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Quantum error correcting (QEC) codes protect quantum information against environmental noise. Com-
putational errors caused by the environment change the quantum state within the qubit subspace, whereas
quantum erasures correspond to the loss of qubits at known positions. Correcting either type of error
involves different correction mechanisms, which makes studying the interplay between erasure and com-
putational errors particularly challenging. In this work, we propose a framework based on the coherent
information (CI) of the mixed-state density operator associated to noisy QEC codes, for treating both
types of errors together. We show how to rigorously derive different families of statistical mechanics map-
pings for generic stabilizer QEC codes in the presence of both types of errors. We observe that the erasure
errors enter as a classical average over fully depolarizing channels. Further, we show that computing the
CI for erasure errors only can be done efficiently upon sampling over erasure configurations. We then test
our approach on the two-dimensional toric and color codes and compute optimal thresholds for erasure
errors only, finding a 50% threshold for both codes. This strengthens the notion that both codes share
the same optimal thresholds. When considering both computational and erasure errors, the CI of small-
size codes yields thresholds in very accurate agreement with established results that have been obtained
in the thermodynamic limit. Next, we perform a similar analysis for a low-density parity-check (LDPC)
code—the lift-connected surface code. We find a 50% threshold under erasure errors alone and, for the
first time, derive the exact statistical mechanics mappings in the presence of both computational and era-
sure errors. We thereby further establish the CI as a practical tool for studying optimal thresholds for
code classes beyond topological codes under realistic noise, and as a means for uncovering new relations
between QEC codes and statistical physics models.

DOI: 10.1103/d8rx-srpn

I. INTRODUCTION

Storing and manipulating quantum information in noisy
quantum devices is one of the main challenges in the
field of quantum technologies. In the framework of quan-
tum computing, quantum error correction (QEC) [1,2] is
the main technique for protecting quantum information
from noise in a scalable manner and is the key element
on the route towards fault-tolerant quantum computing.
QEC works by encoding one or several logical qubits
into many noisy physical qubits and using the redun-
dant degrees of freedom for the detection and subsequent

*Contact author: colmenarez@physik.rwth-aachen.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

removal of errors. This allows one to reduce the over-
all error rate of the logical qubit(s) compared to the bare
physical qubits, provided the error rates of the faulty
operations needed to operate the QEC code fall below
code- and noise-model dependent critical threshold values
[3–6]. There has been impressive recent progress in real-
izing error corrected and fault-tolerantly operated logi-
cal qubits in a variety of physical platforms, including
superconducting circuits [7–16], trapped ions [17–25], and
neutral atoms [26–29]. Fault-tolerant operation of logical
qubits allows one to scale up the underlying QEC codes
to larger distances, and thereby systematically suppress
associated logical error rates. Recent experiments have
demonstrated the suppression of logical error rates below
threshold [7,8,13,14,19,30].

The exact threshold value depends on the QEC code
and decoding procedure used for recovering the logical
information. Among all decoding strategies, Maximum
likelihood decoding (MLD) stands out because it has
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the highest possible threshold, dubbed optimal threshold.
Then, a straightforward approach for obtaining optimal
thresholds involves simulating QEC by sampling over all
possible error processes and then computing the corrective
operation using MLD. The latter requires, in general, to
solve an exponentially hard problem [31,32] every time
an error is corrected, thus severely limiting the size of
the codes one can simulate. However, recently it has been
pointed out that the coherent information (CI) [33] of the
mixed state associated to the noisy qubits forming the
QEC code shows a discontinuity at the optimal threshold
[34,35]. In fact, the CI captures the information left in the
noisy mixed-state that can, in principle, be recovered [33].
Therefore, the CI provides a practical, generic tool for esti-
mating optimal thresholds without resorting to numerical
simulation of noisy QEC cycles and performing MLD.

Most QEC schemes are designed to tackle computa-
tional errors, which are errors that change the state and/or
phase of the physical qubits but preserve the qubits within
the computational space. For instance, if the physical qubit
consists of a ground and excited state of an atom, an ampli-
tude damping channel that induces decay from the excited
state to the ground state causes a computational error. The
correction procedure for computational errors therefore
amounts to identifying the operation generated by the noise
that corrupts the logical information and reversing it by
acting on the physical qubits. However, correcting errors
that take physical qubits out of the computational space, is
gaining more attention. We consider the case of quantum
erasures, i.e., when we know on which qubit a transition
to states outside the computational space occurred, e.g., by
recording a photon emitted during the transition driving the
quantum jump outside the computational space, or where
qubits in a register have been lost entirely, e.g., due to the
loss of optically trapped atoms from tweezers or optical
lattices [36–39]. In the literature, detectable erasures are
often called qubit losses [39–44] to highlight the differ-
ence from leakage [45,46], in which the transition outside
the computational space goes undetected. This distinction
is important because information about the place and time
of erasure events can, in principle, be used in decoding. In
our work, we focus on erasures at known positions; hence-
forth, throughout the manuscript, the terms qubit loss and
erasure error will be used interchangeably.

Once one or more physical qubits are lost or erased,
the corrective operation is equivalent to trying to retrieve
the logical qubit from the remaining physical qubits. Sev-
eral QEC schemes for the correction of erasure errors
have been designed [41,44,47–55], including first experi-
mental demonstrations of deterministic correction of qubit
loss [28,56]. Let us note that optimal decoding of QEC
codes in the presence of qubit loss is a fundamentally
different problem compared to computational errors. For
instance, in the case of the three-dimensional surface code,
there is a linear-time MLD under qubit loss [57], whereas

efficient optimal decoding for computational errors has
been demonstrated only for two-dimensional surface codes
[58,59]. Another difference concerns the minimum number
of physical qubits required to correct a single error on a
qubit, which is four for qubit losses [47] and five for an
arbitrary computational error [60]. Furthermore, optimal
thresholds of QEC codes under erasure errors are usually
higher than for computational errors [42]. In fact, given
the positive trade-off in correcting qubit losses instead of
computational errors, it has been proposed that erasure
conversion, i.e., converting computational errors into qubit
losses, could significantly improve the overall performance
of error correction protocols [36,37,61,62].

Erasure thresholds are of great interest even beyond
practical motivations. For instance, they impose restric-
tions on possible transversal logical gate sets in QEC
stabilizer codes and guarantee the existence of a thresh-
old for computational errors [63]. Additionally, QEC codes
under erasure errors are also used as toy models for
the holographic bulk and boundary correspondence [64].
Regarding the approach to finding optimal thresholds, the
standard procedure is to map the problem of reconstructing
the logical operators from the remaining physical qubits
to a percolation problem on a lattice defined by the code
graph, i.e., stabilizers on nodes and physical qubits on
edges [65]. The percolation phase transition on the code
graph usually provides tight threshold bounds [65–69]. In
the case of the toric code, the equivalence between 2D
bond percolation on a square lattice and optimal decoding
is exact [42]. However the latter might not always be true
for more complex QEC codes, hence bounds beyond the
percolation picture are often desired [65].

On the other hand, it is less clear how to address
the interplay between computational and erasure errors in
determining optimal thresholds. In this case the goal is to
remove the computational errors using only the informa-
tion provided by the remaining physical qubits and the
knowledge of the location of erased qubits. In Ref. [70],
the optimal thresholds of the toric code in the presence of
both types of errors are obtained by mapping the relative
probability distribution of errors and stabilizers to disor-
dered spin models [66], however leaving out finite-size
contributions. Then, in the thermodynamic limit, the phase
transition between the ordered and disordered phase marks
the optimal decoding threshold. However, this methodol-
ogy is difficult to extend beyond the realm of topological
codes and lacks closed-form expressions that are useful
for validating the mappings (we will return to this point
later in the section). Therefore, a unified framework that
encompasses qubit losses and computational errors on the
remaining physical qubits is currently missing.

In this work, we use the CI of the noisy QEC code
state as a general tool for studying both types of errors
together. We derive analytical expressions for the CI in
the form of classical statistical mechanics models for
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Calderbank-Steane-Shor (CSS) codes [71,72]. The corre-
sponding mappings reflect the contribution and interplay of
erasure and computational errors. Furthermore, they pro-
vide an insight into how erasure errors modify different
families of statistical mechanics mappings in QEC. Then,
we focus on 2D topological codes, namely the toric and
color code. On the one hand, we rigorously derive exact
statistical mechanics mappings associated with the opti-
mal decoding problem using the CI. We find that these
mappings coincide with the mapping for the 2D toric
code studied in Ref. [70], namely the diluted random-
bond Ising model (RBIM) in which a qubit loss enters
as a missing link at a given position. However, this sta-
tistical mechanics model does not match the one studied
in Ref. [73], a diluted RBIM in which the erasures also
modify the magnitude of the coupling near the location of
the quantum erasure. Although there is no obvious con-
nection between these two statistical mechanics models,
both exhibit a phase transition at the same set of parame-
ters, yielding the same thresholds as reported in Ref. [70].
The reason why these two models could describe the same
optimal threshold (without a direct relation between them)
is that the procedure outlined in Ref. [66], namely mapping
relative distributions of errors and stabilizers, does not pro-
vide a method for validating the mappings, which are only
expected to describe optimal decoding in the thermody-
namic limit. In contrast, the CI provides exact analytical
expressions valid for any code size. Therefore, the sta-
tistical mechanics models derived using the CI can be
validated by ensuring that they faithfully reproduce the CI
of the QEC code state. This illustrates the power of the CI
in rigorously deriving statistical mechanics mappings for
the optimal decoding problem of QEC codes.

On the other hand, we numerically compute the CI for
different values of the error probability and find that the
finite-size crossings of the CI in small distance codes yield
very accurate approximations to the optimal error thresh-
olds compared to rigorous solutions of the corresponding
statistical mechanics models [42,70,73]. This provides fur-
ther evidence of the utility of the CI in estimating optimal
thresholds of QEC codes from small code instances [35].
Let us note that in this work we do not intend to solve the
statistical mechanics models and pinpoint their phase tran-
sition, as done in several other works [66,74]. Instead, we
use the models as a means to numerically compute the CI
and extract optimal thresholds directly from it. To show-
case the application of our method beyond topological
codes, we perform a similar study on a low-density parity-
check (LDPC) code—the lift-connected surface code [75].
We find optimal thresholds for erasure errors only and
derive statistical mechanics mappings for both computa-
tional and erasure errors. To the best of our knowledge,
the models derived have not been studied previously in
the literature. Our methods allow for a direct derivation of
these mappings for LDPC codes and open the door to new

families of statistical mechanics models beyond the realm
of topological codes.

The structure of the paper is as follows. In Sec. II a
summary of the main results of this work is presented. In
Sec. III the main concepts used are explained in detail. In
Sec. IV we present the main derivations of our work in
detail. In Sec. V we show the numerical calculations of
CI for surface and color codes. In Sec. VI, we apply the
same methodology to the lift-connected surface code and
present numerical results. Finally, concluding remarks are
presented in Sec. VII.

II. SUMMARY OF MAIN RESULTS

In this section we summarize the main results of the
paper. First, in Sec. II A, we describe how erasure errors
reduce the CI of QEC stabilizer codes. Second, in Sec. II B
we recap how the CI of CSS codes under depolarizing
noise is captured by the free energy cost of domain walls in
certain families of statistical mechanics mappings. Third,
in Sec. II C we combine the two previous results and show
how the CI captures both types of errors as two different
but not independent contributions. Finally, in Sec. II D, we
discuss mappings and optimal thresholds obtained for 2D
topological codes using the methodology explained in the
previous sections.

A. Coherent information and known erasure positions

After m physical qubits are erased, the logical informa-
tion can be retrieved as long as the logical operators remain
well-defined. A logical operator is said to be well-defined
when at least one of its representatives, i.e., the logical
operator up to stabilizer equivalences, does not have sup-
port on any of the m erased qubits. Indeed, the CI of
any QEC code [[n, k, d]] effectively counts the number of
logical operators that remain well-defined. The CI for an
arbitrary configuration of erased qubits is given by

Il = (k − bl − 2cl) log 2, (1)

where, l = 1, 2, . . . , 2n is an index that denotes the specific
locations of the erasures, which we call erasure configu-
ration. bl is the number of logical qubits for which one
logical generator, i.e., either the X or Z generator, becomes
ill-defined, dubbed logical bits in the following. cl is the
number of lost logical qubits, i.e., logical qubits for which
both logical generators cannot be reconstructed on the
remaining physical qubits. In summary, a logical qubit can
either degrade into a classical bit or be completely lost,
leading to the relation k = k′ + bl + cl, where k′ is the
number of remaining logical qubits, which holds for any
l. Each erasure configuration l occurs with a probability
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P(l), and the total CI of the QEC code becomes

I =
2n∑

l=1

P(l)Il = k log 2 − 〈bl〉 log 2 − 2〈cl〉 log 2. (2)

The brackets 〈. . . 〉 denote averaging over erasure con-
figurations l. Details of the derivation are shown in
Sec. IV A. Computing bl and cl can be done via an
algorithm based on Gaussian elimination of the parity
check matrices of the code [44], rendering the computa-
tion of Il for a given erasure configuration efficient. The
challenging part of evaluating Eq. (2) is sampling the prob-
ability distribution P(l) over exponentially many erasure
configurations. See Appendix A for further details on how
to compute Eq. (2).

B. Coherent information mapping of CSS codes under
depolarizing noise

The CI of [[n, k, d]] CSS codes under the error channel
N =∏i Ni with

Ni(ρ) = (1 − p)ρ + pxXiρXi + pyYiρYi + pzZiρZi, (3)

with p = px + py + pz and i = 1, 2, . . . , n, is given by

I = k log 2 − log
[∑

D ZD

Z0

]
(4)

where Z0 is a partition function denoting the sum over all
stabilizer operators, i.e., RBIM for the case of bit-flip noise
and the toric code. The Hamiltonian associated to Z0 has

the general form:

H [{ηx}, {ηz}] =
∑

�

ηx
�

(
Jx − J1

2

)
PX
�

2

+ ηz
�

(
Jz − J1

2

)
PZ
�

2
+ ηz

�η
x
�J1

PZ
�PX

�

4
. (5)

Here, � denotes the position of each physical qubit, see
Fig. 1. The binary variables ηx

� = +1 (ηz
� = +1) denote

that the link � has no X (Z) error. Conversely, ηx
� = −1

(ηz
� = −1) indicates that the link � is occupied by an X (Z)

error. The average (· · · ) ≡∑{ηx},{ηz} P(ηx, ηz) runs over
all possible error configurations, and P(ηx, ηz) is given by
the single-qubit error probabilities (see Table I). The quan-
tities PX

� = 1 − 2nX
� and PZ

� = 1 − 2nZ
� are related to the

binary variables nX ,Z
� = 0, 1, which reflect whether or not

an error that does not change the stabilizer quantum num-
bers (i.e., generate a non-trivial syndrome) has support on
link �. Imposing this condition is what gives rise to the
celebrated spin models. D = 0, . . . , 4k − 1 runs over the 4k

configurations of logical operators. Unlike the case of qubit
loss in Sec. II A, computational errors may affect differ-
ently each logical operator. Therefore, one must consider
all possible combinations independently. For instance, for
k = 1, those are I (denoted as D = 0), XL, ZL, and XLZL.
The partition function ZD has the same Hamiltonian as
Eq. (5), with the exception that all links along the lines of
logical X (Z) operators are transformed as follows: (i) for
XL, (ηx

�, η
z
�) → (−ηx

�, η
z
�); (ii) for ZL, (ηx

�, η
z
�) → (ηx

�, −ηz
�);

and (iii) for XLZL, (ηx
�, η

z
�) → (−ηx

�, −ηz
�). The coupling

constants are defined as

eJx = 1 − p
px

, , eJz = 1 − p
pz

, eJ1 = (1 − p)py

pxpz
. (6)

(a) (b)

FIG. 1. (a) Toric code with Z stabilizers defined on plaquettes and X stabilizers centered on nodes of a square lattice. An error
configuration is displayed: bit flip errors (stars next to qubits) and erasure errors as open circles replacing filled circles. (b) Spin model
corresponding to the error configuration shown in (a). Spins are located at the center of the X stabilizers, qubits without errors are
denoted by a negative coupling. Bit-flip and erasure errors are identified as positive and zero couplings, respectively.
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TABLE I. Pauli error probabilities for the Pauli channel of
Eq. (3) on each site � in terms of the random variables ηx

� and
ηz
�. C(1) shows the connection to the error chains in Sec. IV.

Prob. ηx
� ηz

� C(1)

1 − p +1 +1 I
px −1 +1 X
py −1 −1 Y
pz +1 −1 Z

In this work, we are interested in two specific cases:
(i) Uncorrelated bit- and phase-flip noise with probability
p1 and p2, respectively: px = p1(1 − p2), pz = p2(1 − p1),
py = p1p2, and 1 − p = (1 − p1)(1 − p2), yielding J1 = 0.
This allows us to write Z = Z1Z2 as two decoupled parti-
tion functions on X and Z errors. (ii) Depolarizing channel:
px = pz = py = p/3, which yields eJx,z = 3(1 − p)/p and
eJ1 = 3(1 − p)/p , a common case studied in the litera-
ture. It is important to note that Eq. (5) can be generalized
to in-homogeneous error rates by assigning site-dependent
couplings.

As stated in previous works [34,76–84], below thresh-
old, the system is in a symmetry-broken macroscopic state.
Therefore, inserting a domain wall D (logical operator)
incurs a high free energy cost, and thus I ∼ log 2. Above
threshold, domain walls do not cost free energy because
the macroscopic state is fully symmetric. Since Eq. (4) is
derived assuming only a CSS code (see Sec. IV B), the pic-
ture of domain wall cost applies to a wide variety of QEC
codes.

