001047360 001__ 1047360
001047360 005__ 20251127153434.0
001047360 0247_ $$2doi$$a10.1109/HPEC67600.2025.11196695
001047360 037__ $$aFZJ-2025-04254
001047360 1001_ $$0P:(DE-HGF)0$$aLattanzio, Emily$$b0$$eCorresponding author
001047360 1112_ $$a2025 IEEE High Performance Extreme Computing Conference (HPEC)$$cWakefield$$d2025-09-15 - 2025-09-19$$wMA
001047360 245__ $$aPerformance Analysis of Inline Compression in pySDC
001047360 260__ $$bIEEE$$c2025
001047360 29510 $$a2025 IEEE High Performance Extreme Computing Conference (HPEC) : [Proceedings] - IEEE, 2025. - ISBN 979-8-3315-7844-2 - doi:10.1109/HPEC67600.2025.11196695
001047360 300__ $$a1-8
001047360 3367_ $$2ORCID$$aCONFERENCE_PAPER
001047360 3367_ $$033$$2EndNote$$aConference Paper
001047360 3367_ $$2BibTeX$$aINPROCEEDINGS
001047360 3367_ $$2DRIVER$$aconferenceObject
001047360 3367_ $$2DataCite$$aOutput Types/Conference Paper
001047360 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1764253743_10231
001047360 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001047360 520__ $$aThe volume of data required for High Performance Computing (HPC) jobs is growing faster than the memory storage available to store the required data, leading to performance bottlenecks. Hence the need for inline data compression, which reduces the amount of allocated memory needed by storing all data in its compressed format and decompressing/recompressing single variables as needed. We apply inline compression to the HPC application pySDC, a framework for parallel-in-time integration of partial differential equations. We introduce a new version of pySDC that has a compression manager to add inline compression functionality, along with a software cache that stores the decompressed state of the most frequently used variables. We use the ZFP lossy compressor to test our model with varying software cache sizes. Results show that having no cache has the best compression ratio (CR) at size 5.8, but having a cache size of 16 reduces total execution time by 2.6× while also slightly improving the memory footprint with a CR of 1.5. Our framework overall provides user versatility in the trade-off between execution time and memory savings.
001047360 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001047360 536__ $$0G:(DE-Juel-1)RG-RSE$$aRGRSE - RG Research Software Engineering for HPC (RG RSE) (RG-RSE)$$cRG-RSE$$x1
001047360 588__ $$aDataset connected to CrossRef Conference
001047360 7001_ $$0P:(DE-HGF)0$$aRanjan, Sansriti$$b1
001047360 7001_ $$0P:(DE-HGF)0$$aUnderwood, Robert$$b2
001047360 7001_ $$0P:(DE-Juel1)190575$$aBaumann, Thomas$$b3$$ufzj
001047360 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b4$$ufzj
001047360 7001_ $$0P:(DE-HGF)0$$aCalhoun, Jon C.$$b5
001047360 773__ $$a10.1109/HPEC67600.2025.11196695
001047360 8564_ $$uhttps://doi.org/10.1109/HPEC67600.2025.11196695
001047360 8564_ $$uhttps://juser.fz-juelich.de/record/1047360/files/Performance_Analysis_of_Inline_Compression_in_pySDC.pdf$$yRestricted
001047360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190575$$aForschungszentrum Jülich$$b3$$kFZJ
001047360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b4$$kFZJ
001047360 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001047360 9141_ $$y2025
001047360 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001047360 980__ $$acontrib
001047360 980__ $$aEDITORS
001047360 980__ $$aVDBINPRINT
001047360 980__ $$acontb
001047360 980__ $$aI:(DE-Juel1)JSC-20090406
001047360 980__ $$aUNRESTRICTED