001     1047391
005     20251129202118.0
024 7 _ |a 10.22331/q-2025-10-29-1898
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04277
|2 datacite_doi
037 _ _ |a FZJ-2025-04277
082 _ _ |a 530
100 1 _ |a Schulz, Sebastian
|0 P:(DE-Juel1)190876
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Learning-Driven Annealing with Adaptive Hamiltonian Modification for Solving Large-Scale Problems on Quantum Devices
260 _ _ |a Wien
|c 2025
|b Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764420632_31362
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present Learning-Driven Annealing (LDA), a framework that links individual quantum annealing evolutions into a global solution strategy to mitigate hardware constraints such as short annealing times and integrated control errors. Unlike other iterative methods, LDA does not tune the annealing procedure (e.g. annealing time or annealing schedule), but instead learns about the problem structure to adaptively modify the problem Hamiltonian. By deforming the instantaneous energy spectrum, LDA suppresses transitions into high-energy states and focuses the evolution into low-energy regions of the Hilbert space. We demonstrate the efficacy of LDA by developing a hybrid quantum-classical solver for large-scale spin glasses. The hybrid solver is based on a comprehensive study of the internal structure of spin glasses, outperforming other quantum and classical algorithms (e.g., reverse annealing, cyclic annealing, simulated annealing, Gurobi, Toshiba's SBM, VeloxQ and D-Wave hybrid) on 5580-qubit problem instances in both runtime and lowest energy. LDA is a step towards practical quantum computation that enables today's quantum devices to compete with classical solvers.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 1
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 2
|u fzj
773 _ _ |a 10.22331/q-2025-10-29-1898
|g Vol. 9, p. 1898 -
|0 PERI:(DE-600)2931392-2
|p 1898
|t Quantum
|v 9
|y 2025
|x 2521-327X
856 4 _ |u https://juser.fz-juelich.de/record/1047391/files/Invoice_237-2025.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1047391/files/q-2025-10-29-1898.pdf
909 C O |o oai:juser.fz-juelich.de:1047391
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190876
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-03-01T07:34:47Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b QUANTUM-AUSTRIA : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-03-01T07:34:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-03-01T07:34:47Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-03-01T07:34:47Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b QUANTUM-AUSTRIA : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21