C. Coherent information mapping of CSS codes under
depolarizing and erasure errors

When both single qubit erasure and computational errors
are present, the CI for a fixed erasure configuration l is
written as

Il = (k − bl − 2cl) log 2 − log
[∑

D ZDl

Z0

]
. (7)

The average (· · · ) is performed over the computational
error configurations {ηx, ηz}. A lost qubit on site � is
represented as a missing “link” with ηx

� = ηz
� = 0 (see

Table II), meaning that all erasure positions in the configu-
ration l have vanishing coupling. The actual CI is obtained
after averaging over all loss configurations l for a given
probability distribution P(l):

I =
∑

l

P(l)Il

= (k − 〈bl〉 − 2〈cl〉) log 2−
〈
log
[∑

D ZDl

Z0

]〉
. (8)

TABLE II. Probabilities of each pair of variables ηx and ηZ

on the same site � on any of the spin models, where computa-
tional errors have probabilities px, py , pz and erasure errors have
probability e.

Prob. ηX
� ηZ

�

(1 − p)(1 − e) +1 +1
px(1 − e) −1 +1
py(1 − e) −1 −1
pz(1 − e) +1 −1
e 0 0

The last equation shows the processes that reduce the
CI: (i) qubit losses can degrade the logical qubit to a
classical bit or completely destroy it, and (ii) the cost of
computational errors and their interplay with qubit losses
is modeled by the partition functions ZDl , with missing
bonds at the erased qubit positions. We can reason about
these two processes as follows: erasure errors weaken the
ability to protect quantum information by rendering some
stabilizers ill-defined and effectively reducing the number
of degrees of freedom used for error detection and correc-
tion. However, in the absence of computational errors, this
does not affect the logical qubit unless at least one logical
operator becomes ill-defined. In the presence of computa-
tional errors, there are fewer operators that commute with
the well-defined stabilizers, but the partition functions ZD,l
still count the number of operators that commute with
the well-defined stabilizers. Note that Dl now denotes the
set of operators that anti-commute with the well-defined
logical operators. For details, see Sec. IV C.

D. 2D toric and color code under erasure and
computational errors

In this section we show the specific mappings for 2D
topological codes under erasure and computational errors.
Coming from the general mapping for CSS codes in
Eq. (5), for the 2D toric code nX

� = (1 − σiσj )/2 and nZ
� =

(1 − τnτm)/2, where σi = ±1 and τn = ±1 are classical
spin variables living a square lattice and its dual, respec-
tively (see Fig. 6). The σ (τ ) spins represent the X (Z)
stabilizers, we then call σ (τ ) the X (Z) type spin. Hence
we obtain the eight-vertex model [85]:

HTC =
∑

〈i,j 〉,〈n,m〉
ηx

ij

(
Jx − J1

2

)
σiσj

2

+ ηz
nm

(
Jz − J1

2

)
τnτm

2
+ ηz

nmη
x
ij J1

σiσj τnτm

4
. (9)

For 2D color codes both spins σ and τ live on the dual
lattice with respect to the physical qubit lattice (see Fig. 7).
We then obtain a three-body coupled random-bond Ising
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model:

HCC =
∑

〈i,j ,k〉,〈n,m,o〉
ηx

ijk

(
Jx − J1

2

)
σiσj σk

2

+ ηz
nmo

(
Jz − J1

2

)
τnτmτo

2
+ ηz

nmoη
x
ijkJ1

σiσj σkτnτmτo

4
.

(10)

In general, the spins are located at the center of the sta-
bilizers of the QEC code, and each spin interacts with the
stabilizers with which physical qubits are shared. There are
as many terms in the Hamiltonian as there are physical
qubits. The random variables {ηx} and {ηz} on each site
� have probabilities according to the computational and
erasure error probabilities shown in Table II.

1. Mapping the optimal threshold problem to statistical
mechanics models

The first case we study is uncorrelated bit and phase
flip: after assigning px = p1(1 − p2), pz = p2(1 − p1) and
py = p1p2 in which p1 and p2 are the bit- and phase-
flip probability, respectively, we obtain eJx = (1 − p1)/p1,
eJz = (1 − p2)/p2 and J1 = 0. Therefore the σ and τ spins
get uncoupled and the CI can be written as

I = (k − 〈bl〉 − 2〈cl〉) log 2−
〈
log
[∑

DX
ZDX ,l

Z0,l

]〉

−
〈
log
[∑

DZ
ZDZ ,l

Z0,l

]〉
, (11)

where DX (Z) runs over the logical X (Z) operators, the par-
tition function ZDX (Z),l corresponds to the Z(X ) stabilizers.
As a result, the contributions from X and Z errors are inde-
pendent of each other. For the 2D toric code, this results
in a diluted RBIM, which has been previously studied in
Ref. [70]. From the point of view of the phase transition in
the RBIM, the correctable phase is still denoted by the fer-
romagnetic phase, while the un-correctable phase is again
the paramagnetic phase. However, now the paramagnetic
phase is driven by two independent mechanisms: (i) anti-
ferromagnetic links and finite temperature, which model
computational errors, and (ii) missing links that model
qubit losses. For 2D color codes, this choice of parameters
yields a diluted three-body random bond Ising model. To
the best of our knowledge, this statistical mechanics model
has not been studied before.

The second case is the isotropic depolarizing chan-
nel: choosing px = py = pz = p/3 leads to a statistical
mechanics model with a homogeneous coupling Jx = Jz =
J1 = 3(1 − p)/p between spins of the same and different
type. The diluted version of this model has been studied
in Ref. [70] for the toric code. However, for the 2D color

TABLE III. Comparison between pseudo-threshold values of
coherent information and thresholds obtained by the spin glass
duality mapping of Ref. [70] for bit- and phase-flip (BF) and
depolarizing (Depol.) noise in the toric code. The pseudo-
threshold is computed as the crossing between the [[9, 1, 3]]
surface code and the single qubit coherent information. The sta-
tistical error bars can be estimated by the grid size prior to
interpolation [102]. For BF noise we use �p = 0.002 and for
depolarizing noise �p = 0.003.

e BF [70] BF (this work) Depol. [70]
Depol.

(this work)

0.0 0.10918 0.10913 0.18852 0.18605
0.10 0.09189 0.09162 0.15960 0.15666
0.20 0.07233 0.07230 0.12641 0.12397
0.30 0.05009 0.05051 0.08815 0.08691
0.40 0.02500 0.02561 0.04443 0.04444
0.45 0.01179 0.01220 0.02117 0.02140

code, the model with both computational and erasure errors
has not been studied so far.

2. Optimal thresholds from numerical calculation of CI

We numerically compute the CI and find optimal thresh-
olds, see Sec. V. For erasure errors only, we compute
the thresholds by performing a finite-size scaling analy-
sis. We find that both 2D toric and color codes have an
optimal threshold of 50%. For 2D toric codes, this was
previously known through the equivalence of this problem
with 2D bond percolation [86]. In principle, the equiva-
lence between percolation on the code graph and erasure
threshold does not hold for 2D color codes [43]; however,
we find the same optimal threshold and scaling exponent
as for the 2D toric code.

Under both computational and erasure errors, we find
that the pseudo-thresholds, i.e., crossings between the CI
of a single qubit and CI of finite distance codes, for small
instances of the codes are in very good agreement with
the known optimal thresholds of toric codes (which are
summarized in Table III). This provides further evidence
that the CI of small-distance codes accurately captures the
asymptotic behavior of the QEC code [35]. We further
explore the phase boundary of the correctability transition
using the CI pseudo-threshold, as shown in Fig. 9. We find
that both 2D color and toric codes have almost identical
boundaries for both types of computational errors.

E. Lift-connected surface code

Since the CI methodology developed in our work
applies directly to LDPC codes, we apply this machinery to
the lift-connected surface code (LCS) [75]. This code fea-
tures a growing number of logical qubits, which is clearly
distinct from topological codes. As shown in Fig. 11, the
LCS code can be viewed as a periodic array of intercon-
nected surface code sheets. Each surface code stabilizer is
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extended over neighboring surface code sheets. Despite the
stabilizers having three-dimensional (3D)-local connectiv-
ity, the structure of the logical operators does not resemble
that of a topological code. We numerically compute the
CI for erasures only and find a 50% threshold, along with
a critical exponent that neither matches the 2D nor the 3D
percolation transition. We then study the interplay between
computational and erasure errors by deriving the corre-
sponding statistical mechanics mapping and computing the
CI numerically. The Hamiltonian of the model reads

HLCS =
∑

〈i,j 〉,〈n,m〉,q
ηx

ij

(
Jx − J1

2

)
σi,qσj ,qσi,q+1

2

+ ηz
nm

(
Jz − J1

2

)
τn,qτm,qτm,q+1

2

+ ηz
nmη

x
ij J1

σi,qσj ,qσi,q+1τn,qτm,qτm,q+1

4
. (12)

The indices 〈i, j 〉 and 〈n, m〉 denote qubit positions on
the q-th surface code sheet. The two-spin interactions
become three-spin interactions by coupling one spin from
the same “plaquette” or “star” to a spin from the next sur-
face code sheet. One instance of this model is depicted in
Fig. 12. This new family of statistical mechanics models
is 3D-local and exhibits directionality in the interactions
(see Appendix C for further details). Furthermore, we per-
form a pseudo-threshold analysis for bit- and phase-flip
and depolarizing noise combined with erasure errors. We
find thresholds comparable to those of the standard sur-
face code, despite the growing number of logical qubits.
We conclude that the LCS code offers similar levels of
protection as the surface code, with the added benefit of
supporting a growing number of logical qubits.

III. BACKGROUND

In this section, we present the background needed to
derive the main results, as well as notation conventions.
We recommend that the reader interested in the details of
the derivations in Sec. IV first go through this section.
In Sec. III A, we briefly introduce QEC stabilizer codes.
Then, in Sec. III B, we describe the error channels inves-
tigated in this work. Finally, in Sec. III C, we formally
introduce the CI and explain how it will be used in this
work.

A. Stabilizer codes

A QEC stabilizer code [[n, k, d]] is defined by the n-
qubit stabilizer group Sn [87] whose n − k generators gi
mutually commute such that [gi, gj ] = 0 ∀i, j . A QEC code
encodes k logical qubits and the operators gi are n-qubit
Pauli strings. We define the code space as the subspace C of
the Hilbert space for which gi = +1 such that any n-qubit
state |ψ〉 ∈ C fulfills the condition gi|ψ〉 = |ψ〉 ∀i. We also

have the set of logical operators {(Ox
i , Oz

i )} with i = 1, .., k,
which satisfy the conditions {Ox

i , Oz
i } = 0 ∀i, [Ox

i , Oz
j ] = 0

for i 
= j , [Oz
i , gj ] = 0 and [Ox

i , gj ] = 0 for any i and j . The
joint eigenstates of the set of operators {gi} ∪ {Oz

i } form a
complete basis of the n-qubit Hilbert space H. The same
applies for the set {gi} ∪ {Ox

i }. The code space C is spanned
by 2k basis vectors |Li〉 called codewords. By convention
we choose all |Li〉 to be eigenstates of the logical oper-
ators Oz

i . The code distance d is the minimum weight of
the logical operators {(Ox

i , Oz
i )}. Sometimes we will denote

ZL ≡ Oz
i and XL ≡ Ox

i , especially when referring to QEC
codes with k = 1.

In particular we are interested in codes for which the
stabilizer generators gi are composed of either X or Z
Pauli operators, i.e., CSS codes [71,72]. This class of
codes allows the logical operators {Ox

i , Oz
i } to be made

of only Z or X Pauli operators. Within the class of CSS
codes we are interested in topological codes [88]. They
are defined on D-dimensional lattices and encode a fixed
number k of logical qubits, i.e., k is independent of n and
only dependent on the topological properties of the man-
ifold the lattice is embedded in. The stabilizer generators
{gi} are defined on unit cells of the lattice and each qubit
is shared by a constant number of stabilizer generators.
In this work we focus on two-dimensional toric and sur-
face and color code [66,89,90] which are amongst today’s
leading contenders for the realization of scalable fault-
tolerant quantum computing [7–12,16–26,29]. We refer to
Appendix B for definitions and details of the topological
codes studied in this work. Besides topological codes, we
study the lift-connected surface code [75], which belongs
to the class of CSS LDPC codes. This code is part of the
hypergraph product code family and has the distinctive
feature that it can be viewed as an array of interconnected
surface codes. When the code parameters are appropriately
chosen, the rate and distance of the code exceed those of
disconnected surface codes.

B. Error channels

1. Erasure channel

We are interested in the case when we know a particular
qubit is lost to the environment. That process is described
by a single-qubit erasure channel of the form [91]

E1(ρ) = (1 − e)ρ ⊗ | ↑〉〈↑ | + e
1

2
⊗ | ↓〉〈↓ |. (13)

There is a probability e that the state ρ is replaced by
a maximally mixed state. The ancilla bit in the state | ↑〉
or | ↓〉 denotes the occurrence or not of the erasure event
of the qubit attached to the given ancilla. As will be dis-
cussed in Sec. IV A, the erased degrees of freedom do not
contribute to the CI. Now we generalize Eq. (13) to n-qubit
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states:

En(ρ) =
2n∑

l=1

P(l)
1

2m1Al ⊗ TrAl(ρ)⊗ |al〉〈al|. (14)

Here Al denotes the set of erased qubits and l = 1, 2, .., 2n

runs over all possible configurations of erased qubits, |al〉
is the configuration of the ancilla bits guaranteed to sat-
isfy 〈al′ |al〉 = δll′ and m ≡ m(l) is the number of qubits
in the erased region Al. When erasures are independent
on each qubit, e.g., all qubits experience the same era-
sure operation given by Eq. (13) with the same probability
e, then P(l) = (1 − e)1−mem. In general a distance-d QEC
code can correct all erasure configurations with m < d. All
erasure configurations for which at least one representa-
tive of each logical operator remains well-defined is fully
correctable.

2. Computational errors

We also consider errors occurring independently on each
qubit given by the Pauli channel:

Ni(ρ) = (1 − p)ρ + pxXiρXi + pyYiρYi + pzZiρZi,
(15)

with p = px + py + pz. The n-qubit error channel is then
given by N =∏i Ni. Particularly we are interested in two
choices of (px, py , pz): (i) symmetric uncorrelated bit- and
phase-flip noise: px = pz = p1(1 − p1) and py = p2

1 with
p1 is the bit- and phase-flip probability; and (ii) symmetric
depolarizing channel px = pz = py = p/3.

C. Coherent information of QEC codes

The CI of a state ρQ is defined as

I = S(ρQ)− S(ρRQ), (16)

where S(ρ) = − Tr ρ log ρ is the von Neumann entropy
of the state ρ and ρQ = TrR(ρRQ). This quantity was first
introduced as a measure of the amount of quantum infor-
mation transmitted by a quantum channel [92] and as
an indicator of the existence of a QEC protocol with
maximum success probability [33]. Recently, it has been
shown that it can also signal optimal thresholds of QEC
codes [34,35,76–80]. The exact setting for studying opti-
mal thresholds of QEC codes is shown in Fig. 2. We start
with a generalized Bell pair between the reference system
R and the code space of an error correcting code [[n, k, d]]
on the system Q of n qubits.

|ψRQ〉 = 1
2k/2

2k∑

q=1

|Rq, Lq, S〉, (17)

where the state |Rq〉 = |R1R2 · · · Rk〉 is a basis state of the
reference system. The reference system is composed of k
qubits, each of them denoted by the quantum number Ri. A
“codeword” state |Lq, S〉 = |L1L2 · · · Lk, S1, S2, . . . , Sn−k〉
is a basis n-qubit state for the code space of the QEC code
living on the system Q. Li are the logical quantum numbers
of the code space and Si = +1 ∀i are the stabilizer quan-
tum numbers (syndromes). An alternative way to represent

(a) (b)

B
it-

 a
nd

 p
ha

se
-f

lip
 p

ro
ba

bi
lit

y

FIG. 2. (a) Coherent information setup. We start from a generalized Bell state
∑2k

i=1 |Ri〉|Ri〉/2k/2 between the k reference qubits and

identical k seed qubits. Then we prepare the state
∑2k

i=1 |Ri〉|Li〉/2k/2 where |Li〉 are the codewords of a QEC code and send the state on
Q through an error channel. The CI is computed as I = S(ρQ)− S(ρRQ). (b) Correctability phase diagram for the 2D color code under
bit- and phase-flip and erasure errors. The black line is the same shown in Fig. 9 in Sec. V for the color code. Below threshold (green
region) the CI asymptotically approaches its maximum value of k log 2. Above threshold (red region) the CI approaches its minimum
−k log 2.
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this state is

ρ0
RQ =

2k∏

j =1

(1 + ORj OLj

2

) n−k∏

i=1

(
1 + gi

2

)
. (18)

In the last equation we wrote ρ0
RQ ≡ |ψRQ〉〈ψRQ|. The

operators OLi are the logical operators (the super-indices
x and z are omitted in this section) of the code, hence
ORi are the respective images in the reference system.
gi are the stabilizer generators of the QEC code. Since
[ORj OLj , ORiOLi] = 0 and [ORj OLj , gi] = 0 then eigen-
states of the operators ORj OLj and gi form a complete
basis of the complete Hilbert space in the RQ system. Con-
sequently, Eq. (18) is a sum of projectors that uniquely
determines the state |ψRQ〉. As an example, let us take
k = 1: in this case, there is only one pair of operators ZRZL
and XRXL, therefore |ψRQ〉 = (|0, 0, S〉 + |1, 1, S〉)/√2 is a
Bell pair between a single reference qubit and one logical
qubit.

