001047385 001__ 1047385
001047385 005__ 20251103202054.0
001047385 0247_ $$2doi$$a10.5281/zenodo.17244134
001047385 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04271
001047385 037__ $$aFZJ-2025-04271
001047385 041__ $$aEnglish
001047385 1001_ $$0P:(DE-Juel1)169518$$aJovanovic, Sven$$b0$$eCorresponding author
001047385 1112_ $$aEuropean Electrolyser & Fuel Cell Forum (EFCF)$$cLucerne$$d2025-07-01 - 2025-07-04$$wSwitzerland
001047385 245__ $$aA novel perspective on accelerated degradation studies of proton exchange membranes
001047385 260__ $$bZenodo$$c2025
001047385 300__ $$a9
001047385 3367_ $$2ORCID$$aCONFERENCE_PAPER
001047385 3367_ $$033$$2EndNote$$aConference Paper
001047385 3367_ $$2BibTeX$$aINPROCEEDINGS
001047385 3367_ $$2DRIVER$$aconferenceObject
001047385 3367_ $$2DataCite$$aOutput Types/Conference Paper
001047385 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1762153652_12037
001047385 520__ $$aAccelerated degradation studies are widely applied in research on proton exchange membranes (PEMs) for the investigation of the origins and mechanisms of performance loss for electrolysis or fuel cell applications. In a nutshell, it is reported in literature that degradation in PEMs commonly occurs following Fenton-like reactions, where in situ formed H2O2 reacts with transition metal cations to produce radicals. These radicals then alter the ionomer on a chemical level by attacking particularly its polar side chains, causing a loss of functional moieties for proton transport [1]. Fast degradation studies mimic and promote these conditions by subjecting PEMs to high concentrations of H2O2 and Fe2+ cations at elevated temperatures. However, these studies often exhibit discrepancies when compared to degradation occurring during long-term operation [2].The presented work attempts to elucidate these discrepancies by i) addressing inconsistencies in accelerated degradation and testing procedures, ii) studying the dependence of degradation on PEM chemistry and structure and iii) utilizing both NMR spectroscopy and SEM microscopy among other techniques for a comprehensive picture. Hereby, solid-state magic angle spinning (MAS) NMR spectroscopy provides information on both chemical and local structural transformations of the PEM, while SEM offers concrete insights into structural changes on a microscopic scale. The Fenton-like accelerated degradation experiments were optimized for homogeneity and effectiveness by introducing the catalytic iron centers into the PEMs. Additionally, interferences in the analytical techniques were minimized by careful removal of excess reactants after accelerated degradation. The combined analytical techniques reveal that chemical degradation in PEMs is significantly less pronounced than suggested in literature, although differences were observed depending on the type of PEM material. Moreover, organic radicals that form during Fenton-like reactions could not be detected by EPR spectroscopy. However, all samples experienced significant changes in the local structure, as indicated by NMR relaxometry, and microscopic structure, as illustrated by SEM techniques. Thus, instead of chemical degradation, the PEM may be affected on a structural level by mechanical stress due to microscopic gas pockets and macroscopic bubbles forming inside the gas impermeable material.[1] L. Ghassemzadeh et al., J. Am. Chem. Soc. 135, 8181–8184 (2013).[2] J. Mališ et al., Int. J. Hydrogen Energy 41, 2177–2188 (2016).
001047385 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001047385 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001047385 588__ $$aDataset connected to DataCite
001047385 650_7 $$2Other$$aEFCF2025
001047385 650_7 $$2Other$$aH2
001047385 650_7 $$2Other$$aLowTemp. Fuel Cells & Electrolysers
001047385 650_7 $$2Other$$aPEMs
001047385 650_7 $$2Other$$adegradation
001047385 650_7 $$2Other$$aFenton
001047385 650_7 $$2Other$$aanalytics
001047385 7001_ $$0P:(DE-Juel1)191434$$aRameker, Robert$$b1$$eFirst author$$ufzj
001047385 7001_ $$0P:(DE-Juel1)184377$$aPoc, Jean-Pierre$$b2$$eFirst author$$ufzj
001047385 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b3
001047385 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b4
001047385 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$ufzj
001047385 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b6$$ufzj
001047385 773__ $$a10.5281/zenodo.17244134
001047385 8564_ $$uhttps://juser.fz-juelich.de/record/1047385/files/EFCF-2025_Paper_A1117_11093_PEFC_RevisitingFentonDegradation_Jovanovic_S.pdf$$yOpenAccess
001047385 909CO $$ooai:juser.fz-juelich.de:1047385$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001047385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169518$$aForschungszentrum Jülich$$b0$$kFZJ
001047385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191434$$aForschungszentrum Jülich$$b1$$kFZJ
001047385 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)191434$$aRWTH Aachen$$b1$$kRWTH
001047385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184377$$aForschungszentrum Jülich$$b2$$kFZJ
001047385 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)184377$$aRWTH Aachen$$b2$$kRWTH
001047385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b3$$kFZJ
001047385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b4$$kFZJ
001047385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
001047385 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
001047385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b6$$kFZJ
001047385 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b6$$kRWTH
001047385 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001047385 9141_ $$y2025
001047385 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047385 920__ $$lyes
001047385 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001047385 980__ $$acontrib
001047385 980__ $$aVDB
001047385 980__ $$aUNRESTRICTED
001047385 980__ $$aI:(DE-Juel1)IET-1-20110218
001047385 9801_ $$aFullTexts