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We present Learning-Driven Annealing
(LDA), a framework that links individual
quantum annealing evolutions into a global
solution strategy to mitigate hardware con-
straints such as short annealing times and in-
tegrated control errors. Unlike other itera-
tive methods, LDA does not tune the anneal-
ing procedure (e.g. annealing time or anneal-
ing schedule), but instead learns about the
problem structure to adaptively modify the
problem Hamiltonian. By deforming the in-
stantaneous energy spectrum, LDA suppresses
transitions into high-energy states and focuses
the evolution into low-energy regions of the
Hilbert space. We demonstrate the efficacy of
LDA by developing a hybrid quantum-classical
solver for large-scale spin glasses. The hy-
brid solver is based on a comprehensive study
of the internal structure of spin glasses, out-
performing other quantum and classical algo-
rithms (e.g., reverse annealing, cyclic anneal-
ing, simulated annealing, Gurobi, Toshiba’s
SBM, VeloxQ and D-Wave hybrid) on 5580-
qubit problem instances in both runtime and
lowest energy. LDA is a step towards prac-
tical quantum computation that enables to-
day’s quantum devices to compete with clas-
sical solvers.

1 Introduction
Combinatorial optimization problems (COPs) are
ubiquitous in computer science, with important appli-
cations in finance [29], scheduling [52], machine learn-
ing [8, 9], computational biology [41], and operations
research [11]. For many such problems, finding the
optimal solution is equivalent to finding the ground

Sebastian Schulz: se.schulz@fz-juelich.de, Corresponding author:
Sebastian Schulz

state of an associated Ising spin-glass system [28].
The hardness of COPs is related to the presence of
opposing spin interactions, leading to frustration and
a glass phase. The latter is characterized by the pres-
ence of many low-energy local minima, that are sep-
arated by large energy barriers. This makes solving
large-scale COPs often intractable on classical com-
puters, quickly exceeding runtimes of 24 hours.

With the advent of new generations of quantum an-
nealers from D-Wave Systems Inc. comprising more
than 5000 qubits, a promising approach is the use
of quantum annealing (QA) [27, 38, 55]. Inspired
by the cooling of physical systems, QA uses quan-
tum fluctuations caused by a transverse field to nav-
igate the energy landscape of the spin system [42].
If the quantum evolution is performed adiabatically,
the system arrives in the ground state of the spin
glass. However, if the evolution is too fast, the sys-
tem scatters into higher energy states through a se-
ries of quantum phase transitions (QPTs, used in the
sense of Refs. [7, 35, 44, 45]). Hence, on real devices,
finite annealing times and integrated control errors
limit the performance, often making deep low-energy
states (including the ground state) inaccessible [4, 50].
To address this issue, several authors recently inves-
tigated iterative procedures, such as reverse anneal-
ing [12, 31, 40, 54] and cyclic annealing [39, 51, 57],
in which the annealing is repeatedly initialized from
the best known classical state. In doing so, the hope
is that QA gradually converges to the ground state,
but in practice, these procedures often fail, as they
become stuck in high-energy valleys [13, 36].

We show that systematically learned modifications
to the problem Hamiltonian itself can greatly im-
prove the performance of iterative QA on noisy hard-
ware. With Learning-Driven Annealing (LDA), we
propose a framework to link individual QA runs into
a global solution strategy to mitigate hardware con-
straints such as finite annealing times and integrated
control errors [16]. LDA works by analyzing the states
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sampled from QA to adaptively modify the prob-
lem Hamiltonian to the information learned about
the energy landscape. This energetically isolates low-
energy valleys in the instantaneous energy spectrum,
focussing subsequent annealing runs into a promising
region of the Hilbert space. As a result, the QPU can
reach deeper regions of the energy spectrum that are
otherwise inaccessible. While we do not claim a quan-
tum advantage per se, LDA enables current NISQ de-
vices to tackle COPs more efficiently as long as they
can be embedded onto their hardware.

We demonstrate the capabilities of LDA by de-
signing a hybrid quantum-classical solver for large-
scale spin glasses, that is based on alternating lo-
cal and global search protocols. Using the D-Wave
Advantage1 5.4 QPU [1] in Jülich, Germany, we
benchmark our hybrid solver against leading quan-
tum and classical algorithms, including reverse an-
nealing [12], cyclic annealing [51, 57], simulated an-
nealing using JUPTSA [20], Gurobi [19], Toshiba’s
SBM [49], VeloxQ [21, 37] and D-Wave hybrid [14],
on 5580-qubit NAT-7 [24, 30] spin glasses. The results
show that our hybrid solver outperforms all compet-
ing strategies in both runtime and lowest energy. LDA
is a step towards practical quantum computation that
enables today’s quantum annealers to compete with
classical solvers.