After tracing out the reference system, the state ρ0
Q =

∑2k

q=1 |Lq, S〉〈Lq, S|/2k is an incoherent superposition of
codeword states, hence the state shown in Eq. (18) has
maximal CI of I0 = k log 2. After the state is exposed
to noise, the CI might decrease I ≤ I0. The difference
between the CI of a noiseless and a noisy state quantifies
the amount of information that has leaked to the environ-
ment. In Sec. IV we derive expressions for the exact CI
obtained after the state ρ0

RQ is exposed to erasure and com-
putational errors. In Sec. V we use those expressions to
estimate optimal thresholds of 2D topological codes.

IV. RESULTS

In this section, we describe in detail how to derive the
mappings of the CI in the error configuration picture, both
with and without qubit loss. In Sec. IV A, we present the
exact expressions for the CI of stabilizer codes with era-
sure errors. Then, in Sec. IV B, we study computational
errors by applying the methods used in Refs. [34,76,77,79]
to CSS codes and Pauli noise. In Sec. IV C, we combine
the methods and derivations explained in the two previous
sections, and arrive at closed-form expressions for the CI
of CSS codes under both computational and erasure errors.
To simplify the notation across the section we choose to
work with the base-two logarithm, such that log 2 = 1.

A. Coherent information under erasure errors

In this section, we compute the CI of QEC codes under
the action of the erasure channel given by Eq. (14). Recall
that the erasure operation traces out m = m(l) physical
qubits in region Al, where l denotes the configuration of
erased qubits. For a fixed erasure configuration l, we then
obtain the state (the ancilla bit states |al〉 are omitted from

now on):

ρ l
RQ = 1

2m1Al ⊗ TrAl(|ψRQ〉〈ψRQ|). (19)

Each erased qubit leads to a small set of stabilizers that
must be redefined, while some others become ill-defined.
In total, only n − k − 2m stabilizers remain well-defined
after erasing m qubits. The latter is a consequence of how
projective measurements are treated in the stabilizer for-
malism [93]. For the surface and toric code, an example
can be seen in Fig. 3. After erasure of one qubit, a total of
four stabilizers is affected. Then each pair of X and Z sta-
bilizers gets combined and becomes super-plaquette and
super-star operators. Thus two out of four affected degrees
of freedom remain well-defined. Furthermore, the fate of
the logical operators also depends on the configuration l
of lost qubits. If at least one representative of the given
logical operator still has support on the remaining physi-
cal qubits, then we say that such a logical operator remains
well-defined. A logical operator becomes ill-defined once
all representatives have support on at least one erased
qubit. One example of the latter in the toric code is the
case when erasure errors split the lattice into two discon-
nected parts, hence cutting the way of non-contractible
loops, thereby impeding the existence of the respective
logical (string) operators. To determine whether a logical

FIG. 3. Formation of super-plaquettes and super-star operators
after losing one qubit. Each qubit is shared between four sta-
bilizers, two X (red regions) and two Z (blue regions). After
erasure the product of stabilizers of the same species remains
well-defined and forms what has been called super-plaquettes
(enclosed by dashed blue line) and super-stars (enclosed by red
dashed line) [42]. Let us note that each of the former weight-
3 stabilizers commutes with the super-plaquette and super-star
operators, however its expectation value has been randomized
by the qubit erasure.
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operator OLi remains well-defined, we use the procedure
outlined in Ref. [44] (see Appendix A for details). If h
logical operators are not recoverable, then one can write

ρ l
RQ =

2k−h∏

i=1

(
1 + ORiOLi

2

) n−2m−k∏

i=1

(
1 + g′

i

2

)
⊗ 1

2h+2m .

(20)

Here, g′
i are the remaining well-defined stabilizers, OLi

denotes one remaining logical operator, and ORi is its
image in the reference system.

Now let us discuss how the generalized Bell pair is
affected by qubit erasures. First, each pair of operators
Ox

Ri
Ox

Li
and Oz

Ri
Oz

Li
generates a code space of size 2,

denoted by a Bell pair |00〉 + |11〉 (up to normalization),
between one reference qubit and one logical qubit. In other
words, the two quantum numbers of the Bell basis are fixed
to +1. Importantly, the CI relies on preserving the Bell
pairs, so in the following analysis, we consider a single
Bell pair only. The intuition carries over for k > 1 and any
QEC code. After some qubits are lost, we can distinguish
three scenarios for each logical qubit:

(i) Both logical operators remain well-defined. Then,
ZRZL = +1 and XRXL = +1, preserving the Bell
pair. Therefore, the whole logical qubit is preserved,
and the CI does not decrease.

(ii) One logical operator becomes ill-defined. When XL
is the only lost operator, the Bell quantum number
ZRZL = +1 is fixed. Thus, the state is now in an
incoherent superposition of the two +1 eigenstates
of ZRZL, ending up with |00〉〈00| + |11〉〈11| (up to
normalization). Similarly, when ZL is lost, the Bell
quantum number XRXL = +1 is fixed, so the state
is now | + +〉〈+ + | + | − −〉〈− − | (up to normal-
ization). As a result, the logical qubit is degraded to
a logical bit, because the remaining logical operator
is still able to transmit classical information.

(iii) Both XL and ZL logical operators are lost. In this
case, we get an incoherent mixture of the type
|00〉〈00| + |11〉〈11| + |01〉〈01| + |10〉〈10|. In this
situation, neither classical nor quantum information
can be transmitted, so we call it a lost qubit.

In the light of the previous analysis, a state for which
k

′
logical qubits are preserved, b logical bits arise and c

logical qubits are lost can be written as

ρ l
RQ = 1

2k′+b+m+2c

2k′∑

q=1,q′=1

2m∑

S′

2b∑

o=1

2c∑

p=1

2c∑

p ′=1

|Rq, Lq, S, S′, Ro, Lo, Rp , Lp ′ 〉〈Rq′ , Lq′ , S, S′, Ro, Lo, Rp , Lp ′ |, (21)

where S′ are the ill-defined stabilizers and S are the respec-
tive well-defined stabilizers. The m erased qubits are omit-
ted because they do not contribute to the CI. The states
|Rα , Lα〉 correspond to the basis states in the reference and
code spaces. The choice of α indicates the type of logical
qubit: an intact logical qubit is denoted by the subscript q,

a logical bit has the subscript o, and a completely lost qubit
has the subscript p . Note that the fate of the k logical qubits
is restricted to these three possibilities, hence the relation
k = k′ + b + c holds for any erasure configuration.

From Eq. (21) we obtain the state after tracing out the
reference system

ρ l
Q = 1

2k′+b+m+c

2k′∑

q=1

2m∑

S′=±1

2b∑

o=1

2c∑

p=1

|Lq, S, S′, Lo, Lp〉〈Lq, S, S′, Lo, Lp |. (22)

The respective von Neumann entropies are

S(ρ l
RQ) = m + b + 2c, (23)

S(ρ l
Q) = k′ + m + b + c. (24)

Hence

Il = k′ − c = k − b − 2c. (25)

The CI contains the information about the lost and
degraded logical qubits. For example, in the case of k = 1,
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the logical qubit can either be degraded to a classical
bit or completely lost. Therefore, only the cases {k = 0,
b = 1, c = 0} or {k = 0, b = 0, c = 1} are possible. The
stabilizers, whether ill-defined or not, do not contain any
relevant information and therefore do not contribute to
the CI.

The actual CI is then the average over erasure configu-
rations:

I =
∑

l=1

P(l)I l = k − 〈bl〉 − 2〈cl〉. (26)

Here, we explicitly write the dependence of c and b on
the erasure configuration l. Additionally, 〈. . . 〉 denotes the
average over the probability of erasure configurations P(l).
Let us recall that the average in Eq. (26) appears because
the states ρ l

RQ are orthogonal to each other due to the
ancilla bit state |al〉 representing the knowledge of the
erasure event.

The calculation of the CI in the presence of erasure
errors reduces to sampling erasure configurations l and
counting the number of logical bits b and lost logical qubits
c. In Refs. [43,44], it was shown that the problem of deter-
mining whether a logical operator remains well-defined
can be framed as Gaussian elimination on the parity check
matrix of the QEC code. Therefore, computing the CI
under erasure errors for a fixed erasure configuration l
scales polynomially with the number of physical qubits.

B. Coherent information of CSS codes under
computational errors

In this section, we compute the CI of QEC codes under
depolarizing noise, as given by Eq. (15). We consider CSS
stabilizer codes [[n, k, d]] without further assumptions. We
start from the generalized Bell state Eq. (17) between the
reference system R and the code space on the system Q of
n qubits. In general, the density matrix after applying the
noise N =∏Ni to the state ρ0

RQ = |ψRQ〉〈ψRQ| looks like

ρRQ =
∑

C

P(C)wCρ
0
RQwC, (27)

where wC denotes an error chain C of length |C|. Each
error chain can be decomposed in terms of the X , Y, and
Z components as C = Cx ◦ Cy ◦ Cz, so the length of the
error chain is given by |C| = |Cx| + |Cy | + |Cz|. The prob-
ability P(C) is the product of having error chains of each
kind: P(C) = (1 − p)n−|C|∏

i=x,y,z p |Ci|
i . In the following,

we compute S(ρRQ) and S(ρQ) by first considering the trace
of the r-th power of density matrices, Tr(ρr

RQ).

1. Calculation of S(ρRQ)

Now we write ρr
RQ as a product of r replicas [34] and

take the trace:

ρr
RQ =

∑

{C(s)}

r∏

s=1

P(C(s))wC(s)ρ
0
RQwC(s) , (28)

Tr(ρr
RQ) =

∑

{C(s)}

[
r∏

s=1

P(C(s))

]
Tr

(
r∏

s=1

wC(s)ρ
0
RQwC(s)

)
, (29)

Tr(ρr
RQ) = 1

2kr

∑

{C(s)}

∑

{q(s),q′(s)}

[ r∏

s=1

P(C(s))
]

Tr

(
r∏

s=1

wC(s) |Rq(s) , Lq(s) , S〉〈Rq′(s) , Lq′(s) , S|wC(s)

)
. (30)

Here {q(s)} denotes replica quantum number configura-
tions, e.g., q(1)1 q(2)1 · · · q(s)1 is the configuration where all
“ket” replicas have the same logical quantum number q1.
Since the errors do not act on the reference system, the
reference quantum number can never be flipped and many
aspects can be simplified. First, each replica contributes
with a pair q(s), q′(s) making up 22rk configurations. Sec-
ond, there are r − 1 inner products that force q′(s) = q(s+1)

for s = 1, . . . , r − 1 reducing the number of configurations
to 2k(r−1). Third, the first replica is left free thus con-
tributing with a factor 2k. Once the first replica s = 1 is
fixed, let us say wC(1) |Rq(1) , Lq(1) , S〉 = |Rq(1) , Lq′(1) , S′〉, the

only non-vanishing contributions to the trace are those
of the form wC(s+1) |Rq(s) , Lq(s) , S〉 = |Rq(s) , Lq′(s) , S′〉 with
s = 0, .., r − 1. Putting all together we arrive at

Tr(ρr
RQ) =

∑

{C(s)}

r−1∏

s=1

P(C(s))〈ψ0|wC(s)wC(s+1) |ψ0〉, (31)

where each error chain fulfills the condition

C(s+1) = C(1) + v(s), s = 1, 2, . . . , r − 1. (32)
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Here, v(s) stands for all error chains that do not flip any
stabilizer quantum number Si and commute with all logi-
cal operators, i.e., a member of the stabilizer group. In the
toric code they have an interpretation in terms of homo-
logically trivial loops [66]. The states |ψ0〉 are chosen to
yield 〈ψ0|wC(s)wC(s+1) |ψ0〉 = 1 for any error chain given by
Eq. (32). One can further simplify this expression as

Tr(ρr
RQ) =

∑

C(1)

P(C(1))
∑

{v(s)}

r−1∏

s=1

P(C(1) + v(s)). (33)

The error chains C(s) can contain X , Z and Y errors.
Then we can express P(C(1) + vs) in terms of the binary

variables nx,z
v(s)
(�) = 0, 1 that denote whether the qubit � has

an X or Z error. Now the task is to parameterize the prob-
ability of each qubit � in C(s) to be “occupied” by any of
the four Pauli operators (including the identity), see Fig. 4.
If � /∈ C(1) then there is a probability px that this site is
occupied by an X error, pz for Z, py for Y and 1 − p of
the link being unoccupied (i.e., identity). Thus that qubit
contributes with a probability

Q(s)(�) = pnx(1−nz)
x pnz(1−nx)

z pnznx
y (1 − p)(1−nx)(1−nz). (34)

To avoid crowded notation we defined nx,z ≡ nx,z
v(s)
(�). If

� ∈ C(1) then one can identify three possibilities:

⎧
⎪⎨

⎪⎩

� ∈ C(1)x → Q(s)
x (�) = p (1−nx)(1−nz)

x pnznx
z pnz(1−nx)

y (1 − p)nx(1−nz)

� ∈ C(1)y → Q(s)
y (�) = pnz(1−nx)

x pnx(1−nz)
z p (1−nx)(1−nz)

y (1 − p)nxnz

� ∈ C(1)z → Q(s)
z (�) = pnznx

x p (1−nx)(1−nz)
z pnx(1−nz)

y (1 − p)nz(1−nx)

. (35)

Therefore we can write

P(C(1) + v(s)) =

⎡

⎢⎣
∏

�∈C(1)x

Q(s)
x (�)

⎤

⎥⎦

⎡

⎢⎣
∏

�∈C(1)y

Q(s)
y (�)

⎤

⎥⎦

⎡

⎣
∏

�∈C(1)z

Q(s)
z (�)

⎤

⎦

⎡

⎣
∏

�/∈C(1)

Q(s)(�)

⎤

⎦ . (36)

For each link � we can define variables PZ
� and PX

� that are
code-specific and related to nx and nz as

nx
v(s)
(�) = 1 − PX

�

2
, nz

v(s)
(�) = 1 − PZ

�

2
. (37)

Here PX
� = ±1 and PZ

� = ±1 and their description in terms
of classical spin variables depends on the underlying space
where the QEC code lives. In this section we leave this
structure undetermined and retake it in Sec. V for the spe-
cific case of 2D toric and color code. Now we rewrite
Eqs. (34) and (35) as

Q(s)(�) = √
pxpz

(
(1 − p)py

pxpz

)1/4

exp
(
JxPX

� /2
)

exp
(
JzPZ

� /2
)

exp
[−J1(PX

� + PZ
� − PX

� PZ
� )/4

]
, (38)

Q(s)
x (�) =

√
(1 − p)py

(
(1 − p)py

pxpz

)−1/4

exp
(−JxPX

� /2
)

exp
[
(Jz − J1)PZ

� /2
]

exp
[
J1(PX

� + PZ
� − PX

� PZ
� )/4

]
, (39)

Q(s)
y (�) = √

pxpz

(
(1 − p)py

pxpz

)1/4

exp
[−(Jx − J1)PX

� /2
]

exp
[−(Jz − J1)PZ

� /2
]

exp
[−J1(PX

� + PZ
� − PX

� PZ
� )/4

]
, (40)

Q(s)
z (�) =

√
(1 − p)py

(
(1 − p)py

pxpz

)−1/4

exp
[
(Jx − J1)PX

� /2
]

exp
(−JzPZ

� /2
)

exp
[
J1(PX

� + PZ
� − PX

� PZ
� )/4

]
. (41)
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Now we can rewrite the whole P(C(1) + v(s)) as

P(C(1) + v(s)) = 1
f
(
pxpzpy(1 − p)

)n/4 eH [{ηx},{ηz}] (42)

with (omitting the replica index s):

H [{ηx}, {ηz}] =
∑

�

ηx
�

(
Jx − J1

2

)
PX
�

2

+ ηz
�

(
Jz − J1

2

)
PZ
�

2
+ ηz

�η
x
�J1

PZ
�PX

�

4
.

(43)

The factor f is code-dependent and reflects the symme-
try of the resulting spin model. For instance, for the toric
code, whose spin model is Z2-symmetric, f = 2 because
flipping all spins together leaves all nx

v(s)
(�) and nz

v(s)
(�)

invariant. As expected, the CI will not depend on the factor
f . The coupling constants are defined as

eJx = 1 − p
px

, , eJz = 1 − p
pz

, eJ1 = (1 − p)py

pxpz
. (44)

The whole expression for Tr(ρr
RQ) is then rewritten as

Tr(ρr
RQ) = 1

f r−1

[
(1 − p)pxpzpy

](r−1)n/4 ∑

{ηx ,ηz}
P({ηx, ηz})

∑

{PX (s),PZ(s)}

r−1∏

s=1

exp (H(s))

= 1
f r−1

[
(1 − p)pxpzpy

](r−1)n/4 ∑

{ηxηz}
P({ηxηz})Z [{ηx, ηz}]r−1 . (45)

Here, Z [{ηx, ηz}] =∑{PX (s),PZ(s)} exp [H(s)] is the
partition function of a double spin model with the con-
figuration {ηx, ηz} of couplings. Each choice of {ηx, ηz}
represents one error chain and P({ηx, ηz}) its probability.
Now we take the limit r → 1 using the identity

S(ρ) = − lim
r→1

∂

∂r
Tr(ρr) (46)

Y
Y Y Y

Y

Z
Z
Z

X
X

X
X

X

FIG. 4. Error chains for the depolarizing noise model. Given
a fixed error chain in the first replica C(1), the probability of
each C(s) is parameterized according to the errors that appear in
the first replica. The probability of having the C(s) depicted in
the picture is parameterized through the weighted probabilities
Q(s)

x (l),Q
(s)
y (l), shown in Eqs. (34) and (35).

and obtain

S(ρRQ) = −n
4

log
[
(1 − p)pxpypz

]+ log f − logZ ,

(47)

where we have defined (· · · ) =∑{ηx ,ηz} P({ηx, ηz})(· · · )
as the disorder average associated with the computational
errors.

