Divisions 

Train 0 800 238,364 4,918 2,448 
Train 1 800 292,070 6,137 3,053 
Train 2 800 327,832 6,884 3,428 
Val 3 800 292,995 6,184 3,064 
Test 4 800 264,011 5,740 2,844 
Total 0,1,2,3,4 4,000 1,415,272 29,863 14,837 

Train 0,1,2 2400 858,266 17,939 8,929
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Fig. 2. Temporal imbalance of the five microbial time-lapse recordings of the bench-
mark dataset. We measured the temporal development of cell count (A), cell divisions 
(B), and cell disappearance events (C) for each time-lapse. Cell division and disap-
pearance events are grouped into bins of 100 min. The dashed lines in (A) indicate cell 
count limits (100, 400, 700, 1,000, 1,300, 1,600). 

3.4 Implications of Imaging Interval Subsampling 

The temporal imbalance of microbial time-lapse datasets in Fig. 2 is amplified 
by the choice of the imaging interval. Recording the TOIAM dataset with a 
low imaging interval allows us to simulate higher intervals by considering only 
every kth recorded image. We call this subsampling with a factor k ∈ N in the 
following. Due to the imaging interval of one minute, a subsampling of k leads to 
an imaging interval of k minutes. Using the subsampling procedure, we created 
subsampled datasets with higher imaging intervals. 

Figure 3 shows that changing the imaging interval has a tremendous impact 
on the structure of the dataset and, therefore, on the challenge to track the living 
cells. Time-lapses with simulated higher imaging intervals contain fewer images, 
but the number of cell divisions and cell appearances stays constant. Thus, the 
number of cell divisions and disappearances between consecutive frames increases 
strongly with higher imaging intervals (Fig. 3C, D). More cell divisions between 
consecutive frames lead to much larger cell displacements due to the ’snapping’ 
cell division of C. glutamicum (see Fig. 3E). However, also the frequency of cell 
divisions increases. While at an imaging interval of one minute roughly 1 % of cell 
links are cell divisions, higher imaging intervals lead to a strong increase, with 
up to 34 % of the cell links being divisions at an imaging interval of 40 minutes 
(Fig. 3F). Thus, having a good estimate on the frequency of cell divisions, for 
example based on previous experiments, is crucial.
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Fig. 3. Subsampling and cell count limiting of time-lapse sequences. (A) shows 
an excerpt of an MLCI time-lapse. (B) shows an exemplary subsampling with a factor 
of 3 and truncation at a cell count limit of 21 leading to 3 frames in total. Grayed out 
images denote frames removed due to subsampling, the dashed box denotes the cell 
count limit. (C-E) shows the temporal changes in the number of cell division, disap-
pearance and movement per microscopy frame when subsampling to different imaging 
intervals. The curves have been exponentially smoothed. (F) shows the percentage of 
division events in contrast to non-division links. (C-F) show data from the TOIAM 
test split. 

4 Experiment-Aware Microbial Live-Cell Tracking 
Metrics 

For a benchmark, suitable metrics are essential that rate the quality of the 
method performance and serve as an objective comparison tool. However, we 
have shown that MLCI time-lapses have unique characteristics that make the 
application of existing metrics difficult. Therefore, we present two new metrics 
that build on top of the well-established CTC metrics but introduce experiment 
awareness: First we incorporate the influences of experiment parameter choices, 
i.e. the imaging interval and maximum number of cells. We decompose the exist-
ing metrics along these experiment parameters and term these experiment-aware 
tracking metrics (EATM ). Second, we summarize the performance of tracking 
metrics across a wide range of these parameters within a single robustness metric 
(RM ).
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4.1 Cell Tracking Metrics 

The CTC introduces several metrics for measuring the quality of a tracking pre-
diction in comparison with ground truth information [ 39]. The TRA and LNK 
metrics are based on the Acyclic Oriented Graph Matching (AOGM ) score that 
determines the minimum number of operations needed to convert a predicted 
tracking result into its corresponding ground truth [ 24]. These operations include 
corrections of over- and under-segmentation and the addition or removal of track-
ing links. Each of these operations is awarded a constant penalty cost, and the 
AOGM gives their weighted sum. 

The TRA metric is the AOGM, normalized to [0, 1]: 

TRA  = 1  − min (AOGM, AOGM0) 
AOGM0 

(1) 

where AOGM0 is the AOGM of an empty tracking graph (no nodes, no edges). 
The LNK metric scores the quality of the tracking: 

LN K = 1  − min (AOGMA, AOGMA0) 
AOGMA0 

(2) 

where AOGMA denotes the AOGM where only edge operation costs are consid-
ered and the AOGMA0 denotes the AOGMA of the ground truth graph without 
edges, respectively. 