The remainder of this paper is organized as follows:
In Sec. 2, we introduce the spin-glass formulation and
provide insights into its underlying structures. Sec-
tion 3 concerns adiabatic quantum evolutions and dis-
cusses its limitations on modern quantum annealers.
In Sec. 4, we introduce the LDA framework, showcas-
ing how learned information from sampled states can
be used to guide the annealing evolution by modify-
ing the problem Hamiltonian. In Sec. 5, we demon-
strate how LDA can be used in advanced algorithms
by designing a hybrid solver for spin glasses based on
alternating local and global search protocols. Finally,
in Sec. 6, we benchmark our hybrid solver against
various classical and quantum solvers, followed by a
summary of our findings in Sec. 7.

2 Spin-glass problems
Spin glasses (SG) are magnetic systems of quenched
disorder, imposing conflicts between interacting mag-
netic moments [10]. In the Edwards-Anderson model
of SG [17], N Ising spins σz

i , i ∈ {0, . . . , N − 1},
are placed on the sites of a regular graph, with the
Hamiltonian defined as

H =
∑
i<j

Jijσz
i σz

j +
∑

i

hiσ
z
i . (1)

Here Jij with i < j denotes the coupling strength
between spins i and j, and hi represents a locally
applied external magnetic field bias on spin i.

We consider both triangular lattices with periodic
boundary conditions (see Fig. 1a) and the Pegasus
graph used by the D-Wave Advantage1 5.4 quantum
annealer [1]. In the following, we choose |hi| ≪ |Jij |
to ensure the generation of complex SG [25]. Notably,
for hi = 0, H exhibits a global Z2 symmetry.

Throughout this study, we use Greek letters, e.g.
α = αN−1 · · ·α1α0, to represent a generic eigenstate
of Eq. (1), with αi = ±1 denoting the polarization
of the i-th spin. We also use the notation α∗ =
α∗

N−1 · · ·α∗
1α∗

0 to refer to a local (in Hamming dis-
tance) minimum of Eq. (1). The eigenenergy of a state
α is given by Eα =

∑
i<j Jijαiαj +

∑
i hiαi and its bit

string representation is written as a = aN−1 · · · a1a0,
with ai = (1 + αi)/2.

For a given state α, we define the set of satisfied
(i.e., non-frustrated) couplers and biases as

J α = {(i, j) | Jijαiαj < 0}, (2a)
Hα = {i | hiαi < 0}. (2b)

These sets consist of those couplings and biases of
Eq. (1) that are satisfied in the state α, meaning
that the corresponding terms in the Hamiltonian con-
tribute to a reduction of the total energy of the sys-
tem.

Intuitively, the presence of competing spin-spin in-
teractions in Eq. (1) causes frustration, which pre-
vents the ground state from establishing a simple
long-range (anti-)ferromagnetic order. Instead, the
spins align in random directions, forming a glass
phase [47]. This phase is characterized by the exis-
tence of exponentially many low-energy local minima,
where a local minimum refers to a state for which
flipping a single (or a few) spins always increases the
energy. The energy spectrum of these local minima
typically has small gaps, with macroscopic high and
wide energy barriers separating them [34]. The latter
implies that O(N) spins would need to be flipped in
order to escape a local minimum [10]. Despite the
complexity of the energy landscape, the formation of
local minima stems from a general structure in the in-
teractions of the spins. Local differences in the spin-
spin couplings and biases lead to the formation of spin
domainsD1, . . . , DNdom ⊂ {0, . . . , N−1}, represent-
ing groups of highly correlated spins [5, 10].