2. Calculation of S(ρQ)

Now we compute the r-th power of the state
ρQ = TrR (ρRQ) and take its trace,

ρr
Q =

∑

{C(s)}

r∏

s=1

P(C(s))wC(s)ρ
0
QwC(s) , (48)

Tr(ρr
Q) =

∑

{C(s)}

[ r∏

s=1

P(C(s))
]

Tr

(
r∏

s=1

wC(s)ρ
0
QwC(s)

)
,

(49)

Tr(ρr
Q) = 1

2kr

∑

{C(s)}

∑

{q(s)}

[ r∏

s=1

P(C(s))
]

× Tr

(
r∏

s=1

wC(s) |Lq(s) , S〉〈Lq(s) , S|wC(s)

)
. (50)
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In the last step, we replaced ρ0
Q =∑2k

q=1 |Lq, S〉〈Lq, S|/2k

as the mixture of all codewords in the QEC code. The sum-
mation

∑
{q(s)} runs over all codewords in the r replicas.

There are 2kr configurations of q(s), and almost all of them
have a non-vanishing contribution. Once the first replica
C(1) is fixed, the configurations of C(s) with non-vanishing
contributions satisfy the condition C(s+1) = C(1) + v(s) +
D(s), and one can write

Tr(ρr
Q) = 1

2k(r−1)

∑

C(1)

P(C(1))

×
r−1∏

s=1

∑

{D(s)}

∑

{v(s)}
P(C(1) + v(s) + D(s)). (51)

Here, v(s) are the X and Z stabilizer operators, and
D(s) =∏k

i=1 X di
x

i Zdi
z

i is a product of logical operators,
where di

x,z = 0, 1 is a binary variable that denotes their
absence or presence in the specific replica (the replica
index in di

x,z is omitted). In total, there are 4k possible D(s),
which represent all possible combinations of logical oper-
ators. For instance, for k = 1, there are four possibilities:
I , XL, ZL, and XLZL. The summation

∑
{v(s)} becomes the

summation over classical spin configurations, as discussed
in Sec. IV B 1. From the point of view of Eq. (36), the log-
ical operator D(s) can be absorbed into C(1), and therefore
the summation

∑
{D(s)} becomes the summation over dif-

ferent partition functions for which the variables ηx, ηz are
flipped along the support of the respective logical opera-
tor. The rest of the derivation follows the same steps as for
Tr(ρr

RQ), which leads us to

Tr(ρr
Q) = 1

f r−1

1
2k(r−1)

[
(1 − p)pxpzpy

](r−1)n/4 ∑

{ηx ,ηz}
P({ηx, ηz})

⎛

⎝
∑

{D}
ZD

⎞

⎠
r−1

= 1
f r−1

1
2k(r−1)

[
(1 − p)pxpzpy

](r−1)n/4

⎛

⎝
∑

{D}
ZD

⎞

⎠
r−1

. (52)

In the partition function ZD the variables ηx and ηz along
the support of D are transformed as follows: (i) for D
containing a X logical operator then (ηx, ηz) → (−ηx, ηz)

(ii) for D containing a Z logical operator then (ηx, ηz) →
(ηx, −ηz) and (iii) for D containing both X and Z logi-
cal operators then (ηx, ηz) → (−ηx, −ηz). Now we take the
limit r → 1 using Eq. (46) and get

S(ρQ) = k + log f − n
4

log
[
(1 − p)pxpypz

]

− log

[
∑

D

ZD

]
. (53)

3. Coherent information for generic Pauli noise

Now we combine Eqs. (47) and (53) to write the CI for
depolarizing noise:

I = k − log
[∑

D ZD

Z0

]
(54)

where Z0 is the partition function without defects along
the support of logical operators. Importantly, Eq. (54) does
not make any assumptions about the underlying details of

the QEC code. Neither dependencies on k nor the under-
lying geometry of the code are specified. Therefore, we
expect that the same approach applies to LDPC codes
or topological codes in any spatial dimension. We high-
light that the details of the code enter via the variables
PX
� and PZ

� defined in Eq. (37). Thus, the work lies in
properly parameterizing these variables in terms of clas-
sical spins. In this work, we specifically tackle the 2D
toric and color codes in Sec. V and the lift-connected
surface code in Sec. VI. For simplicity, we assume iden-
tical Pauli channels on each qubit, but this can also be
relaxed by allowing qubit-dependent couplings Jx, Jz, J1 or
considering correlated errors [74].

For topological codes, it has been observed that the
phase transition in Z0 already pinpoints the optimal thresh-
old [66,94] and, hence, the singular behavior of the CI
at the threshold [34]. The reason is that fluctuations due
to topological defects are exponentially suppressed in
the thermodynamic limit, meaning that all terms ZD/Z0
vanish independently in the ordered phase. However, it
remains to be seen whether this always holds for LDPC
codes [95], whose growing number of logical qubits
allows for many more classes of topological defects. These
defects could potentially enhance the fluctuations in the
free energy difference between phases [96,97].
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C. Coherent information of CSS codes under
computational and erasure errors

We now turn to computing the CI for erasure and depo-
larizing errors together. We start from the state ρ l

RQ under
a qubit erasure configuration l where a total m qubits are
lost, given by Eq. (21). The computational errors enter in
the usual way,

ρ l′
RQ =

∑

C

P(C)wCρ
l
RQwC, (55)

where wC denotes an error chain C of length |C| on the
remaining n − m data qubits. Each error chain can be
decomposed as C = Cx ◦ Cy ◦ Cz, therefore the length of
the error chain is given by |C| = |Cx| + |Cy | + |Cz|. The
probability P(C) is the product of having error chains of
each kind P(C) = (1 − p)n−m−|C|∏

i=x,y,z p |Ci|
i .

1. Calculation of S(ρRQ)

Now we write ρr
RQ (dropping for now the l′ index) as a

product of r replicas and take the trace,

ρr
RQ =

∑

{C(s)}

r∏

s=1

P(C(s))wC(s)ρ
l
RQwC(s) , (56)

Tr(ρr
RQ) =

∑

{C(s)}

[ r∏

s=1

P(C(s))
]

Tr

(
r∏

s=1

wC(s)ρ
l
RQwC(s)

)
.

(57)

At this point we insert Eq. (21), then the indices q, o, p
acquire a replica index s. The task is to identify the non-
vanishing replica configurations of error chains {C(s)}. Let
us now walk through the restrictions imposed onto {C(s)}
for each set of indices q(s), o(s), p (s) and the well-defined
stabilizer generators S after fixing the first replica C(1):

(a) Logical qubit quantum numbers (Rq(s) , Lq(s) ) and
well-defined stabilizers S: both types of quantum
numbers impose the constraint of not allowing C(s)

for s > 1 to have a different logical operator and
syndrome from C(1). Thus, C(s) can only contain
error chains that produce the same syndrome as
C(1) on the well-defined Z and X stabilizers. As
in the case without erasures, the total number of
replica state configurations with a non-vanishing
contribution is 2k′r.

(b) Ill-defined stabilizers S′: their quantum numbers
enter as identity operators. Therefore, for any com-
bination C(s) of errors, each of them contributes with
a factor of 2. Thus there are 2m replica configura-
tions with non-vanishing contributions. They do not
impose any constraint on the error chains C(s).

(c) Logical bit quantum numbers (Ro(s) , Lo(s) ): First,
recall that the states |Ro(s) , Lo(s)〉〈Ro(s) , Lo(s) | can be

either (|00〉〈00|, |11〉〈11|), in the respective basis
states of the logical qubit and associated reference
qubit under consideration, when Ox

Li
is lost, or (| +

+〉〈+ + |, | − −〉〈− − |) correspondingly when Oz
Li

is lost. Thus, we decompose b = bx + bz, where
bx(z) denotes the remaining bits in the X (Z) basis.
The reference quantum number forces all logical bit
numbers |o(s)R , o(s)L 〉〈o(s)R , o(s)L | to be the same. There-
fore, the only non-vanishing contributions come
from replica configurations with o(s+1) = o(s) for
s = 1, . . . , r − 1. Hence, only 2b configurations con-
tribute to the trace. The constraints on C(s) are the
same as for the logical qubits (all logical operators
must be the same in all replicas).

(d) Lost qubits quantum numbers (Rp(s) , Lp ′(s) ): the ref-
erence part Rp(s) is forced the be equal in each
replica. Since the logical operators for these logical
qubits are gone, the quantum number Lp ′(s) cannot
be flipped by an error chain. Therefore there are only
4c configurations with non-vanishing contribution.

In summary we obtain

Tr(ρr
RQ) = 1

2(b+m+2c)(r−1)

×
∑

{C(s)}

r∏

s=1

P(C(s))〈ψ0|wC(s)wC(s+1) |ψ0〉, (58)

where error chains C(s) are restricted to

C(s+1) = C(1) + v(s), s = 1, 2, . . . , r − 1. (59)

FIG. 5. Toric code square lattice with qubits on the edges.
Error chain C(1) in red and commuting error configuration v(s) in
violet. The blue plaquettes are the super-plaquettes formed after
erasures (denoted by open circles and missing edges of the square
lattice). The syndrome generated by C(1) is shown as four-point
stars in the center of the respective stabilizer plaquettes. The error
chain v(s) does not create nor remove syndromes.
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Here, {v(s)} represent all operations that do not change
any of the well-defined Z and X stabilizer quantum num-
bers and commute with all logical operators. In the case
without erasures, v(s) is always a member of the stabilizer
group (see Fig. 5). After erasing some qubits, the well-
defined X and Z stabilizers and logical operators cannot
generate all error chains C. However, we must consider
every v(s), even if they are not themselves made up of the
well-defined X and Z stabilizers. Therefore, we can write

Tr(ρr
RQ)=

1
2(b+m+2c)(r−1)

∑

C(1)

P(C(1))
∑

{v(s)}

r−1∏

s=1

P(C(1)+v(s)).

(60)
Now we must count all possible v(s). To do so, we define

binary variables nx
v(s)
(�) = 0, 1, nz

v(s)
(�) = 0, 1, to denote

whether a link � on the direct lattice is occupied in the error
chain v(s) by X , Y, Z, or I (not occupied). The procedure is
the same as in Sec. IV B. Again, we express P(C(1) + v(s))

in terms of the binary variables nx,z
v(s)
(�) = 0, 1, and write

down the probability for each single qubit error

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� /∈ C(1) → Q(s)(�) = pnx(1−nz)
x pnz(1−nx)

z pnznx
y (1 − p)(1−nx)(1−nz)

� ∈ C(1)x → Q(s)
x (�) = p (1−nx)(1−nz)

x pnznx
z pnz(1−nx)

y (1 − p)nx(1−nz)

� ∈ C(1)y → Q(s)
y (�) = pnz(1−nx)

x pnx(1−nz)
z p (1−nx)(1−nz)

y (1 − p)nxnz

� ∈ C(1)z → Q(s)
z (�) = pnznx

x p (1−nx)(1−nz)
z pnx(1−nz)

y (1 − p)nz(1−nx)

. (61)

To avoid crowded notation we abbreviated nx,z ≡ nx,z
v(s)
(�). The remainder of the calculation is similar to the case without

erasures studied in Sec. IV B. The only difference is that now � denotes a qubit on the complement of Al instead of any
arbitrary qubit. We then obtain

Tr(ρr
RQ) =

[
(1 − p)pxpzpy

](r−1)(n−m)/4

f r−12(b+m+2c)(r−1)

∑

{ηx ,ηz}
P({ηx, ηz})

∑

{PX (s),PZ(s)}

r−1∏

s=1

exp (Hl(s))

=
[
(1 − p)pxpzpy

](r−1)(n−m)/4

f r−12(b+m+2c)(r−1)

∑

{ηxηz}
P({ηxηz})Zl [{ηx, ηz}]r−1 . (62)

The partition function Zl [{ηx, ηz}] =∑{PX (s),PZ(s)} exp
[Hl(s)] is the partition function of a classical Hamiltonian
given by Eq. (43) with the configuration {ηx, ηz} of cou-
plings. Each choice of {ηx, ηz} represents an error chain,
and P({ηx, ηz}) is its probability according to Table II. The
erasure errors enter as missing links with probability e in
the statistical mechanics model derived in Sec. IV B. In
general, erasure errors favor a fully symmetric equilibrium
state by switching off the interaction on each link � of the
lattice. In Secs. V and VI, we further discuss this model
for 2D toric and color codes and one class of LDPC codes.

Now, using the identity in Eq. (46), we obtain

S(ρRQ) = −n − m
4

log
[
(1 − p)pxpypz

]+ log f

+ b + m + 2c − logZl. (63)

We omitted the l dependence on b, c, and m.

2. Calculation of S(ρQ)

Now we compute the trace of the r-th power of the state
ρQ = TrR (ρRQ) starting now from Eq. (22):

Tr(ρr
Q) = 1

2(k′+b+m+c)r

∑

{C(s)}

∑

{q(s)}

∑

{S′(s)}

∑

{o(s)}

∑

{p(s)}

[ r∏

s=1

P(C(s))
]

Tr
( r∏

s=1

wC(s) |Lq(s) , S(s), S
′(s), Lo(s) , Lp(s)〉

〈Lq(s) , S(s), S
′(s), Lo(s) , Lp(s) |wC(s)

)
. (64)

The quantum numbers that enter as an identity contribute equally; the only degree of freedom to be considered is the
well-defined stabilizers S. After fixing the first replica C(1), the configuration of C(s) with non-vanishing contributions
must satisfy the condition C(s+1) = C(1) + v(s) + D(s)

l , and one can write
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Tr(ρr
Q) = 1

2(k′+m+b+c)(r−1)

∑

C(1)

P(C(1))
r−1∏

s=1

∑

{D(s)}

∑

{v(s)}
P(C(1) + v(s) + D(s)

l ). (65)

Similarly to the calculation of Tr (ρRQ), here v(s) repre-
sents all operators that commute with the well-defined sta-
bilizers. Also, D(s) =∏k

i=1 X di
x

i Zdi
z

i is a product of logical
operators that anti-commute with the well-defined logical
operators. Clearly, for the k′ remaining logical qubits, both
logical operators are included. For the b logical bits, when
X (Z) is the well-defined logical operator, the logical Z (X )

is the one flipping the respective logical quantum number.
The binary variables di

x,z = 0, 1 denote this set of logi-
cal operators. Hence, there are 22k′+b possible D(s), which
represent all possible combinations of anti-commuting log-
ical operators. The rest of the derivation proceeds as in the
erasure-free case, and we then obtain

Tr(ρr
Q) = 1

f r−1

1
2(k′+m+b+c)(r−1)

[
(1 − p)pxpzpy

](r−1)(n−m)/4 ∑

{ηx ,ηz}
P({ηx, ηz})

⎛

⎝
∑

{Dl}
ZDl

⎞

⎠
r−1

= 1
f r−1

1
2(k′+m+b+c)(r−1)

[
(1 − p)pxpzpy

](r−1)(n−m)/4

⎛

⎝
∑

{Dl}
ZDl

⎞

⎠
r−1

. (66)

The partition function ZDl has flipped couplings ηx and
ηz along the support of the anti-commuting set of logical
operators Dl. Now, as before, we take the limit r → 1 using
Eq. (46) and obtain

S(ρQ) = k′ + m + b + c + log f

− n − m
4

log
[
(1 − p)pxpypz

]− log

[
∑

D

ZD

]
.

(67)

3. Coherent information for Pauli noise and erasure
errors

Now we combine Eqs. (63) and (67) and get the CI for
a fixed configuration l of erased qubits,

Il = k − bl − 2cl − log

[∑
Dl
ZDl

Z0

]
, (68)

where we replaced k′ = k − b − c. The averaged CI
I =∑l P(l)Il is then written as

I = k − 〈bl〉 − 2〈cl〉−
〈
log
[∑

D ZD,l

Z0,l

]〉
. (69)

Let us note that (· · · ) denotes the disorder average that
arises from computational errors, and 〈F〉 =∑l P(l)Fl is
the classical average over erased qubits.

We can clearly distinguish two sources for the reduction
of CI: (i) by means of the erasure errors the environ-
ment can effectively measure the logical operators and
directly reduce the CI by integer multiples of log 2 = 1.
(ii) The computational errors act on the remaining physi-
cal qubits, with their effects quantified by the cost in free
energy of inserting domain walls in the equilibrium state,
as given by the partition function Z0 [66,98]. The erasure
errors drive the transition to a fully symmetric state by
removing interactions locally, thereby lowering the cost of
inserting domain walls. This picture is general and does
not make any assumptions about the underlying geome-
try and spatial structure of the QEC code. Moreover, since
the details of the code enter via the variables PX

� and PZ
�

defined in Eq. (37), the classical spin models derived are
the same with and without erasure errors, except for the
missing links in the latter. For simplicity, we assume iden-
tical Pauli channels on each qubit, but this could also be
relaxed by allowing qubit-dependent couplings Jx, Jz, J1
and considering spatially correlated noise [74].

V. 2D TOPOLOGICAL CODES

In this section, we present numerical calculations of the
CI for the rotated surface code [99] and the 4.8.8 octag-
onal color code [90,100] (for details of the codes, see
Appendix B). We calculate the CI exactly for code sizes
up to d = 5 in the presence of computational errors, and
up to d = 17 for erasure errors only. For some choices
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of code and code distance, we calculate the CI via exact
computation of partition functions derived in Secs. IV B
and IV C. For others, it is more convenient to directly
use the mixed-state density matrix, as done in Ref. [35],
which illustrates the practical complementarity of the two
approaches. In two cases, namely (i) d = 5 color code
with depolarizing noise and erasure errors, and (ii) erasure
errors at high distances, we use a stochastic approximation
for the erasure errors, which involves sampling over qubit
loss configurations (see Appendix A for details).

