001047391 001__ 1047391
001047391 005__ 20251129202118.0
001047391 0247_ $$2doi$$a10.22331/q-2025-10-29-1898
001047391 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04277
001047391 037__ $$aFZJ-2025-04277
001047391 082__ $$a530
001047391 1001_ $$0P:(DE-Juel1)190876$$aSchulz, Sebastian$$b0$$eCorresponding author$$ufzj
001047391 245__ $$aLearning-Driven Annealing with Adaptive Hamiltonian Modification for Solving Large-Scale Problems on Quantum Devices
001047391 260__ $$aWien$$bVerein zur Förderung des Open Access Publizierens in den Quantenwissenschaften$$c2025
001047391 3367_ $$2DRIVER$$aarticle
001047391 3367_ $$2DataCite$$aOutput Types/Journal article
001047391 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764420632_31362
001047391 3367_ $$2BibTeX$$aARTICLE
001047391 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047391 3367_ $$00$$2EndNote$$aJournal Article
001047391 520__ $$aWe present Learning-Driven Annealing (LDA), a framework that links individual quantum annealing evolutions into a global solution strategy to mitigate hardware constraints such as short annealing times and integrated control errors. Unlike other iterative methods, LDA does not tune the annealing procedure (e.g. annealing time or annealing schedule), but instead learns about the problem structure to adaptively modify the problem Hamiltonian. By deforming the instantaneous energy spectrum, LDA suppresses transitions into high-energy states and focuses the evolution into low-energy regions of the Hilbert space. We demonstrate the efficacy of LDA by developing a hybrid quantum-classical solver for large-scale spin glasses. The hybrid solver is based on a comprehensive study of the internal structure of spin glasses, outperforming other quantum and classical algorithms (e.g., reverse annealing, cyclic annealing, simulated annealing, Gurobi, Toshiba's SBM, VeloxQ and D-Wave hybrid) on 5580-qubit problem instances in both runtime and lowest energy. LDA is a step towards practical quantum computation that enables today's quantum devices to compete with classical solvers.
001047391 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001047391 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047391 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b1$$ufzj
001047391 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2$$ufzj
001047391 773__ $$0PERI:(DE-600)2931392-2$$a10.22331/q-2025-10-29-1898$$gVol. 9, p. 1898 -$$p1898$$tQuantum$$v9$$x2521-327X$$y2025
001047391 8564_ $$uhttps://juser.fz-juelich.de/record/1047391/files/Invoice_237-2025.pdf
001047391 8564_ $$uhttps://juser.fz-juelich.de/record/1047391/files/q-2025-10-29-1898.pdf$$yOpenAccess
001047391 8767_ $$8Invoice Nr. 237/2025$$92025-10-24$$a1200218584$$d2025-10-31$$eAPC$$jZahlung erfolgt
001047391 909CO $$ooai:juser.fz-juelich.de:1047391$$popenaire$$popen_access$$pOpenAPC$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001047391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190876$$aForschungszentrum Jülich$$b0$$kFZJ
001047391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b1$$kFZJ
001047391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
001047391 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001047391 9141_ $$y2025
001047391 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001047391 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001047391 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001047391 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-03-01T07:34:47Z
001047391 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQUANTUM-AUSTRIA : 2022$$d2024-12-27
001047391 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
001047391 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-03-01T07:34:47Z
001047391 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-03-01T07:34:47Z
001047391 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
001047391 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-27
001047391 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001047391 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047391 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-03-01T07:34:47Z
001047391 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-27
001047391 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
001047391 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001047391 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bQUANTUM-AUSTRIA : 2022$$d2024-12-27
001047391 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001047391 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001047391 980__ $$ajournal
001047391 980__ $$aVDB
001047391 980__ $$aUNRESTRICTED
001047391 980__ $$aI:(DE-Juel1)JSC-20090406
001047391 980__ $$aAPC
001047391 9801_ $$aAPC
001047391 9801_ $$aFullTexts