001047361 001__ 1047361
001047361 005__ 20251104202046.0
001047361 037__ $$aFZJ-2025-04255
001047361 041__ $$aEnglish
001047361 1001_ $$0P:(DE-Juel1)130633$$aFaley, Michael$$b0$$eCorresponding author$$ufzj
001047361 1112_ $$aThe 17th European Conference on Applied Superconductivity$$cPorto$$d2025-09-21 - 2025-09-26$$gEuCAS’2025$$wPortugal
001047361 245__ $$aMicrostructural analysis of corrosion inhibition in sub-100nm-scale Josephson circuits
001047361 260__ $$c2025
001047361 3367_ $$033$$2EndNote$$aConference Paper
001047361 3367_ $$2DataCite$$aOther
001047361 3367_ $$2BibTeX$$aINPROCEEDINGS
001047361 3367_ $$2DRIVER$$aconferenceObject
001047361 3367_ $$2ORCID$$aLECTURE_SPEECH
001047361 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1762264819_25180$$xAfter Call
001047361 520__ $$aWe have studied sub-100nm-scale nanobridge Josephson junctions (nJJs) and nJJ-based circuits using microstructural analysis and measurements of electron transport properties to reveal the possible origins of a spread in superconducting parameters (Tc, Ic, etc.) and long-term stability. The structures were prepared by dc magnetron sputtering from Nb, Ti and TiN targets, with electron beam exposure of HSQ resist and reactive ion etching in pure SF6 gas. Microstructural characterization was performed using aberration-corrected scanning transmission electron microscopy imaging and elemental mapping using energy-dispersive X-ray spectroscopy (FEI Titan G2 80-200 ChemiSTEM). The distributions of elements in nanostructures based on Ti-Nb-Ti heterostructures and TiN films were compared. Oxygen-free TiN nJJs, which have been reported previously [1, 2] are of interest for the realization of corrosion-resistant superconducting circuits, including qubits with operating temperatures down to 10 mK. Ti-Nb-Ti heterostructures, including nanoSQUIDs described in a recent paper [3], contain oxygen that has been chemisorbed by the Ti layers and are intended primarily for operation at 4.2 K. Superconducting through-silicon vias (TSVs) between circuits on opposite sides of a wafer will also be realized by using direct writing of superconducting current leads with focused-ion-beam-induced deposition and sputter deposition of superconducting films. Particular emphasis will be paid to the inhibition of oxygenation and corrosion on the nanometer scale by using new materials and methods, which promise to bring superconducting chip manufacture closer to circular economy objectives. Our work helps to realize the large-scale integration of long-term-stable superconducting circuits that include nanoSQUIDs, qubits and classical superconducting digital circuits, such as Single Flux Quantum (SFQ) based circuits and the Josephson digital phase detector (JDPD) described in ref. [4].References1. M. I. Faley, Y. Liu and R. E. Dunin-Borkowski, Nanomaterials 11, 466 (2021).2. M. I. Faley, H. Fiadziushkin, B. Frohn, P. Schüffelgen and R. E. Dunin-Borkowski, Supercond. Sci. Technol. 35, 065001 (2022).3. M. I. Faley, J. V. Vas, P.-H. Lu and R. E. Dunin-Borkowski, IEEE Transactions on Appl. Supercond. 35, 1600105 (2025).4. L. Di Palma, A. Miano, P. Mastrovito, D. Massarotti, M. Arzeo, G. P. Pepe, F. Tafuri and O. Mukhanov, Phys. Rev. Applied 19, 064025 (2023).
001047361 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001047361 536__ $$0G:(EU-Grant)101058414$$aReMade-at-ARI - RECYCLABLE MATERIALS DEVELOPMENT at ANALYTICAL RESEARCH INFRASTRUCTURES (101058414)$$c101058414$$fHORIZON-INFRA-2021-SERV-01$$x1
001047361 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001047361 7001_ $$0P:(DE-HGF)0$$aArzeo, M.$$b1
001047361 7001_ $$0P:(DE-Juel1)172928$$aDenneulin, Thibaud$$b2$$ufzj
001047361 7001_ $$0P:(DE-Juel1)144926$$aKovacs, Andras$$b3$$ufzj
001047361 7001_ $$0P:(DE-Juel1)201578$$aUmmethala, Govind$$b4$$ufzj
001047361 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir Hossein$$b5$$ufzj
001047361 7001_ $$0P:(DE-HGF)0$$aMukhanov, O.$$b6
001047361 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b7$$ufzj
001047361 8564_ $$uhttps://eucas2025.esas.org/live-programme/
001047361 909CO $$ooai:juser.fz-juelich.de:1047361$$popenaire$$pVDB$$pec_fundedresources
001047361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
001047361 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a SEEQC, Naples, Italy$$b1
001047361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172928$$aForschungszentrum Jülich$$b2$$kFZJ
001047361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b3$$kFZJ
001047361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201578$$aForschungszentrum Jülich$$b4$$kFZJ
001047361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b5$$kFZJ
001047361 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a SEEQC, Naples, Italy$$b6
001047361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
001047361 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001047361 9141_ $$y2025
001047361 920__ $$lyes
001047361 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001047361 980__ $$aconf
001047361 980__ $$aVDB
001047361 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001047361 980__ $$aUNRESTRICTED