A. Erasure errors

We show in Fig. 8 the CI for the surface code and
the 4.8.8 color code. The optimal threshold problem in
the 2D toric code can be mapped to a bond percolation
problem on a square lattice [42], which yields a thresh-
old of eth = 0.5, saturating the fundamental limit set by
the no-cloning theorem. We find the same threshold in our
calculation with four-digit precision, as shown in Fig. 8.
In terms of percolation theory, the CI, after proper rescal-
ing and renormalization, can be viewed as the probability
of the appearance of percolating clusters. At low enough
erasure probability e, both logical string operators still
have support on non-lost qubits in the lattice, and effec-
tively can traverse the lattice. In contrast, at high e, they
become confined within small, disconnected regions and
therefore stop being well-defined. Therefore, we expect
the CI and the percolating cluster probability to have the
same scaling exponent. In fact, we find ν = 1.33(4) and
ν = 1.4(1) for the surface code and the color code, respec-
tively, which is, within statistical error bars, consistent
with the ν = 4/3 ≈ 1.33 predicted by percolation theory
[86]. A similar result for the toric code in the context of
mixed-state topological order was obtained in Ref. [101].
Furthermore, since both codes have the same threshold and
the same scaling exponent, we observe further evidence
that the 2D toric and color codes have the same thresh-
olds against quantum erasures in the code capacity setting
[66,85].

B. Computational and erasure errors

First, let us state what the statistical mechanics map-
pings are for the 2D toric and color code. For the 2D toric
code PX

� = σiσj and PZ
� = τnτm where 〈i, j 〉 and 〈n, m〉 are

points in a square lattice connected via the edge � (see
Fig. 6). The respective Hamiltonian then reads

HTC =
∑

〈i,j 〉,〈n,m〉
ηx

ij

(
Jx − J1

2

)
σiσj

2

+ ηz
nm

(
Jz − J1

2

)
τnτm

2
+ ηz

nmη
x
ij J1

σiσj τnτm

4
. (70)

For 2D color codes PX
� = σiσj σk and PZ

� = τnτmτo
where 〈i, j , k〉 and 〈n, m, o〉 denote the plaquettes that meet

FIG. 6. Spin model for the 2D toric code. Black circles denote
physical qubits. σ (τ ) are the spins counting the X (Z) stabilizers.
Each qubit � is shared by two X and Z stabilizers. An X (Z) error
indicates a link between the two σ (τ ) spins opposite to that site.
A Y error does so as a four spin interaction, two σ and two τ
around the site of the error (green diamond).

at the vertex �, see Fig. 7. The Hamiltonian then reads

HCC =
∑

〈i,j ,k〉,〈n,m,o〉
ηx

ijk

(
Jx − J1

2

)
σiσj σk

2

+ ηz
nmo

(
Jz − J1

2

)
τnτmτo

2
+ ηz

nmoη
x
ijkJ1

σiσj σkτnτmτo

4
.

(71)

Let us note that in Eqs. (70) and (71), we assume
periodic boundary conditions. Imposing open boundary
conditions would only modify the physical qubits at the
boundary, as they are shared among a reduced number
of stabilizers. For example, in the rotated surface code,

FIG. 7. Spin model for the 4.8.8 color code. Black circles
denote physical qubits. Only σ spins counting X stabilizers are
shown. The τ spins live on the same positions as σ spins. Each
qubit � is shared by three X stabilizers. An X (Z) error indicates
a link between three σ (τ ) spins. A Y error does so as a six spin
interaction, involving three σ and three τ .

040327-18



COHERENT INFORMATION AND ERASURE ERRORS PRX QUANTUM 6, 040327 (2025)

FIG. 8. Coherent information of surface and 4.8.8 color code
under erasure errors. For both code families we obtain a thresh-
old of eth = 0.5 and a critical exponent close to ν = 4/3 ≈ 1.33,
which is the same as for the probability of having a percolating
cluster in 2D bond percolation [86].

PX
� = σj when the qubit � participates in only one X

stabilizer generator.
The probability distribution P({ηx, ηz}) determines the

presence or absence of erasure errors. Table I shows the
probabilities for computational errors only, while Table II
includes the effect of erasures at known positions in the
data qubits. Among all possible choices of px, py , and
pz, we focus on the two most studied cases: (i) sym-
metric uncorrelated bit- and phase-flip noise, where px =
pz = p1(1 − p1) and py = p2

1 , yielding J1 = 0 and recov-
ering two identical independent Hamiltonians for X and
Z stabilizers. For the 2D toric code, these are two decou-
pled diluted RBIMs living on shifted lattices, see Fig. 6.
For 2D color codes, we obtain two decoupled three-body
spin model living on the same lattice positions [66,103].
(ii) For the isotropic depolarizing channel, where px =
pz = py = p/3, it holds that eJx,z = 3(1 − p)/p and eJ1 =
3(1 − p)/p , so all three interacting terms have the same
strength. For the toric code, this model is known as the
eight-vertex model and has already been studied in the con-
text of QEC and computational errors [85]. In Ref. [70],
the diluted RBIM and eight-vertex model are studied in the
presence of both computational and erasure errors using a
spin-glass duality technique.

It is important to note that in Ref. [42] the authors show a
mapping for the 2D toric code under bit-flip noise and era-
sure errors in which the probability of ferromagnetic and
anti-ferromagnetic links is renormalized by the presence

Bit and phase flip
Color code

Bit and phase flip
Surface code

Bit and phase flip
Surface code

FIG. 9. Phase boundary in the two-dimensional plane (e, p)
for quantum erasure occurring with probability e and computa-
tional errors with probability p . The phase boundary has been
extracted as the pseudo-thresholds of the d = 3 surface code and
4.8.8 color code, respectively. For comparison, points marked
by orange crosses are threshold values obtained in Ref. [70] for
the toric code in the thermodynamic limit. The point (0.5, 0.0) is
extracted from the data shown in Fig. 8.

of the erasures. This statistical mechanics model yields
the same optimal threshold as the diluted RBIM, accord-
ing to Ref. [70]. However, to the best of our knowledge,
the two models are not directly related. At this point, we
argue that the CI allows us to unambiguously derive the
statistical mechanics mappings with the certainty that they
must be correct as long as they faithfully reproduce the CI
of the noisy code density matrix. In this sense, we pro-
pose the CI as a means to validate the statistical mechanics
mappings derived using the approach in Refs. [66,70,73],
and we conclude that the diluted RBIM faithfully cap-
tures the optimal decoding phase transition in the 2D toric
code under bit-flip noise and erasure errors for arbitrary
code sizes. It is worth to clarify that the latter does not
exclude that some statistical mechanics models, which are
not directly related to the one derived from the CI, can
represent the optimal decoding phase transition only in
the thermodynamic limit. In other words, the advantage
in deriving the statistical mechanics models from the CI
is the built-in guarantee of representing the exact optimal
decoding problem for arbitrary code sizes.

Next we compute the CI, by either diagonalizing the
mixed-state density matrices or evaluating Eq. (69). In
Fig. 9 we show thresholds in the plane (e, p) for surface
and 4.8.8 color code as crossings between the CI for d = 1
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Bit- and phase-flip noise

FIG. 10. Coherent information of d = 3, 5 of the octagonal
4.8.8 color code and, for reference, a single physical qubit
(d = 1) for erasure probabilities e = 0.1, 0.2, 0.3, 0.4 as a func-
tion of phase and bit-flip (left column) and depolarizing (right
column) error probability p . For d = 5 and depolarizing noise
there are (very small) error bars due to sampling of erasure errors,
see Appendix A.

(a single physical qubit) and the d = 3 code. In the surface
code case, the pseudo-thresholds we find are the same as
the optimal thresholds from [70] within 2–4 digit precision,
see Table III. This suggests that the CI is able to capture
the asymptotic behavior of the code with high accuracy
in small code instances. For the color code, due to the
slightly smaller qubit numbers, we are able to compute the
CI for d = 5 as well and compare the crossings between

TABLE IV. Pseudo-thresholds of 4.8.8 color code as finite-
size (d = 1, 3, 5) crossings of the CI for the bit- and phase-flip
(BF) and depolarizing (Depol.) with probability p for fixed era-
sure probability (left most column). The columns (1, 3) show the
crossing between the CI of a single qubit and the Steane code
(distance-3 color code). The columns (3, 5) show the CI cross-
ing between the Steane and the d = 5 color code. Error bars for
d = 5 and e > 0 result from erasure sampling. The error bars for
the other crossings can be estimated by the difference between
consecutive p values prior to interpolation [102]. For BF noise
we use �p = 0.002 and for depolarizing noise �p = 0.003.

e (1, 3) BF (3, 5) BF (1, 3) Depol. (3, 5) Depol.

0.0 0.10853 0.10842 0.18570 0.18629
0.10 0.09077 0.09170 0.15639 0.1589(1)
0.20 0.07177 0.07246 0.12457 0.1265(4)
0.30 0.05495 0.05498 0.08847 0.0884(7)
0.40 0.03353 0.03317 0.04603 0.044(2)

d = 1 and d = 3 with crossings between d = 3 and d = 5
codes, see Fig. 10 and Table IV. We find in all cases exam-
ined and for both depolarizing and bit- and phase-flip noise
that increasing the code distance from d = 3 to d = 5 only
affects the threshold in the third digit. Therefore we are
confident that the small-distance codes deliver accurate
estimates for the thresholds when seen as crossings of the
CI. This robustness against finite size effects is similar to
the one observed in Ref. [70] when increasing the size of
the cluster treated with the duality equivalence.

VI. LIFT-CONNECTED SURFACE CODE

In order to test our method beyond the realm of topo-
logical codes, we now study the LCS code introduced in
Ref. [75]. To construct the code family, one takes two
repetition codes of size �+ 1 and applies the lift-product
[104,105] with circulant matrices of size L. As explained
in Ref. [75], this procedure yields an LDPC code [[n, k, d]]
with parameters

n = [(�+ 1)2 + �2]L

k = L

d = min(L, 2�+ 1).

(72)

This code is more easily interpreted as L unrotated sur-
face code sheets of linear size �+ 1 arranged in a periodic

Z

Z

XX

FIG. 11. Lift-connected surface code with parameters L = 4
and � = 1. The stabilizers associated to the �+ 1 surface code
sheet q = 0 are depicted. There are four stabilizers per surface
code sheet. Each X (Z) stabilizer is constructed by taking the
qubits of the respective �+ 1 surface code plus the left (right)
qubit on the q − 1 sheet and the lower (upper) qubit on the q + 1
sheet. The support of XL and ZL logical operators associated to
the q = 0 surface code sheet is shown highlighted in purple.
The other stabilizers and logical operators can be visualized by
rotating the indices q → (q + 1) mod L.

040327-20



COHERENT INFORMATION AND ERASURE ERRORS PRX QUANTUM 6, 040327 (2025)

FIG. 12. Depiction of σ and τ spins and their location with respect to the qubits for the [[15,3,3]] lift-connected surface code. There
are two σ and τ spins on each surface code sheet. The weight-3 spin interactions for the σ spins are shown as green continuous, dashed
and dotted lines. The third spin always comes from the q + 1 surface code sheet on the right. See Appendix C for more details on the
spin model.

stack; see Fig. 11. Each stabilizer of the standard sur-
face code is now extended over neighboring surface code
sheets, leading to weight-6 X and Z stabilizers in the bulk
and weight-4 stabilizers at the boundary. The connectiv-
ity needed for measuring stabilizers is thus 3D-local. The
logical operators are extended over multiple surface code
sheets, and their minimum-weight representatives lie along
the diagonals of each surface code sheet. Let us note that,
since the logical operators are not defined on the bound-
aries, these are not topological codes in the same sense as,
for example, 3D surface codes.

The two parameters (L, �) are independent; therefore, it
is convenient to choose a line in the (L, �) plane to study
thermodynamic properties. Here, we choose L = 2�+ 1,
which yields an ever-growing code distance d and the min-
imum number of physical qubits for a fixed distance [75].
Other choices that keep either L or � constant result in a
bounded code distance d [see Eq. (72)] which prevents
the development of a finite threshold. The downside of
the family L = 2�+ 1 is its vanishing rate, R = k/n =
[(�+ 1)2 + �2]−1, as � grows. We leave the study of
finite-rate LDPC codes for future works.

In the remainder of this section, we present numerical
calculations of the CI for the LCS code under two noise
models: erasure errors only, and a combination of com-
putational and erasure errors. For the former, we provide
results up to d = 17, whereas for the latter, we are limited
to d = 3 and d = 1. We also present, for the first time, the
exact statistical mechanics mappings for LCS codes under
bit- and phase-flip and depolarizing noise, along with their
direct extensions to include erasure errors. These map-
pings are used to compute the CI exactly in the case of
combined bit- and phase-flip and erasure errors. For depo-
larizing noise, we sample over erasure errors while treating
the computational errors exactly.

A. Erasure errors

In Fig. 13, we show the CI for the LCS code under era-
sure errors. We find that the optimal threshold is located
at eth = 0.5, which saturates the bound imposed by the
no-cloning theorem [91]. The exponent ν ≈ 0.75 does
not match the exponents of 2D or 3D percolation [86],
reflecting the more complex nature of the stabilizers and
logical operators compared to those in 2D and 3D topolog-
ical codes.

B. Computational and erasure errors

Let us now introduce the statistical mechanics map-
pings for the LCS codes. First, we observe that in the
bulk, the stabilizers take the form PX

� = σi,qσj ,qσi,q+1 and
PZ
� = τn,qτm,qτm,q+1, where the indices (i, q) denote the 2D

coordinates on the q-th surface code sheet. In other words,
the two-spin terms within each surface code sheet are now

FIG. 13. Coherent information of lift-connected surface code
under erasure errors. We obtain a threshold of eth = 0.5 and a
critical exponent ν ≈ 0.75, which belongs neither to the 3D nor
the 2D percolation universality class [86].
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Bit and phase flip

Pseudo-threshold Pseudo-threshold

FIG. 14. Pseudo-threshold of surface code (red dots) and lift-
connected surface code (blue dotted-line), as crossing of the
CI between d = 3 and d = 1 (single qubit) for various erasure
probabilities e and computational error probabilities p . Both
codes have very similar pseudo-thresholds under the same error
processes.

lifted to three-spin interactions. The newly added spins
are always at the same position i, but on neighboring sur-
face code sheets. These three-spin terms are depicted in
Fig. 12 for the example of a [[15, 3, 3]] LCS code. The
Hamiltonian is then written as

HLCS =
∑

〈i,j 〉,〈n,m〉
ηx

ij

(
Jx − J1

2

)
σi,qσj ,qσi,q+1

2

+ ηz
nm

(
Jz − J1

2

)
τn,qτm,qτm,q+1

2

+ ηz
nmη

x
ij J1

σi,qσj ,qσi,q+1τn,qτm,qτm,q+1

4
. (73)

Importantly, for the qubits located at the boundaries,
some terms in the Hamiltonian will involve one- and two-
spin interactions; see Appendix C for the exact description
of the [[15, 3, 3]] Hamiltonian. To the best of our knowl-
edge, this family of statistical mechanics models has not
been studied in the literature. Notably, Eq. (73) holds for
any choice of (L, �) and is therefore not limited to our case
study of L = 2�+ 1.

In Fig. 14, we show a phase diagram for finite erasure
and computational error probabilities (bit- and phase-flip
and depolarizing noise), defined by the crossing of the d =
3 and d = 1 CI curves. Remarkably, the pseudo-thresholds
of the LCS code are very close to those of the rotated
surface code studied in Sec. V. Together with the 50%
threshold found for erasures only, we note that the LCS
code, in the code capacity setting, inherits most of the error
correction capabilities of the 2D standard surface code,
despite having a growing number of logical qubits.

VII. CONCLUSIONS

In this work, we have presented a framework for treat-
ing computational and erasure errors on the same footing

in an exact manner. The method is based on the CI of
the mixed-state density matrix. We have shown how to
derive closed expressions for the CI of CSS codes under
erasure and computational errors as families of statistical
mechanics mappings. In general, erasure errors are intro-
duced by removing links at the erasure positions. The CI
shows two distinct contributions: one coming from the
erased logical information, in the form of logical qubits
degraded to logical bits—i.e., able to transmit only clas-
sical information—and lost logical qubits. The second
contribution arises from the interplay between computa-
tional and erasure errors, reflecting the optimal decoding
problem restricted to the degrees of freedom unaffected by
the erasures.

Furthermore, we have successfully applied the proposed
framework to 2D topological toric and color codes and
developed three insights that are particularly worthwhile
to point out: First, when considering erasure errors only,
computing the CI for a single erasure configuration can
be done efficiently (see Appendix A for details). There-
fore, most of the work then amounts to finding an effective
way to sample erasure configurations. The same applies to
any stabilizer QEC code with a constant number of logical
qubits (i.e., the number of encoded logical qubits does not
grow with the number of physical qubits), so we envision
the CI as a practical, rigorous, and scalable tool for com-
puting optimal thresholds of QEC stabilizer codes under
erasure errors.

Second, we have observed that the finite crossings of
the CI we obtain coincide within 2–4 digits of precision
with the values previously reported in the literature as the
optimal threshold. This is compatible with previous obser-
vations in Ref. [35] for the same codes, where in previous
work, however, only computational errors have been con-
sidered. Similarly, the 2D bond percolation [42] and the
diluted RBIM [70] show the same thresholds as the cross-
ings of the CI in the surface code. We therefore argue that
the crossings of the CI in small codes serve as accurate
estimates of optimal thresholds, which is particularly use-
ful when optimal thresholds are not known (as is, e.g.,
the case for 2D color codes with both erasure and com-
putational errors). This claim is further supported by the
recent exact equivalence found between the CI of the noisy
toric code and the topological order parameter of Majorana
fermions [94]. Therefore, the robustness of the CI is related
to the robustness of topological order parameters against
disorder.

