| 001 | 1047382 | ||
| 005 | 20251124122537.0 | ||
| 024 | 7 | _ | |a 10.1177/10943420251351424 |2 doi |
| 024 | 7 | _ | |a 1094-3420 |2 ISSN |
| 024 | 7 | _ | |a 1078-3482 |2 ISSN |
| 024 | 7 | _ | |a 1741-2846 |2 ISSN |
| 037 | _ | _ | |a FZJ-2025-04270 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 004 |
| 100 | 1 | _ | |a Herten, Andreas |0 P:(DE-Juel1)145478 |b 0 |
| 245 | _ | _ | |a An HPC benchmark survey and taxonomy for characterization |
| 260 | _ | _ | |a Thousand Oaks, Calif. |c 2025 |b Sage Science Press |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1763981529_29071 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a Full survey table available as supplemental material at journal, equivalent to arXiv preprint: https://arxiv.org/abs/2509.08347 |
| 520 | _ | _ | |a The field of High-Performance Computing (HPC) is defined by providing computing devices with highest performance for a variety of demanding scientific users. The tight co-design relationship between HPC providers and users propels the field forward, paired with technological improvements, achieving continuously higher performance and resource utilization. A key device for system architects, architecture researchers, and scientific users are benchmarks, allowing for well-defined assessment of hardware, software, and algorithms. Many benchmarks exist in the community, from individual niche benchmarks testing specific features, to large-scale benchmark suites for whole procurements. We survey the available HPC benchmarks, summarizing them in table form with key details and concise categorization, also through an interactive website. For categorization, we present a benchmark taxonomy for well-defined characterization of benchmarks.The interactive table of the survey is available at https://fzj-jsc.github.io/benchmark-survey/ |
| 536 | _ | _ | |a 5122 - Future Computing & Big Data Systems (POF4-512) |0 G:(DE-HGF)POF4-5122 |c POF4-512 |f POF IV |x 0 |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 1 |
| 536 | _ | _ | |a ATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV) |0 G:(DE-Juel-1)ATML-X-DEV |c ATML-X-DEV |x 2 |
| 536 | _ | _ | |a ATMLAO - ATML Application Optimization and User Service Tools (ATMLAO) |0 G:(DE-Juel-1)ATMLAO |c ATMLAO |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Pearce, Olga |0 0000-0002-1904-9627 |b 1 |e Corresponding author |
| 700 | 1 | _ | |a Guimaraes, Filipe |0 P:(DE-Juel1)162225 |b 2 |
| 773 | _ | _ | |a 10.1177/10943420251351424 |g p. 10943420251351424 |0 PERI:(DE-600)2017480-9 |n n/a |p 10943420251351424 |t The international journal of high performance computing applications |v n/a |y 2025 |x 1094-3420 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145478 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)162225 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-512 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Supercomputing & Big Data Infrastructures |9 G:(DE-HGF)POF4-5122 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 1 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-27 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J HIGH PERFORM C : 2022 |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-27 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-27 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-27 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a VDBINPRINT |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|