| Home > Publications database > From MODIS to Sentinel-2: A Regional Comparative Analysis of Crop-Yield Prediction with Matched Spatiotemporal Data > print |
| 001 | 1047371 | ||
| 005 | 20251124202415.0 | ||
| 024 | 7 | _ | |a 10.1109/JSTARS.2025.3624046 |2 doi |
| 024 | 7 | _ | |a 1939-1404 |2 ISSN |
| 024 | 7 | _ | |a 2151-1535 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-04261 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-04261 |
| 082 | _ | _ | |a 520 |
| 100 | 1 | _ | |a Adriko, Kennedy |0 P:(DE-Juel1)203513 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a From MODIS to Sentinel-2: A Regional Comparative Analysis of Crop-Yield Prediction with Matched Spatiotemporal Data |
| 260 | _ | _ | |a New York, NY |c 2025 |b IEEE |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1763983118_12995 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Large-scale crop yield mapping has long relied on the Moderate Resolution Imaging Spectrometer (MODIS) due to its high temporal resolution and consistent atmospheric correction. The Sentinel-2 constellation, with its finer spatial resolution and vegetation-sensitive spectral bands, now offers new opportunities for regional- and field-scale yield prediction—especially as MODIS nears the end of its operational life. However, it remains unclear whether Sentinel-2 can ensure continuity of MODIS-based estimates across diverse agricultural regions. We present a regional sensor-to-sensor comparison of MODIS and Sentinel-2 for crop yield prediction using matched spatiotemporal inputs across two agro-ecological zones. Using reproducible regression workflows, we demonstrate that Sentinel-2 captures finer spatial variation in crop phenology and consistently outperforms MODIS in terms of predictive accuracy. For cotton, Sentinel-2 achieved an RMSE of 123.52 lb/acre and R2 of 0.76, versus MODIS with 129.20 lb/acre and R2 of 0.74. For corn, Sentinel-2 achieved 8.40 Bu/acre and 0.79, outperforming MODIS at 8.69 and 0.66, respectively. SHAP analysis identifies Enhanced Vegetation Index (EVI), Fraction of Photosynthetically Active Radiation (FPAR), and Leaf Area Index (LAI) as key predictors across both sensors. Despite its lower temporal frequency, Sentinel-2 delivers robust, regionally consistent estimates, supporting its suitability as a successor to MODIS for operational crop monitoring. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a Embed2Scale - Earth Observation & Weather Data Federation with AI Embeddings (101131841) |0 G:(EU-Grant)101131841 |c 101131841 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Sedona, Rocco |0 P:(DE-Juel1)178695 |b 1 |
| 700 | 1 | _ | |a Seguini, Lorenzo |0 0000-0003-0118-1328 |b 2 |
| 700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 3 |
| 700 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 4 |
| 700 | 1 | _ | |a Paris, Claudia |0 0000-0002-7189-6268 |b 5 |
| 773 | _ | _ | |a 10.1109/JSTARS.2025.3624046 |g p. 1 - 27 |0 PERI:(DE-600)2457423-5 |p 27663 - 27683 |t IEEE journal of selected topics in applied earth observations and remote sensing |v 18 |y 2025 |x 1939-1404 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1047371/files/From_MODIS_to_Sentinel-2_A_Regional_Comparative_Analysis_of_Crop-Yield_Prediction_With_Matched_Spatiotemporal_Data.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1047371 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)203513 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)178695 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132239 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)171343 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-19 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-19 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b IEEE J-STARS : 2022 |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-03T10:38:59Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-03T10:38:59Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-19 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-19 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-03T10:38:59Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-19 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE J-STARS : 2022 |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-19 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|