001     1047376
005     20251215202210.0
024 7 _ |a 10.1016/j.trc.2025.105395
|2 doi
024 7 _ |a 0968-090X
|2 ISSN
024 7 _ |a 1879-2359
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04264
|2 datacite_doi
037 _ _ |a FZJ-2025-04264
082 _ _ |a 380
100 1 _ |a Xu, Qiancheng
|0 P:(DE-Juel1)173880
|b 0
245 _ _ |a Hybrid machine learning and physics-based modeling of pedestrian pushing behaviors
260 _ _ |a Amsterdam [u.a.]
|c 2026
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765781617_25387
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In high-density crowds, close proximity between pedestrians makes the steady state highly vulnerable to disruption by pushing behaviours, potentially leading to serious accidents. However, the scarcity of experimental data has hindered systematic studies of its mechanisms and accurate modelling. Using behavioural data from bottleneck experiments, we investigate pedestrian heterogeneity in pushing tendencies, showing that pedestrians tend to push under high-motivation and in wider corridors. We introduce a spatial discretization method to encode neighbour states into feature vectors, serving together with pedestrian pushing tendencies as inputs to a random forest model for predicting pushing behaviours. Through comparing speed-headway relationships, we reveal that pushing behaviours correspond to an aggressive space-utilization movement strategy. Consequently, we propose a hybrid machine learning and physics-based model integrating pushing tendencies heterogeneity, pushing behaviours prediction, and dynamic movement strategies adjustment. Validations show that the hybrid model effectively reproduces experimental crowd dynamics and fits to incorporate additional behaviours.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Üsten, Ezel
|0 P:(DE-Juel1)185878
|b 1
700 1 _ |a Alia, Ahmed
|0 P:(DE-Juel1)185971
|b 2
700 1 _ |a He, Biao
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Guo, Renzhong
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 5
|u fzj
773 _ _ |a 10.1016/j.trc.2025.105395
|g Vol. 182, p. 105395 -
|0 PERI:(DE-600)2015891-9
|p 105395 -
|t Transportation research / Part C
|v 182
|y 2026
|x 0968-090X
856 4 _ |u https://juser.fz-juelich.de/record/1047376/files/preprint.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047376
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185878
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)185971
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132077
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21