| Hauptseite > Publikationsdatenbank > Learning-Driven Annealing with Adaptive Hamiltonian Modification for Solving Large-Scale Problems on Quantum Devices > print |
| 001 | 1047391 | ||
| 005 | 20251129202118.0 | ||
| 024 | 7 | _ | |a 10.22331/q-2025-10-29-1898 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-04277 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-04277 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Schulz, Sebastian |0 P:(DE-Juel1)190876 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Learning-Driven Annealing with Adaptive Hamiltonian Modification for Solving Large-Scale Problems on Quantum Devices |
| 260 | _ | _ | |a Wien |c 2025 |b Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1764420632_31362 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We present Learning-Driven Annealing (LDA), a framework that links individual quantum annealing evolutions into a global solution strategy to mitigate hardware constraints such as short annealing times and integrated control errors. Unlike other iterative methods, LDA does not tune the annealing procedure (e.g. annealing time or annealing schedule), but instead learns about the problem structure to adaptively modify the problem Hamiltonian. By deforming the instantaneous energy spectrum, LDA suppresses transitions into high-energy states and focuses the evolution into low-energy regions of the Hilbert space. We demonstrate the efficacy of LDA by developing a hybrid quantum-classical solver for large-scale spin glasses. The hybrid solver is based on a comprehensive study of the internal structure of spin glasses, outperforming other quantum and classical algorithms (e.g., reverse annealing, cyclic annealing, simulated annealing, Gurobi, Toshiba's SBM, VeloxQ and D-Wave hybrid) on 5580-qubit problem instances in both runtime and lowest energy. LDA is a step towards practical quantum computation that enables today's quantum devices to compete with classical solvers. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Willsch, Dennis |0 P:(DE-Juel1)167542 |b 1 |u fzj |
| 700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 2 |u fzj |
| 773 | _ | _ | |a 10.22331/q-2025-10-29-1898 |g Vol. 9, p. 1898 - |0 PERI:(DE-600)2931392-2 |p 1898 |t Quantum |v 9 |y 2025 |x 2521-327X |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1047391/files/Invoice_237-2025.pdf |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1047391/files/q-2025-10-29-1898.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:1047391 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190876 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167542 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)138295 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2024-03-01T07:34:47Z |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b QUANTUM-AUSTRIA : 2022 |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-03-01T07:34:47Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-03-01T07:34:47Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-27 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-03-01T07:34:47Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b QUANTUM-AUSTRIA : 2022 |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|