Moreover, the DIV and CT metrics focus on correct reconstruction of ’biolog-
ical events’ that are cell divisions (DIV ) and complete cell tracks (CT ). There-
fore, for both types of events true positives (TP), false positives (FP), and false 
negatives (FN) are computed, while precision and recall are summarized in the 
F1-score 

F1 = 2 
1/precision + 1/recall 

= 2 · TP  
2 · TP  + FP  + FN  

. (3) 

4.2 EATM Cell Tracking Metric for MLCI 

Existing tracking metrics, such as those introduced by the CTC, have proven 
to be useful to rate the tracking quality. However, they do not consider the 
specific characteristics of microbial time-lapses that are crucially influenced by 
experiment parameter choices. Thus, we extend the existing metrics and decom-
pose them in to the devised EATM tracking metric, that considers the imaging 
interval and the maximal number of living cells. 

Let S = {S1, . . . , SL} be the given segmentation ground truth of a time-
lapse with L ∈ N frames. Then, some tracking-by-detection method T predicts a 
tracking graph G = (V, E) containing the segmentation detections as nodes, V =⋃

l∈{1,...,L} Sl, and links between cell detections as tracking edges, E ⊆ V × V . 
We define a tracking metric to be a function m(·, ·) that compares a predicted 
tracking graph Ĝ = T (S) to the ground truth tracking graph G� using a metric 
m with normalized score:
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0 ≤ m( ̂G, G�) ≤ 1. (4) 

The TRA, LNK and DIV metrics defined before are such metrics. 
First, we make such a metric sensitive to experiment parameters. Therefore, 

we evaluate the metric on temporally subsampled and cell count limited versions 
of the time-lapses (Fig. 4). Let k ∈ N be the subsampling parameter for reducing 
the temporal resolution. Let Nmax ∈ N be the cell count limit. Then a time-
lapse is truncated to the last frame where the cell count does not exceed the 
limit Nmax (Fig. 3B). We denote the subsampled and truncated segmentation 
information with S|k 

Nmax 
and the ground truth tracking graph with G�|k 

Nmax 
, 

respectively. Then we define the experiment-aware tracking metric (EATM) ver-
sion m̃ of m 

m̃k 
Nmax 

(T, S, G�) :=  m
(
T (S|k 

Nmax 
), G�|k 

Nmax

)
(5) 

that evaluates the metric m on tracking prediction for the subsampled and trun-
cated segmentation T (S|k 

Nmax 
) with the subsampled and truncated ground truth 

tracking G�|k 
Nmax 

. 
Second, we define a new robustness metric (RM ) to summarize the robustness 

of the tracking algorithm across a wide range of imaging intervals and cell count 
limits. We define a set of subsamplings SF ⊂ N and maximum cell counts 
MC  ⊂ N. The robustness metric RM of a metric m measures the normalized 
frequency that the EATM of m surpasses a given threshold ϑ ∈ [0, 1]: 

RM(m, ϑ, SF, M C) :=  1 
|SF | · |MC|

∑

k∈SF

∑

mc∈MC  

1
[
m̃k 

mc(T, S, G�) ≥ ϑ
]
, (6) 

where 1[ · ] is the indicator function. 

5 Tracking Evaluation 

We evaluated the performance of tracking methods on our new dataset using the 
EATM and RM metrics. For the comparison, we selected three representative 
tracking methods: The Distance method provides a baseline using pure distance 
information for linking costs and predicting links using a greedy scheme. The 
LAP method uses mask overlap for linking costs and optimizes the linking cost 
between consecutive frames in an LAP [ 17]. The Trackastra [ 10] method is the 
best performing tracker according to the current CTC leaderboard. In our eval-
uation, Trackastra represents the data-driven methods for predicting linking 
costs. 

We evaluated all three tracking methods with various imaging intervals and 
cell count limits on the TOIAM test split. Figure 4 shows resulting heatmaps 
of the EATM based on the  DIV metric. Across all three tracking methods, 
the DIV metric decreases for larger imaging intervals as well as higher cell 
limits, indicating deteriorating performance. The evaluation shows that higher 
cell numbers, more frequent cell divisions, and lower temporal resolution make 
the cell tracking task notably more difficult.
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Fig. 4. The EATM based on the DIV metric measured across different imaging inter-
vals and cell count limits. The black line marks the region surpassing the 80 % threshold 
(RM @0.8). The higher the value of the DIV metric, the better is the reconstruction 
of the cell divisions, with a value of 1 meaning perfect cell division reconstruction. 
Evaluations have been performed on the test split. 

