001     1047378
005     20251129202118.0
024 7 _ |a 10.1109/ISAS66241.2025.11101766
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04266
|2 datacite_doi
037 _ _ |a FZJ-2025-04266
100 1 _ |a Hassanian, Reza
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 2025 9th International Symposium on Innovative Approaches in Smart Technologies
|g ISAS
|c Gaziantep
|d 2025-06-27 - 2025-06-28
|w Turkiye
245 _ _ |a Integrating remote sensing and deep learning forecasting model: A fluid-environment interface study
260 _ _ |c 2025
|b IEEE
300 _ _ |a n/a
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1764418462_1775
|2 PUB:(DE-HGF)
520 _ _ |a This study proposes an approach that integrates remote sensing (RS) data with deep learning (DL) techniques to predict variations in lake area. The model incorporates key input variables, including historical rainfall and glacier temperature data, which are the primary contributors to lake inflow. As global warming accelerates, changes in glacier melting patterns and increased evaporation due to rising temperatures are significantly impacting water resource ecosystems. To address this, the study leverages multiyear historical data on correlated variables-glacier temperature, rainfall, and lake area-to forecast future lake area dynamics. A sequential deep learning model based on gated recurrent units (GRUs) is developed and evaluated using current RS data. The model achieves strong predictive performance, with a Root Mean Square Error (RMSE) of 0.005, a Mean Absolute Error (MAE) of 0.004, and a coefficient of determination (R2) of 0.99. These results demonstrate the effectiveness of integrating RS data with DL models for environmental forecasting, particularly when supported by wellestablished correlations among input variables.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 1
|u fzj
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 2
|u fzj
770 _ _ |z 979-8-3315-1482-2
773 _ _ |a 10.1109/ISAS66241.2025.11101766
856 4 _ |u https://juser.fz-juelich.de/record/1047378/files/preprint.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047378
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21