001     1047371
005     20251124202415.0
024 7 _ |a 10.1109/JSTARS.2025.3624046
|2 doi
024 7 _ |a 1939-1404
|2 ISSN
024 7 _ |a 2151-1535
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04261
|2 datacite_doi
037 _ _ |a FZJ-2025-04261
082 _ _ |a 520
100 1 _ |a Adriko, Kennedy
|0 P:(DE-Juel1)203513
|b 0
|e Corresponding author
|u fzj
245 _ _ |a From MODIS to Sentinel-2: A Regional Comparative Analysis of Crop-Yield Prediction with Matched Spatiotemporal Data
260 _ _ |a New York, NY
|c 2025
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763983118_12995
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Large-scale crop yield mapping has long relied on the Moderate Resolution Imaging Spectrometer (MODIS) due to its high temporal resolution and consistent atmospheric correction. The Sentinel-2 constellation, with its finer spatial resolution and vegetation-sensitive spectral bands, now offers new opportunities for regional- and field-scale yield prediction—especially as MODIS nears the end of its operational life. However, it remains unclear whether Sentinel-2 can ensure continuity of MODIS-based estimates across diverse agricultural regions. We present a regional sensor-to-sensor comparison of MODIS and Sentinel-2 for crop yield prediction using matched spatiotemporal inputs across two agro-ecological zones. Using reproducible regression workflows, we demonstrate that Sentinel-2 captures finer spatial variation in crop phenology and consistently outperforms MODIS in terms of predictive accuracy. For cotton, Sentinel-2 achieved an RMSE of 123.52 lb/acre and R2 of 0.76, versus MODIS with 129.20 lb/acre and R2 of 0.74. For corn, Sentinel-2 achieved 8.40 Bu/acre and 0.79, outperforming MODIS at 8.69 and 0.66, respectively. SHAP analysis identifies Enhanced Vegetation Index (EVI), Fraction of Photosynthetically Active Radiation (FPAR), and Leaf Area Index (LAI) as key predictors across both sensors. Despite its lower temporal frequency, Sentinel-2 delivers robust, regionally consistent estimates, supporting its suitability as a successor to MODIS for operational crop monitoring.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Embed2Scale - Earth Observation & Weather Data Federation with AI Embeddings (101131841)
|0 G:(EU-Grant)101131841
|c 101131841
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 1
700 1 _ |a Seguini, Lorenzo
|0 0000-0003-0118-1328
|b 2
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 3
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 4
700 1 _ |a Paris, Claudia
|0 0000-0002-7189-6268
|b 5
773 _ _ |a 10.1109/JSTARS.2025.3624046
|g p. 1 - 27
|0 PERI:(DE-600)2457423-5
|p 27663 - 27683
|t IEEE journal of selected topics in applied earth observations and remote sensing
|v 18
|y 2025
|x 1939-1404
856 4 _ |u https://juser.fz-juelich.de/record/1047371/files/From_MODIS_to_Sentinel-2_A_Regional_Comparative_Analysis_of_Crop-Yield_Prediction_With_Matched_Spatiotemporal_Data.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047371
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)203513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE J-STARS : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:38:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:38:59Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-19
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:38:59Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J-STARS : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21