Among all three tracking methods, the Distance method performs worst 
across all experiment parameters. Therefore, making cell linking inferences based 
purely on distances, is not suitable for MLCI, especially when using a greedy 
scheme. The LAP method performs slightly better in the DIV metric at lower 
imaging intervals, benefiting from the more informative overlap costs and the 
non-greedy LAP. However, its performance drops rapidly when many cells are 
present and the imaging interval is increased leading to larger cell movement 
and, therefore, limiting the usefulness of overlap costs. In contrast, Trackastra 
shows much stronger DIV scores across the various experiment parameters. The 
transformer network trained on the training split seems to learn patterns that 
generalize to higher imaging intervals. Thus, Trackastra robustly performs divi-
sion reconstruction at various experiment parameters, opening the opportunity 
to monitor more cultivation chambers concurrently, which is important in the 
context of high-throughput MLCI-based screening applications. 

While the EATM heatmaps give detailed insights into the methods’ perfor-
mance, they only visualize a single tracking metric. To summarize and compare 
the methods across different metrics, we summarize the robustness of the track-
ing method to the experiment parameters using the RM metric. Table 3 shows 
the RM score for the TRA, LNK, and  DIV metrics using a threshold of 80% 
and 90%. For the DIV metric, the RM score is also visualized by the black line 
in Fig. 4. 

We observe that the TRA metric is not sensitive enough to give robust-
ness insights when ground truth segmentation masks are provided. The correct 
segmentation will always lead to scores above 0.8 in all experiment parame-
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Table 3. Robustness metric version of the TRA, LNK, and  DIV metrics evaluated on 
the test split using RM thresholds of 80% and 90%. The RM metric has been computed 
over the subsampling factors (SF ) and cell count limits (MC) used in Fig. 4. 

Method RM@0.8 RM@0.9 
TRA ↑ LNK ↑ DIV ↑ TRA ↑ LNK ↑ DIV ↑ 

Distance (greedy) 1.00 0.16 0.00 0.46 0.12 0.00 
LAP 1.00 0.23 0.16 0.47 0.16 0.11 
Trackastra (greedy) 1.00 0.50 0.45 0.81 0.42 0.32 

ters, yielding a misleading robustness score of 1. The RM s of  LNK and DIV are 
more sensitive and provide insights for both robustness thresholds. LAP shows low 
results in LNK and DIV metrics, highlighting that it is only suitable for track-
ing cells at low imaging intervals and small cell colony sizes. The Trackastra 
method shows robustness up to 50% at an 80% threshold and, therefore, allows 
performing automated tracking at various experiment settings. Across all eval-
uations, the DIV metric is consistently lower than the LNK metric, indicating 
that cell division reconstruction is more difficult than linking non-dividing cells. 
This, underlines the larger focus on predicting cell divisions in MLCI datasets. 

6 Conclusions 

In this work, we have presented a new benchmark for cell tracking in MLCI with 
increased experiment awareness in metric ratings. The presented TOIAM dataset 
is the largest publicly available for MLCI in terms of annotated cell masks, cell 
tracks and cell divisions. Moreover, we have highlighted that MLCI data comes 
with unique challenges due to exponentially growing cell colonies and frequent 
cell divisions. These challenges are strongly influenced by experiment parame-
ters such as the imaging interval and the maximum number of cells per frame. 
To capture these influences in appropriate metrics, we extended existing metrics 
towards experiment-awareness (EATM ) and summarize them in a robustness 
metric (RM ). We have shown that these EATM s and  RM s give crucial insights 
into the practical suitability of tracking methods across a wide range of experi-
ment parameters. Thus, our efforts aim to closely integrate method development 
and experiment design, and to open a stringent approach for experimenters to 
make informed decisions about their experiment parameter choices. 

For now, our TOIAM dataset is limited to a single type of microbe cultivated 
within a single experiment. Therefore, we are looking forward to extending the 
dataset to other cell types and cultivation conditions and also apply the intro-
duced metrics to other existing datasets in the future. Moreover, the evaluation 
of the tracking methods with erroneous segmentation and imperfect image data 
as well as the use of other biologically motivated metrics, such as the CT or BIO 
metrics from the CTC, is crucial for further evaluating their practical applicabil-
ity. Adapting tracking methods to the challenging imaging conditions in MLCI,



TOIAM 331

for example, by tuning hyper-parameters or establishing temporal subsampling 
during the training procedure might lead to more robust cell tracking methods. 

Summarizing, our large-scale benchmark represents a step forward towards 
robust data-driven microbial single-cell tracking and facilitates tight integration 
of experiment parameters and tracking method development using experiment-
aware metrics. 
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