Third, we rigorously show how erasure errors modify
the statistical mechanics mappings associated with com-
putational errors. The key insight is that qubit erasures
can be regarded as fully depolarizing channels acting at
known positions. Hence, the mappings derived for com-
putational errors are extended by adding an average over
missing bonds, in addition to the bond disorder pro-
duced by the computational errors. This intuition also
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applies to mappings in the stabilizer configuration pic-
ture [34,77,79]. There, a fully depolarizing channel trans-
lates to an infinite coupling, locking neighboring spins
rigidly together (see Appendix D for details). Similarly,
one can use the CI to establish connections between
families of statistical mechanics models and to validate
existing QEC mappings that lack closed-form expressions
[42,66,73].

We also showcase the generality of the CI approach by
studying optimal thresholds for a LDPC code: the lift-
connected surface code [75]. This code has a growing
number of logical qubits, making it the first code with
this feature to be systematically studied using CI. Under
erasure errors only, we find a 50% optimal threshold and
a critical exponent that, so far, has not been related to
any known percolation transition. Furthermore, we derive
a family of statistical mechanics mappings describing the
optimal decoding problem for this code and identify a 3D-
local model exhibiting chiral spin interactions. An in-depth
study of the statistical physics models arising from this
code, potentially involving larger system sizes, is left for
future work. Finally, we compute the CI numerically and
find pseudo-thresholds under combined computational and
erasure errors that are comparable to those of the standard
surface code. This indicates that the lift-connected surface
code offers high levels of noise protection, despite having
a growing number of logical qubits.

There are several routes to further explore erasure errors
and the CI-based methodology to determine fundamental
thresholds of QEC codes. In the absence of computational
errors, one can now estimate optimal thresholds very reli-
ably, making it feasible to extend this approach beyond 2D
topological codes to higher dimensional codes or LDPC
codes with finite-high rate. In both cases, erasure errors
have not been extensively studied, and the equivalence of
a QEC code graph and associated percolation picture is not
always exact [67–69].

In addition, one could study how the mappings are mod-
ified by coherent and/or correlated errors. A point of great
interest is the exploration of new families of statistical
mechanics models that can be obtained from LDPC codes
with different features (e.g., finite rate), potentially uncov-
ering new physical phenomena arising from exotic QEC
codes. Beyond the QEC perspective, mappings derived
from quantum LDPC codes may also lead to new classes
of ordered states and topological phenomena beyond the
paradigm of Euclidean space [106,107].
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APPENDIX A: METHOD FOR COMPUTING
COHERENT INFORMATION UNDER ERASURE

ERRORS

Given a CSS stabilizer code [[n, k, d]], there are k pairs
of logical operators {Oz

i , Ox
i } which are the generators of

the logical group. Each operator can be interpreted as a
binary vector of size n, where 0 (1) on position j means
empty (occupied) by either X or Z Pauli. Since the code is
CSS we treat X and Z operators independently, although
the same formalism can be applied to non-CSS codes. We
also have parity check matrices H x and H z whose rows
are the stabilizer generators, hence they have dimension
n × (n − k). We define a loss vector rl of dimension n
which is all zeros except on the positions of the erased
qubit. The configuration of qubit erasures is denoted by the
index l = 1, 2, . . . , 2n. In Refs. [44,111], the authors show
an algorithm for determining whether the erasure rl has
support on at least one representative of the logical opera-
tors {Oz

i , Ox
i } based only on H z, H x, and rl. In other words,

this indicates whether the logical operator was measured
by the environment or not. If for the i-th logical qubit one
of the two logical operators is measured then it becomes a
logical bit. If both logical operators are measured then we
call it a lost qubit. Computing the coherent information for
a fixed erasure configuration l means computing how many
logical qubits, logical bits, and lost logical qubits there are.
Another way to interpret the appearance of logical bits
and lost logical qubits is as a reduction in the number of
generators of the logical group. If one or more logical oper-
ators cannot be recovered, then the logical group will have
fewer generators than the original 2k logical generators.
This affects the size of the code space, thereby decreas-
ing the amount of information that can be protected by the
QEC code.

FIG. 15. Rotated surface codes with d = 3 and d = 5. The
code distance goes as d = √

n, and [[n = d2, 1, d]]. Blue (red)
plaquettes correspond Z (X ) stabilizers. Rounded shapes denote
the weight-2 stabilizers, the square are the weight-4 stabilizers in
the bulk. Physical qubits (black dots) are located on the vertices
of the square lattice.

The whole procedure for computing the coherent
information for a fixed error configuration l looks as
follows:

(1) Run the algorithms in Refs. [44,111] and deter-
mine the set of generators of the logical group
Õx and Õz, namely the minimum set of operators
that generates all possible logical operators. Some-
times different generators Ox might not be well-
defined anymore but their product might still be. For
instance Ox

1Ox
2 maybe well-defined but Ox

1 and Ox
2

are not. Therefore, in the worst case, a total of 2k

combinations of X and Z logical operators must be
checked.

(2) The number of remaining logical qubits k′
l is the

number of anti-commuting operators [Õx
i , Õz

i ] 
= 0
with i = 1, .., k′

l. The number of logical bits bl is
equal to the number of unpaired logical operators
Õx and Õz, i.e., that commute with all other log-
ical operators. Hence the number of lost qubits is
c = k − k′

l − bl.
(3) The coherent information for an erasure configura-

tion l is then calculated as Il = k − bl − 2cl.

As pointed out in Ref. [111] computing Il for each of the
2n erasure configurations may not be necessary. First one
has to realize that

I =
n∑

m=0

em(1 − e)n−m
∑

C(l)=m

Il

=
n∑

m=0

em(1 − e)n−mIm, (A1)

where C(l) denotes the number of lost qubits in the era-
sure configuration l. Hence the term Im is the summation
of all Il with the same number of erased qubits m. This fact
considerably simplifies the calculation. First, for m < d,

FIG. 16. d = 3, 5 instances of the 4.8.8 color code. The num-
ber of physical qubits is given by n = (d2 − 1)/2 + d yielding
[[(d2 − 1)/2 + d, 1, d]]. Both X and Z stabilizers are defined
on the plaquettes of the lattice. Physical qubits (black dots) are
placed on the vertices such that each qubit is shared by three
plaquettes (one or two at the boundaries).
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where d is the code distance, we know that Im = (n
m

)
k log 2

because one needs to erase at least d qubits for measur-
ing a logical operator. Second, for m ≥ d, logical operators
are measured in some configurations, however their con-
tribution to Im can be negligible. That is why we can
approximate it by a Monte Carlo average of the following
kind:

Im ≈
Ns∑

i=1

I m
i

Ns
. (A2)

Here I m
i is the CI for a random configuration i of m

erased qubits and Ns is the number of samples. The era-
sure configurations i are randomly sampled, therefore Im
does not depend on the erasure probability e. Let us note
that Eq. (A1) also applies in the presence of computational
errors, then Il picks the contributions of the computational
errors discussed in Sec. II Eq. (7). Random sampling of
error configurations with fixed number of erased qubits
suffices for computing I in the present work, but there
is still room for improvement in approximating Im. For
instance, some type of importance sampling that takes
into account the distribution of Il could help to speed up
convergence.

APPENDIX B: QEC CODES

In this section, we describe in more detail the two
topological codes used in the numerical calculations of
Sec. V. Toric and color codes belong to the family of
topological codes [112]. They store quantum informa-
tion in topologically ordered many-body states. The toric
code [5,66,89] protects k = 2 logical qubits, while 2D
color codes on a torus hold k = 4 logical qubits [90,100].
Both codes require n = 2d2 physical qubits to realize the
corresponding topological code of distance d.

In order to reduce the overhead in physical qubits for
the numerical calculations, we have chosen to work with
the planar version of these codes. As QEC codes, they

share the same features as their counterparts with periodic
boundaries, but with a reduced number of logical qubits
and a milder physical qubit overhead. The rotated sur-
face code [1,99,113] protects only one logical qubit and
requires n = d2 physical qubits. The code distance d is
equal to the linear length of the square lattice (see Fig. 15).
The X and Z stabilizers are located in alternating plaque-
ttes of the lattice. In addition, there are weight-2 stabilizers
on the boundaries. The logical operator ZL (XL) is defined
along the boundary where the weight-2 X (Z) stabilizers
are placed.

Regarding the 2D color code, we focus on the 4.8.8 color
code [114]. This code protects one logical qubit and has a
qubit overhead of n = (d2 − 1)/2 + d, where d is the code
distance and the linear size of the lattice (see the smallest
representatives of the code in Fig. 16). Indeed, the 7-qubit
Steane code [72] is the smallest representative for this and
other types of triangular color codes. Each plaquette of the
4.8.8 tiling is filled with one color, such that each color has
neighboring plaquettes of the other two colors. X and Z
stabilizers are defined on each plaquette, so they have the
same support. The logical operators XL and ZL are defined
on the boundaries of the lattice and they also share the
same support.

APPENDIX C: EXACT STATISTICAL
MECHANICS MODEL FOR [[15,3,3]]
LIFT-CONNECTED SURFACE CODE

In this section, we describe the exact statistical mechan-
ics model for the LCS code with parameters L = 3 and
� = 1. To be concrete, we write down the exact form of the
spin interactions; thus, the model applies to any choice of
px, pz, py , and e [see Eq. (5)]. Moreover, this serves as the
starting point for constructing analogous models for arbi-
trary values of L and �. First, let us note that there are two
σ and two τ spins per surface code sheet (see Fig. 12).
Starting from Eq. (5), we now write down the terms PX

� for
each qubit:

PX
0 = σL,0; PX

1 = σL,1; PX
2 = σL,2; PX

3 = σR,0; PX
4 = σR,1; PX

5 = σR,2; (C1)

PX
6 = σL,0σL,2, PX

7 = σL,0σL,1; PX
8 = σL,1σL,2; PX

9 = σR,0σR,2; PX
10 = σR,0σR,1; PX

11 = σR,1σR,2; (C2)

PX
12 = σL,0σR,0σR,1; PX

13 = σL,1σR,1σR,2; PX
14 = σL,2σR,2σR,0; (C3)

We denote σL(R),q as the spin on the left (right) belonging
to the q-th surface code sheet. We identify three classes of
interaction terms:

(i) Single-spin terms [Eq. (C1)] arising from the upper
qubits on each surface code sheet.

(ii) Two-spin terms [Eq. (C2)] between spins on con-
secutive surface code sheets at the same in-sheet
position, originating from the lower qubits on each
surface code sheet.

(iii) Three-spin terms [Eq. (C3)] arising from the bulk
qubits, i.e., those in the middle of the surface code
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sheet, where the two spins on the q-th sheet are
coupled to the right spin on the (q + 1)-th sheet.

At this point, it is worth noting that the spin interactions
exhibit directionality along the vertical axis; that is, the

interactions depend on vertical position, unlike the more
symmetric interactions found in the Ising model derived
from toric or surface codes.

Now we write down the PZ
� in terms of the τ spins in

Fig. 12:

PZ
0 = τU,0; PZ

1 = τU,1; PZ
2 = τU,2; PZ

6 = τL,0; PZ
7 = τL,1; PZ

8 = τL,2; (C4)

PZ
3 = τU,0τU,2, PZ

4 = τU,0τU,1; PZ
5 = τU,1τU,2; PZ

9 = τL,3τL,5; PZ
10 = τL,3τL,4; PZ

11 = τL,4τL,5; (C5)

PZ
12 = τU,0τL,0τL,1; PZ

13 = τU,1τL,1τL,2; PZ
14 = τU,2τL,2τL,0. (C6)

We define τU(L),q as the spin at the upper (lower) part
of the q-th surface code sheet. The spin model obtained
for the Z stabilizers is simply a 90◦ rotation of the spin
model for the X stabilizers. As a result, there is also direc-
tionality along the horizontal direction. To summarize, the
three types of terms identified, namely the boundary terms
[Eqs. (C1), (C2)] and the bulk terms [Eq. (C3)]; serve as
the building blocks for larger codes. The spin interactions
exhibit a form of “chirality,” as they do not posses mir-
ror symmetry along either spatial direction, even in the
absence of disorder.

APPENDIX D: THE STABILIZER
CONFIGURATION PICTURE

As studied in detail in Refs. [34,77,79], there is a family
of statistical mechanics models that are dual to the models
derived from the procedure shown in Sec. IV. The equiv-
alence stems from the fact that both are representations of
the moments Tr(ρr). Here, we show how this family of
mappings is modified by introducing erasure errors. Let
us start with the mixed state after erasures, as shown in
Sec. IV:

ρ l
RQ = 1

2h+2m

2k−h∏

i=1

(
1 + ORiOLi

2

) n−2m−k∏

i=1

(
1 + g′

i

2

)
.

(D1)

Here, h is the number of lost logical operators (see
Appendix A) and m is the number of erased qubits. The
first product in Eq. (D1) runs over all the remaining logi-
cal operators. g′

i are the well-defined stabilizer generators,
which now contain plaquettes and super-plaquettes, see

Fig. 3. After tracing out the reference system we obtain

ρ l
Q = 1

2k+2m

n−2m−k∏

i=1

(
1 + g′

i

2

)
= 1

2n

∑

{qz ,qx}
qxqz, (D2)

where {qx} and {qz} are all possible combinations of the
well-defined X and Z stabilizer generators. In the toric
code, the plaquettes and super-plaquettes discussed in
Ref. [42] are now stabilizer generators, so qx and qz are
still loop operators on a square lattice (see Fig. 17). For
simplicity, let us consider uncorrelated bit- and phase-flip

FIG. 17. Example of qx (red) and qz (blue) stabilizer operators
in the toric code. In the presence of erasure errors (open circles),
super-plaquettes and super-star surrounding the erased qubits
become stabilizer generators. We note that qx and qz are loop
operators on a square lattice but always avoiding the position of
the erased qubits.
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errors, both with probability p . The same intuition for the
erasure errors applies equally to depolarizing asymmet-
ric channels. We then summarize the action of the error
channel as

NX ,i [qz] = (1 − 2p)qz i ∈ qz

= qz i /∈ qz (D3)

NZ,i [qx] = (1 − 2p)qx i ∈ qx

= qx i /∈ qx. (D4)

After the noise map is applied we obtain the state

ρQ = N (ρ l
Q) = 1

2n

∑

{qz ,qx}
e−μ|qz |−μ|qx |qxqz, (D5)

where μ = − log(1 − 2p) and |qz,x| is the length of the
respective stabilizer operator. In the toric code these are
closed loops whose generators are plaquettes and super-
plaquettes. Now we compute Tr(ρr

Q) and Tr(ρr
RQ), for

simplicity we do it for the 2D toric code but highlighting
the steps that must be modified for studying other QEC
codes and error models.

1. Calculation of Tr(ρr
Q)

After taking the trace we get

Tr
(
ρr

Q

)
= 1

2nr

∑

{q(s)z ,q(s)x }
Tr

(
r∏

s=1

q(s)x q(s)z

)

× e−μ∑s |q(s)z |−μ∑s |q(s)x |. (D6)

The non-vanishing contributions to trace force the con-
straint

∏r
s=1 q(s)x,z = 1, which is convenient to write as

q(r)x,z =
r−1∏

s=1

q(s)x,z. (D7)

Then we are left with

Tr
(
ρr

Q

)
= 1

2n(r−1)

∑

{q(s)z ,q(s)x }
e−μ∑r−1

s=1 |q(s)z |−μ|∏r−1
s=1 q(s)z |

× e−μ∑r−1
s=1 |q(s)x |−μ|∏r−1

s=1 q(s)x |. (D8)

The task is now to sum over all loops q(s)z . We can write
|q(s)z | =∑� |q(s)z,�| with

|q(s)z,�| = 1 − σ
(s)
i σ

(s)
j

2
, (D9)

where i, j denotes the plaquette locations that share the
edge and qubit at �. In general one assigns spin vari-
ables to the positions of the Tanner graph and groups

them according to the physical qubit they share, just like
the PX ,Z

� terms used in Sec. II. To faithfully count the
super-plaquettes one should flip the spins denoting the for-
mer plaquettes together, this will be interpreted later as
an infinite coupling between spins. Moreover, unlike for
the erasure-free case, the loop operators for X and Z sta-
bilizers might not be equivalent to one another because
super-plaquettes and superstars are not necessarily equal
up to a lattice shift and global rotation. For the second term
|∏r−1

s=1 q(s)| we compare the edges on all replicas such that

|∏r−1
s=1 q(s)| =∑<i,j>

(
1 −∏r−1

s=1 σ
(s)
i σ

(s)
j

)
/2. We can then

rewrite everything as

Tr
(
ρr

Q

)
= e−J (n−m)r

2n(r−1)

∑

{σ (s)}
e−JH (r)

X
∑

{σ (s)}
e−JH (r)

Z

= e−J (n−m)r

2n(r−1) ZX (r)ZZ(r) (D10)

with J =μ/2 = − log(
√

1 − 2p), Zα(r)=
∑

{σ (s)} e−JH (r)
α ,

α = X , Z and

H (r) =
∑

<i,j>

(
r−1∑

s=1

σ
(s)
i σ

(s)
j +

r−1∏

s=1

σ
(s)
i σ

(s)
j

)
. (D11)

The above expression represents an r − 1-flavor Ising
model, as described in Ref. [34]. The coupling J ranges
from J = 0 (infinite temperature) for p = 0 to J = ∞
(zero temperature) for p = 1/2. The key difference from
the erasure-free case is that the Hamiltonian excludes
the qubit positions where qubits have been erased (see
Fig. 18). As a result, we can think of the super-plaquettes
as being identified as single classical spins in a lattice
with defects or as two spins locked together in the original
lattice [42].

2. Calculation of S(ρRQ)

We write now the state ρ l
RQ in the stabilizer configura-

tion picture:

ρ l
RQ = 1

2n+k

x
0


z
0, (D12)

with


α0 =
∑

{qα}
qα

kα∏

i=1

(1 + Oα
Ri

Oα
Li
), (D13)

as all possible X or Z well-defined stabilizer operators and
the well-defined logical and reference operators Oα

Ri
Oα

Li
.

Let us note that kx and kz are the number of well-defined
logical X and Z operators, respectively, which need not to
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(a) (b)

FIG. 18. Erasure configuration in the toric code (a) and the corresponding r − 1 flavor Ising model for r = 2 (b). Only the X part of
the statistical mechanics model is shown. Each site with no erasures has a coupling J = − log

√
1 − 2p , while the sites where erasures

have taken place have infinite coupling, effectively locking two neighbouring spins rigidly together.

be equal in the presence of erasures. The noisy mixed state
is then written as

ρRQ = N (ρ l
RQ) = 1

2n+k

z
x. (D14)

Here, we defined


α =
∑

{qα}

∑

dα

e−μ|qαOdα
α |qαOdα

α , (D15)

with Odα
α = Od1

1 Od2
2 · · · Odα

kα as products of logical and ref-
erence operators Oα = Oα

Ri
Oα

Li
, dα is binary vector of

length kα that denotes which logical and reference oper-
ators are included. For instance, for kx = 2 we have dx ∈
{(0, 0), (0, 1), (1, 0), (1, 1)}. Now we study the r-th power
of the state

Tr(ρr
RQ) = 1

2(n+k)r Tr(
r∏

s=1


z(s)
x(s)). (D16)

Similarly to the previous section, the non-vanishing terms
of the trace are those for which the product of operators in
different replicas equals the identity, then we get

Tr(ρr
RQ) = 1

2(n+k)(r−1)

∑

{q(s)α ,d(s)}

× e−μ∑r−1
s=1 |q(s)α Odα(s)

α |−μ|∏r−1
s=1 q(s)α Odα(s)

α |. (D17)

Similarly to the case without logical operators we can take
|q(s)α Odα(s)

α | =∑� |q(s)α,�O
dα(s)
α | and think in terms of spins

located at the center of the plaquettes (or Tanner graph in

general),

|q(s)α,�O
dα(s)
α,� | = 1 − (−1)λ�(s)σ (s)i σ

(s)
j

2
, (D18)

where λ� denotes whether one of the well-defined logical
operators occupies that link. We omit the x, z indices of
the spin variables σ . Thus the Hamiltonian describing this
systems reads

H (r)
dα =

∑

<i,j>

(
r−1∑

s=1

(−1)λ�(s)σ (s)i σ
(s)
j +

r−1∏

s=1

(−1)λ�(s)σ (s)i σ
(s)
j

)
.

(D19)

And the whole expression is now

Tr
(
ρr

RQ

)
= e−J (n−m)r

2(n+k)(r−1)

∑

{σ (s)}

∑

{dX (s)}
e−JH (r)

dX
∑

{σ (s)}

∑

{dZ (s)}
e−JH (r)

dZ

= e−J (n−m)r

2(n+k)(r−1)

∑

{dX (s)}
ZdX (r)

∑

{dZ (s)}
ZdZ (r).

(D20)

We have thereby obtained a family of models with
defects along the lines of the well-defined logical oper-
ators. This is in stark contrast to the error configuration
picture used in the main text, where the defects run over
the support of the logical operators that anti-commute with
all well-defined logical operators. This fact is independent
of the code and error model considered, so it can be directly
translated to depolarizing noise and other QEC codes.

3. Renyi coherent information

Let us recall the Renyi entropies S(r)(ρ) = log[Tr(ρr)]/
(1 − r). The trick shown in Eq. (46) is not useful anymore

040327-28



COHERENT INFORMATION AND ERASURE ERRORS PRX QUANTUM 6, 040327 (2025)

for computing the von Neumann entropy because the r
dependency in the partition functions Zdα (r) is highly non-
trivial. Therefore a straight-forward computation of I is not
possible in the present picture. However we can compute
the Renyi coherent information for r > 1

I (r)l = S(r)(ρQ)− S(r)(ρRQ) = 1
r − 1

log

⎡

⎣
Tr
(
ρr

RQ

)

Tr
(
ρr

Q

)

⎤

⎦ .

(D21)

We can then express the Renyi coherent information in
terms of the statistical mechanics mappings:

I (r)l = 1
r − 1

log
[ ∑

d Zd(r)
2k(r−1)Z(r)

]
(D22)

= −k log 2 + log
[∑

d Zd(r)
Z(r)

]
, (D23)

where d = (dx, dz) encompasses both X and Z. The aver-
age Renyi coherent information I (r) =∑l P(l)I (r)l is then

I (r) = −k log 2 +
〈

log
[∑

d Zd(r)
Z(r)

] 〉
, (D24)

where 〈· · · 〉 denotes erasure average. As expected, the dis-
order average over error chains is absent, however we can
not get rid of the erasure average. Furthermore the era-
sure errors manifest themselves as infinite couplings that
lock neighboring spins rigidly together. We can see this
as fully depolarizing channels, i.e., p = 1/2, producing
J → ∞ on the location of the erasures. Therefore one can
just extend the existing mappings in the stabilizer config-
uration picture by adding fully depolarizing channels with
some probability e. Besides, the contributions of erasure
and computational errors are entangled in the average over
different partition functions. In the absence of computa-
tional errors, p = 0, the Hamiltonians have zero coupling
yielding an infinite temperature state. Hence we get 22k−h

inside the log and recover I (r)l = (k − hl) log 2 for any r.

[1] Daniel A. Lidar and Todd A. Brun, eds. Quantum Error
Correction (Cambridge University Press, Cambridge,
2013).

[2] Barbara M. Terhal, Quantum error correction for quantum
memories, Rev. Mod. Phys. 87, 307 (2015).

[3] Dorit Aharonov and Michael Ben-Or, Fault-tolerant quan-
tum computation with constant error rate, SIAM J. Com-
put. 38, 1207 (2008).

[4] Emanuel Knill, Raymond Laflamme, and Wojciech H.
Zurek, Resilient quantum computation: Error models and

thresholds, Proc. R. Soc. London. Series A: Math. Phys.
Eng. Sci. 454, 365 (1998).

[5] A. Yu. Kitaev, Fault-tolerant quantum computation by
anyons, Ann. Phys. 303, 2 (2003).

[6] P. W. Shor, in Proceedings of 37th Conference on
Foundations of Computer Science (Vermont US, 1996),
p. 56.

[7] Google Quantum AI and Collaborators, Quantum error
correction below the surface code threshold, Nature 638,
920 (2025).

[8] Google Quantum AI, Suppressing quantum errors by scal-
ing a surface code logical qubit, Nature 614, 676 (2023).

[9] Google Quantum AI, Exponential suppression of bit or
phase errors with cyclic error correction, Nature 595, 383
(2021).

[10] Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin
Di Paolo, Elie Genois, Catherine Leroux, Christoph
Hellings, Stefania Lazar, Francois Swiadek, Johannes
Herrmann, Graham J. Norris, Christian Kraglund Ander-
sen, Markus Müller, Alexandre Blais, Christopher Eichler,
and Andreas Wallraff, Realizing repeated quantum error
correction in a distance-three surface code, Nature 605,
669 (2022).

[11] Youwei Zhao et al., Realization of an error-correcting sur-
face code with superconducting qubits, Phys. Rev. Lett.
129, 030501 (2022).

[12] Christian Kraglund Andersen, Ants Remm, Stefania
Lazar, Sebastian Krinner, Nathan Lacroix, Graham J. Nor-
ris, Mihai Gabureac, Christopher Eichler, and Andreas
Wallraff, Repeated quantum error detection in a surface
code, Nat. Phys. 16, 875 (2020).

[13] V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsiout-
sios, S. Ganjam, A. Miano, B. L. Brock, A. Z. Ding,
L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M.
H. Devoret, Real-time quantum error correction beyond
break-even, Nature 616, 50 (2023).

[14] Riddhi S. Gupta, Neereja Sundaresan, Thomas Alexan-
der, Christopher J. Wood, Seth T. Merkel, Michael B.
Healy, Marius Hillenbrand, Tomas Jochym-O’Connor,
James R. Wootton, Theodore J. Yoder, Andrew W. Cross,
Maika Takita, and Benjamin J. Brown, Encoding a magic
state with beyond break-even fidelity, Nature 625, 259
(2024).

[15] Bence Hetényi and James R. Wootton, Creating entangled
logical qubits in the heavy-hex lattice with topological
codes, PRX Quantum 5, 040334 (2024).

[16] Nathan Lacroix et al., Scaling and logic in the color code
on a superconducting quantum processor, Nature 645, 614
(2025).

[17] Lukas Postler, Sascha Heuβen, Ivan Pogorelov, Manuel
Rispler, Thomas Feldker, Michael Meth, Christian D.
Marciniak, Roman Stricker, Martin Ringbauer, Rainer
Blatt, Philipp Schindler, Markus Müller, and Thomas
Monz, Demonstration of fault-tolerant universal quantum
gate operations, Nature 605, 675 (2022).

[18] C. Ryan-Anderson et al., Implementing fault-tolerant
entangling gates on the five-qubit code and the color code,
ArXiv:2208.01863.

[19] M. P. da Silva et al., Demonstration of logical qubits and
repeated error correction with better-than-physical error
rates, ArXiv:2404.02280.

040327-29

https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1137/S0097539799359385
https://doi.org/10.1098/rspa.1998.0166
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1038/s41586-024-08449-y
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-021-03588-y
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1103/PhysRevLett.129.030501
https://doi.org/10.1038/s41567-020-0920-y
https://doi.org/10.1038/s41586-023-05782-6
https://doi.org/10.1038/s41586-023-06846-3
https://doi.org/10.1103/PRXQuantum.5.040334
https://doi.org/10.1038/s41586-025-09061-4
https://doi.org/10.1038/s41586-022-04721-1
https://arxiv.org/abs/2208.01863
https://arxiv.org/abs/2404.02280


COLMENAREZ, KIM, and MÜLLER PRX QUANTUM 6, 040327 (2025)

[20] Noah Berthusen, Joan Dreiling, Cameron Foltz, John
P. Gaebler, Thomas M. Gatterman, Dan Gresh, Nathan
Hewitt, Michael Mills, Steven A. Moses, Brian Neyen-
huis, Peter Siegfried, and David Hayes, Experiments with
the four-dimensional surface code on a quantum charge-
coupled device quantum computer, Phys. Rev. A 110,
062413 (2024).

[21] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A.
Hankin, J. P. Gaebler, D. Francois, A. Chernoguzov, D.
Lucchetti, N. C. Brown, T. M. Gatterman, S. K. Halit, K.
Gilmore, J. A. Gerber, B. Neyenhuis, D. Hayes, and R. P.
Stutz, Realization of real-time fault-tolerant quantum error
correction, Phys. Rev. X 11, 041058 (2021).

[22] C. Ryan-Anderson et al., High-fidelity and fault-tolerant
teleportation of a logical qubit using transversal gates
and lattice surgery on a trapped-ion quantum computer,
ArXiv:2404.16728.

[23] Ivan Pogorelov, Friederike Butt, Lukas Postler, Chris-
tian D. Marciniak, Philipp Schindler, Markus Müller, and
Thomas Monz, Experimental fault-tolerant code switch-
ing, Nat. Phys. 21, 298 (2025).

[24] Lukas Postler, Friederike Butt, Ivan Pogorelov, Chris-
tian D. Marciniak, Sascha Heußen, Rainer Blatt, Philipp
Schindler, Manuel Rispler, Markus Müller, and Thomas
Monz, Demonstration of fault-tolerant Steane quantum
error correction, PRX Quantum 5, 030326 (2024).

[25] Shilin Huang, Kenneth R. Brown, and Marko Cetina,
Comparing Shor and Steane error correction using the
Bacon-Shor code, Sci. Adv. 10, eadp2008 (2024).

[26] Dolev Bluvstein et al., Logical quantum processor based
on reconfigurable atom arrays, Nature 626, 58 (2024).

[27] Matt J. Bedalov et al., Fault-tolerant operation and
materials science with neutral atom logical qubits,
ArXiv:2412.07670.

[28] Ben W. Reichardt et al., Logical computation demon-
strated with a neutral atom quantum processor, ArXiv:
2411.11822.

[29] Pedro Sales Rodriguez et al., Experimental demonstration
of logical magic state distillation, Nature 645, 620 (2025).

[30] Yifan Hong, Elijah Durso-Sabina, David Hayes, and
Andrew Lucas, Entangling four logical qubits beyond
break-even in a nonlocal code, Phys. Rev. Lett. 133,
180601 (2024).

[31] Pavithran Iyer and David Poulin, Hardness of decoding
quantum stabilizer codes, IEEE Trans. Inf. Theory 61,
5209 (2015).

[32] Patricio Fuentes, Josu Etxezarreta Martinez, Pedro M.
Crespo, and Javier Garcia-Frías, Degeneracy and its
impact on the decoding of sparse quantum codes, IEEE
Access 9, 89093 (2021).

[33] Benjamin Schumacher and M. A. Nielsen, Quantum data
processing and error correction, Phys. Rev. A 54, 2629
(1996).

[34] Ruihua Fan, Yimu Bao, Ehud Altman, and Ashvin Vish-
wanath, Diagnostics of mixed-state topological order and
breakdown of quantum memory, PRX Quantum 5, 020343
(2024).

[35] Luis Colmenarez, Ze-Min Huang, Sebastian Diehl, and
Markus Müller, Accurate optimal quantum error correc-
tion thresholds from coherent information, Phys. Rev. Res.
6, L042014 (2024).

[36] Yue Wu, Shimon Kolkowitz, Shruti Puri, and Jeff D.
Thompson, Erasure conversion for fault-tolerant quantum
computing in alkaline earth Rydberg atom arrays, Nat.
Commun. 13, 4657 (2022).

[37] Mingyu Kang, Wesley C. Campbell, and Kenneth R.
Brown, Quantum error correction with metastable states
of trapped ions using erasure conversion, PRX Quantum
4, 020358 (2023).

[38] Aleksander Kubica, Arbel Haim, Yotam Vaknin, Harry
Levine, Fernando Brandão, and Alex Retzker, Erasure
qubits: Overcoming the T1 limit in superconducting cir-
cuits, Phys. Rev. X 13, 041022 (2023).

[39] J. Vala, K. B. Whaley, and D. S. Weiss, Quantum error
correction of a qubit loss in an addressable atomic system,
Phys. Rev. A 72, 052318 (2005).

[40] Keisuke Fujii and Yuuki Tokunaga, Error and loss tol-
erances of surface codes with general lattice structures,
Phys. Rev. A 86, 020303 (2012).

[41] Sam Morley-Short, Mercedes Gimeno-Segovia, Terry
Rudolph, and Hugo Cable, Loss-tolerant teleportation on
large stabilizer states, Quantum Sci. Technol. 4, 025014
(2019).

[42] Thomas M. Stace, Sean D. Barrett, and Andrew C.
Doherty, Thresholds for topological codes in the presence
of loss, Phys. Rev. Lett. 102, 200501 (2009).

[43] Davide Vodola, David Amaro, Miguel Angel Martin-
Delgado, and Markus Müller, Twins percolation for qubit
losses in topological color codes, Phys. Rev. Lett. 121,
060501 (2018).

[44] David Amaro, Jemma Bennett, Davide Vodola, and
Markus Müller, Analytical percolation theory for topo-
logical color codes under qubit loss, Phys. Rev. A 101,
032317 (2020).

[45] Boris Mihailov Varbanov, Francesco Battistel, Brian
Michael Tarasinski, Viacheslav Petrovych Ostroukh,
Thomas Eugene O’Brien, Leonardo DiCarlo, and Barbara
Maria Terhal, Leakage detection for a transmon-based
surface code, Npj Quantum Inf. 6, 1 (2020).

[46] Kevin C. Miao et al., Overcoming leakage in quantum
error correction, Nat. Phys. 19, 1780 (2023).

[47] M. Grassl, Th. Beth, and T. Pellizzari, Codes for
the quantum erasure channel, Phys. Rev. A 56, 33
(1997).

[48] James M. Auger, Hussain Anwar, Mercedes Gimeno-
Segovia, Thomas M. Stace, and Dan E. Browne, Fault-
tolerance thresholds for the surface code with fabrication
errors, Phys. Rev. A 96, 042316 (2017).

[49] Nicolas Delfosse and Naomi H. Nickerson, Almost-linear
time decoding algorithm for topological codes, Quantum
5, 595 (2021).

[50] Hayato Goto and Hironori Uchikawa, Soft-decision
decoder for quantum erasure and probabilistic-gate error
models, Phys. Rev. A 89, 022322 (2014).

[51] Campbell McLauchlan, György P. Gehér, and Alexan-
dra E. Moylett, Accommodating fabrication defects on
Floquet codes with minimal hardware requirements,
Quantum 8, 1562 (2024).

[52] Shota Nagayama, Austin G. Fowler, Dominic Horsman,
Simon J. Devitt, and Rodney Van Meter, Surface code
error correction on a defective lattice, New J. Phys. 19,
023050 (2017).

040327-30

https://doi.org/10.1103/PhysRevA.110.062413
https://doi.org/10.1103/PhysRevX.11.041058
https://arxiv.org/abs/2404.16728
https://doi.org/10.1038/s41567-024-02727-2
https://doi.org/10.1103/PRXQuantum.5.030326
https://doi.org/10.1126/sciadv.adp2008
https://doi.org/10.1038/s41586-023-06927-3
https://arxiv.org/abs/2412.07670
https://arxiv.org/abs/2411.11822
https://doi.org/10.1038/s41586-025-09367-3
https://doi.org/10.1103/PhysRevLett.133.180601
https://doi.org/10.1109/TIT.2015.2422294
https://doi.org/10.1109/ACCESS.2021.3089829
https://doi.org/10.1103/PhysRevA.54.2629
https://doi.org/10.1103/PRXQuantum.5.020343
https://doi.org/10.1103/PhysRevResearch.6.L042014
https://doi.org/10.1038/s41467-022-32094-6
https://doi.org/10.1103/PRXQuantum.4.020358
https://doi.org/10.1103/PhysRevX.13.041022
https://doi.org/10.1103/PhysRevA.72.052318
https://doi.org/10.1103/PhysRevA.86.020303
https://doi.org/10.1088/2058-9565/aaf6c4
https://doi.org/10.1103/PhysRevLett.102.200501
https://doi.org/10.1103/PhysRevLett.121.060501
https://doi.org/10.1103/PhysRevA.101.032317
https://doi.org/10.1038/s41534-020-00330-w
https://doi.org/10.1038/s41567-023-02226-w
https://doi.org/10.1103/PhysRevA.56.33
https://doi.org/10.1103/PhysRevA.96.042316
https://doi.org/10.22331/q-2021-12-02-595
https://doi.org/10.1103/PhysRevA.89.022322
https://doi.org/10.22331/q-2024-12-12-1562
https://doi.org/10.1088/1367-2630/aa5918


COHERENT INFORMATION AND ERASURE ERRORS PRX QUANTUM 6, 040327 (2025)

[53] Adam Siegel, Armands Strikis, Thomas Flatters, and
Simon Benjamin, Adaptive surface code for quantum error
correction in the presence of temporary or permanent
defects, Quantum 7, 1065 (2023).

[54] Matthew Steinberg, Junyu Fan, Robert J. Harris, David
Elkouss, Sebastian Feld, and Alexander Jahn, Far from
perfect: Quantum error correction with (hyperinvariant)
Evenbly codes, Quantum 9, 1826 (2025).

[55] Davide Vodola, Manuel Rispler, Seyong Kim, and Markus
Müller, Fundamental thresholds of realistic quantum error
correction circuits from classical spin models, Quantum 6,
618 (2022).

[56] Roman Stricker, Davide Vodola, Alexander Erhard,
Lukas Postler, Michael Meth, Martin Ringbauer, Philipp
Schindler, Thomas Monz, Markus Müller, and Rainer
Blatt, Experimental deterministic correction of qubit loss,
Nature 585, 207 (2020).

[57] Nicolas Delfosse and Gilles Zémor, Linear-time max-
imum likelihood decoding of surface codes over the
quantum erasure channel, Phys. Rev. Res. 2, 033042
(2020).

[58] Sergey Bravyi, Martin Suchara, and Alexander Vargo,
Efficient algorithms for maximum likelihood decod-
ing in the surface code, Phys. Rev. A 90, 032326
(2014).

[59] Christopher T. Chubb, General tensor network decoding
of 2D Pauli codes, ArXiv:2101.04125.

[60] Raymond Laflamme, Cesar Miquel, Juan Pablo Paz, and
Wojciech Hubert Zurek, Perfect quantum error correction
code, Phys. Rev. Lett. 77, 198 (1996).

[61] Kaavya Sahay, Junlan Jin, Jahan Claes, Jeff D. Thompson,
and Shruti Puri, High-threshold codes for neutral-atom
qubits with biased erasure errors, Phys. Rev. X 13, 041013
(2023).

[62] A. Quinn, G. J. Gregory, I. D. Moore, S. Brudney, J. Met-
zner, E. R. Ritchie, J. O’Reilly, D. J. Wineland, and D.
T. C. Allcock, High-fidelity entanglement of metastable
trapped-ion qubits with integrated erasure conversion,
ArXiv:2411.12727.

[63] Fernando Pastawski, and Beni Yoshida, Fault-tolerant log-
ical gates in quantum error-correcting codes, Phys. Rev. A
91, 012305 (2015).

[64] Fernando Pastawski, Beni Yoshida, Daniel Harlow,
and John Preskill, Holographic quantum error-correcting
codes: toy models for the bulk/boundary correspondence,
J. High Energy Phys. 2015, 149 (2015).

[65] Ilya Dumer, Alexey A. Kovalev, and Leonid P. Pryadko,
Thresholds for correcting errors, erasures, and faulty syn-
drome measurements in degenerate quantum codes, Phys.
Rev. Lett. 115, 050502 (2015).

[66] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John
Preskill, Topological quantum memory, J. Math. Phys. 43,
4452 (2002).

[67] Nicolas Delfosse and Gilles Zémor, Upper bounds on
the rate of low density stabilizer codes for the quan-
tum erasure channel, Quantum Inf. Comput. 13, 793
(2013).

[68] Alexey A. Kovalev and Leonid P. Pryadko, Fault tolerance
of quantum low-density parity check codes with sublinear
distance scaling, Phys. Rev. A 87, 020304 (2013).

[69] Michael Woolls and Leonid P. Pryadko, Homology-
changing percolation transitions on finite graphs, J. Math.
Phys. 63, 023301 (2022).

[70] Masayuki Ohzeki, Error threshold estimates for surface
code with loss of qubits, Phys. Rev. A 85, 060301 (2012).

[71] A. R. Calderbank, and Peter W. Shor, Good quantum
error-correcting codes exist, Phys. Rev. A 54, 1098
(1996).

[72] Andrew Steane, Multiple-particle interference and quan-
tum error correction, Proc. R. Soc. London. Series A:
Math. Phys. Eng. Sci. 452, 2551 (1997).

[73] Thomas M. Stace and Sean D. Barrett, Error correction
and degeneracy in surface codes suffering loss, Phys. Rev.
A 81, 022317 (2010).

[74] Christopher T. Chubb and Steven T. Flammia, Statisti-
cal mechanical models for quantum codes with correlated
noise, Annales de l’Institut Henri Poincaré D 8, 269
(2021).

[75] Josias Old, Manuel Rispler, and Markus Müller, Lift-
connected surface codes, Quantum Science Technol. 9,
045012 (2024).

[76] Zijian Wang, Zhengzhi Wu, and Zhong Wang, Intrinsic
mixed-state topological order, PRX Quantum 6, 010314
(2025).

[77] Jacob Hauser, Yimu Bao, Shengqi Sang, Ali Lavasani,
Utkarsh Agrawal, and Matthew P. A. Fisher, Infor-
mation dynamics in decohered quantum memory with
repeated syndrome measurements: A dual approach,
ArXiv:2407.07882.

[78] Kaixiang Su, Zhou Yang, and Chao-Ming Jian, Tapestry
of dualities in decohered quantum error correction codes,
Phys. Rev. B 110, 085158 (2024).

[79] Anasuya Lyons, Understanding stabilizer codes under
local decoherence through a general statistical mechanics
mapping, ArXiv:2403.03955.

[80] Yuanchen Zhao and Dong E. Liu, Extracting error thresh-
olds through the framework of approximate quantum error
correction condition, Phys. Rev. Res. 6, 043258 (2024).

[81] Jong Yeon Lee, Chao-Ming Jian, and Cenke Xu, Quantum
criticality under decoherence or weak measurement, PRX
Quantum 4, 030317 (2023).

[82] Yimu Bao, Ruihua Fan, Ashvin Vishwanath, and Ehud
Altman, Mixed-state topological order and the errorfield
double formulation of decoherence-induced transitions,
ArXiv:2301.05687.

[83] Shengqi Sang and Timothy H. Hsieh, Stability of mixed-
state quantum phases via finite Markov length, Phys. Rev.
Lett. 134, 070403 (2025).

[84] Finn Eckstein, Bo Han, Simon Trebst, and Guo-Yi Zhu,
Robust teleportation of a surface code and cascade of
topological quantum phase transitions, PRX Quantum 5,
040313 (2024).

[85] H. Bombin, Ruben S. Andrist, Masayuki Ohzeki, Hel-
mut G. Katzgraber, and M. A. Martin-Delgado, Strong
resilience of topological codes to depolarization, Phys.
Rev. X 2, 021004 (2012).

[86] Dietrich Stauffer and Amnon Aharony, Introduction to
Percolation Theory (Taylor & Francis, London, 1992).

[87] Daniel Gottesman, Stabilizer codes and quantum error
correction, ArXiv:quant-ph/9705052.

040327-31

https://doi.org/10.22331/q-2023-07-25-1065
https://doi.org/10.22331/q-2025-08-08-1826
https://doi.org/10.22331/q-2022-01-05-618
https://doi.org/10.1038/s41586-020-2667-0
https://doi.org/10.1103/PhysRevResearch.2.033042
https://doi.org/10.1103/PhysRevA.90.032326
https://arxiv.org/abs/2101.04125
https://doi.org/10.1103/PhysRevLett.77.198
https://doi.org/10.1103/PhysRevX.13.041013
https://arxiv.org/abs/2411.12727
https://doi.org/10.1103/PhysRevA.91.012305
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1103/PhysRevLett.115.050502
https://doi.org/10.1063/1.1499754
https://doi.org/10.5555/2535680.2535684
https://doi.org/10.1103/PhysRevA.87.020304
https://doi.org/10.1063/5.0036418
https://doi.org/10.1103/PhysRevA.85.060301
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1103/PhysRevA.81.022317
https://doi.org/10.4171/aihpd/105
https://doi.org/10.1088/2058-9565/ad5eb6
https://doi.org/10.1103/PRXQuantum.6.010314
https://arxiv.org/abs/2407.07882
https://doi.org/10.1103/PhysRevB.110.085158
https://arxiv.org/abs/2403.03955
https://doi.org/10.1103/PhysRevResearch.6.043258
https://doi.org/10.1103/PRXQuantum.4.030317
https://arxiv.org/abs/2301.05687
https://doi.org/10.1103/PhysRevLett.134.070403
https://doi.org/10.1103/PRXQuantum.5.040313
https://doi.org/10.1103/PhysRevX.2.021004
https://arxiv.org/abs/quant-ph/9705052


COLMENAREZ, KIM, and MÜLLER PRX QUANTUM 6, 040327 (2025)

[88] Alexei Kitaev, Anyons in an exactly solved model
and beyond, Ann. Phys. January Special Issue 321, 2
(2006).

[89] A. Yu Kitaev, Quantum computations: Algorithms and
error correction, Russ. Math. Surv. 52, 1191 (1997).

[90] H. Bombin and M. A. Martin-Delgado, Topological com-
putation without braiding, Phys. Rev. Lett. 98, 160502
(2007).

[91] Charles H. Bennett, David P. DiVincenzo, and John A.
Smolin, Capacities of quantum erasure channels, Phys.
Rev. Lett. 78, 3217 (1997).

[92] Seth Lloyd, Capacity of the noisy quantum channel, Phys.
Rev. A 55, 1613 (1997).

[93] Michael A. Nielsen and Isaac L. Chuang, Quantum Com-
putation and Quantum Information: 10th Anniversary
Edition (Cambridge University Press, Cambridge UK,
2010).

[94] Ze-Min Huang, Luis Colmenarez, Markus Müller, and
Sebastian Diehl, Coherent information as a mixed-state
topological order parameter of fermions, Phys. Rev. Res.
7, 043009 (2025).

[95] Nikolas P. Breuckmann and Jens Niklas Eberhardt, Quan-
tum low-density parity-check codes, PRX Quantum 2,
040101 (2021).

[96] Benedikt Placke and Nikolas P. Breuckmann, Random-
bond Ising model and its dual in hyperbolic spaces, Phys.
Rev. E 107, 024125 (2023).

[97] Yi Jiang, Ilya Dumer, Alexey A. Kovalev, and Leonid P.
Pryadko, Duality and free energy analyticity bounds for
few-body Ising models with extensive homology rank, J.
Math. Phys. 60, 083302 (2019).

[98] Chenyang Wang, Jim Harrington, and John Preskill,
Confinement-Higgs transition in a disordered gauge the-
ory and the accuracy threshold for quantum memory, Ann.
Phys. 303, 31 (2003).

[99] Yu Tomita and Krysta M. Svore, Low-distance surface
codes under realistic quantum noise, Phys. Rev. A 90,
062320 (2014).

[100] H. Bombin and M. A. Martin-Delgado, Topologi-
cal quantum distillation, Phys. Rev. Lett. 97, 180501
(2006).

[101] Yoshihito Kuno, Takahiro Orito, and Ikuo Ichinose, Intrin-
sic mixed-state topological order in a stabilizer system
under stochastic decoherence: Strong-to-weak sponta-
neous symmetry breaking from a percolation point of
view, Phys. Rev. B 111, 064111 (2025).

[102] Crossings are computed by finding the root of the inter-
polated function y = Id+2 − Id. The sub-index refers to
the code distance. The root finder routine used was
scipy.optimize.brent, which delivers close-to machine pre-
cision roots. Error bars are estimated by the resolution in
error rate indicated in the main text and prior to interpo-
lation. It should be noted that this is likely overestimating
the interpolation error in finding the crossing.

[103] Helmut G. Katzgraber, H. Bombin, and M. A. Martin-
Delgado, Error threshold for color codes and random
three-body Ising models, Phys. Rev. Lett. 103, 090501
(2009).

[104] Pavel Panteleev and Gleb Kalachev, Degenerate quan-
tum LDPC codes with good finite length performance,
Quantum 5, 585 (2021).

[105] Pavel Panteleev and Gleb Kalachev, Quantum LDPC
codes with almost linear minimum distance, IEEE Trans.
Inf. Theory 68, 213 (2022).

[106] Benedikt Placke, Tibor Rakovszky, Nikolas P. Breuck-
mann, and Vedika Khemani, Topological quantum
spin glass order and its realization in qLDPC codes,
ArXiv:2412.13248.

[107] Wojciech De Roeck, Vedika Khemani, Yaodong Li,
Nicholas O’Dea, and Tibor Rakovszky, Low-density
parity-check stabilizer codes as gapped quantum p: Sta-
bility under graph-local perturbations, PRX Quantum 6,
030330 (2025).

[108] Joschka Roffe, LDPC: Python tools for low density parity
check codes, https://pypi.org/project/ldpc/ (2022).

[109] Charles R. Harris et al., Array programming with NumPy,
Nature 585, 357 (2020).

[110] Pauli Virtanen et al., SciPy 1.0: Fundamental algorithms
for scientific computing in Python, Nat. Methods 17, 261
(2020).

[111] Robert J. Harris, Nathan A. McMahon, Gavin K. Bren-
nen, and Thomas M. Stace, Calderbank-Shor-Steane holo-
graphic quantum error-correcting codes, Phys. Rev. A 98,
052301 (2018).

[112] H. Bombin, An introduction to topological quantum
codes, ArXiv:1311.0277.

[113] H. Bombin and M. A. Martin-Delgado, Optimal resources
for topological two-dimensional stabilizer codes: Compar-
ative study, Phys. Rev. A 76, 012305 (2007).

[114] Andrew J. Landahl, Jonas T. Anderson, and Patrick R.
Rice, Fault-tolerant quantum computing with color codes,
ArXiv:1108.5738.

040327-32

https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1103/PhysRevLett.78.3217
https://doi.org/10.1103/PhysRevA.55.1613
https://doi.org/10.1103/fx56-8nvy
https://doi.org/10.1103/PRXQuantum.2.040101
https://doi.org/10.1103/PhysRevE.107.024125
https://doi.org/10.1063/1.5039735
https://doi.org/10.1016/S0003-4916(02)00019-2
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevB.111.064111
https://doi.org/10.1103/PhysRevLett.103.090501
https://doi.org/10.22331/q-2021-11-22-585
https://doi.org/10.1109/TIT.2021.3119384
https://arxiv.org/abs/2412.13248
https://doi.org/10.1103/7x71-8j7k
https://pypi.org/project/ldpc/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1103/PhysRevA.98.052301
https://arxiv.org/abs/1311.0277
https://doi.org/10.1103/PhysRevA.76.012305
https://arxiv.org/abs/1108.5738

	I.. INTRODUCTION
	II.. SUMMARY OF MAIN RESULTS
	A.. Coherent information and known erasure positions
	B.. Coherent information mapping of CSS codes under depolarizing noise
	C.. Coherent information mapping of CSS codes under depolarizing and erasure errors
	D.. 2D toric and color code under erasure and computational errors
	1.. Mapping the optimal threshold problem to statistical mechanics models
	2.. Optimal thresholds from numerical calculation of CI

	E.. Lift-connected surface code

	III.. BACKGROUND
	A.. Stabilizer codes
	B.. Error channels
	1.. Erasure channel
	2.. Computational errors

	C.. Coherent information of QEC codes

	IV.. RESULTS
	A.. Coherent information under erasure errors
	B.. Coherent information of CSS codes under computational errors
	1.. Calculation of S(RQ)
	2.. Calculation of S(Q)
	3.. Coherent information for generic Pauli noise

	C.. Coherent information of CSS codes under computational and erasure errors
	1.. Calculation of S(RQ)
	2.. Calculation of S(Q)
	3.. Coherent information for Pauli noise and erasure errors


	V.. 2D TOPOLOGICAL CODES
	A.. Erasure errors
	B.. Computational and erasure errors

	VI.. LIFT-CONNECTED SURFACE CODE
	A.. Erasure errors
	B.. Computational and erasure errors

	VII.. CONCLUSIONS
	. ACKNOWLEDGMENTS
	. DATA AVAILABILITY
	. APPENDIX A: METHOD FOR COMPUTING COHERENT INFORMATION UNDER ERASURE ERRORS
	. APPENDIX B: QEC CODES
	. APPENDIX C: EXACT STATISTICAL MECHANICS MODEL FOR [[15,3,3]] LIFT-CONNECTED SURFACE CODE
	. APPENDIX D: THE STABILIZER CONFIGURATION PICTURE
	1.. Calculation of Tr(rQ)
	2.. Calculation of S(RQ)
	3.. Renyi coherent information

	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