2.1 Spin domains
We define a spin domain Dk ⊂ {0, . . . , N − 1}, with
k = 1, . . . , Ndom, as a maximally large connected
sub-spin glass of Eq. (1), such that its energy land-
scape is ergodic with respect to spin-reversal transfor-
mations. This means that the ground state of the do-
main is accessible from any state through a sequence
of decreasing energies using solely single spin flips and
state inversions (i.e. flipping all spins). In computa-
tional terms, ergodic means that the global minimum
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Figure 1: A 24-qubit spin-glass with Ndom = 3. (a) Spin-glass graph with the biases hi as nodes and couplers Jij as edges.
Dashed edges indicate periodic boundary conditions. The colored rectangles represent the spin domains: D1 (green), D2
(purple), and D3 (orange). Each domain has two distinct minima: α and α (D1), β and β (D2), γ and γ (D3). Panels (a.1-3)
show the eigenenergies E of the corresponding domains as a function of the Hamming distance dham to the respective ground
state α, β, γ. (b) Hypercube representation of the Hilbert space, with each axis representing the Hamming distance dham

from the ground state (α, β, γ) of the respective spin domains Dk. Color indicates the lowest eigenenergy at each point. The
corners of the hypercube correspond to the 2Ndom = 8 local minima of the spin glass. (c) Energy landscape of the spin glass
obtained by unfolding the hypercube facets. Each point is projected onto the closest facet (smallest Hamming distance), with
the blue surface representing the lowest eigenenergies on these facets. The eight local minima are marked by colored diamonds
at the facets’ corners, with the states surrounding it being the energy valleys. Additionally, black dots indicate 2000 samples
from a quantum annealing simulation with annealing time T = 10, with the probability density shown on the lower orange
plane. Panels (c.1-3) highlight the specific biases hi and couplers Jij satisfied by three of the eight local minima, with the
unsatisfied terms set to 0 (white). The color scheme matches that of panel (a).

of the domain can be reached via a greedy search algo-
rithm. Note that a domain can consist of a single spin
if the local magnetic field hi dominates the interac-
tion. An example 24-qubit spin glass with Ndom = 3
domains is shown in Fig. 1a. The respective energy
spectra of the spin domains are given in panels (a.1-3).

Each spin domain Dk identifies a trivial sub-spin
glass, defined by the quadratic terms i, j ∈ Dk within
the domain, ∑

i,j∈Dk

Jijσz
i σz

j . (3)

This sub-spin glass has two degenerate ground states

β∗(k) and β∗(k), due to the Z2 symmetry of the spin-

spin couplers, with β∗(k) denoting the inverse state of
β∗(k) (i.e., all spins flipped). By combining the ground
states of all domains, the 2Ndom local minima of the
full spin glass can be constructed. Consequently,
these local minima form an Ndom-dimensional hyper-
cube, with the edges denoting state inversions of sin-
gle spin domains (see Fig. 1b).

The complexity of the spin-glass energy landscape
stems from the domain borders, where spin domains
couple to each other (i.e. spin-spin couplings Jij be-
tween domains) and to the local biases hi. These in-
teractions lift the degeneracies of the domains’ ground
states, assigning energy shifts to the local minima and
forming a hierarchy on the hypercube [22].

For the three-dimensional hypercube shown in
Fig. 1b, Fig. 1c visualizes the energy landscape ob-
tained by unfolding its facets. Note that the hardness
of spin glasses arises from the lack of knowledge about
the exact domains Dk. If the distribution of spin
domains were known, the complexity of the problem
would be reduced from 2N to 2Ndom with the number
of domains Ndom ≪ N .

2.2 Distance measures
For the following description of LDA, a distance mea-
sure between arbitrary spin configurations α and β is
required. A commonly used metric for this purpose is
the Edward-Anderson order parameter [17], measur-
ing the overlap of the states α and β as

qEA(α, β) = 1
N

N−1∑
i=0

αiβi. (4)

By definition, qEA ∈ [−1, 1], with qEA = 1 ⇔ α = β
and qEA = −1 ⇔ α = β. Note that qEA is directly
related to the Hamming distance dham between the
bit strings a and b via dham = N(1− qEA)/2.

While qEA is a sufficient tool for the statistical anal-
ysis of phase transitions in disordered systems [26], it
is indifferent to the distance between the energies Eα

and Eβ of the states. This means that two states
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Figure 2: Comparison of the quanitiy qF (α∗, β) to (a) the
Edward-Anderson order parameter qEA(α∗, β) and (b) the
energy difference ∆E = Eβ − Eα∗ for states β w.r.t. the
global minimum α∗ of the 24-qubit spin-glass shown in
Fig. 1a. The colored diamonds mark the eight local min-
ima (see Fig. 1c).

with the same order parameter qEA can have signif-
icantly different energies, depending on the amount
of frustration that they cause. To compensate for
this, we propose a quantity qF (α, β) that evaluates
the similarity between a reference state α and a state
β based on the sets of satisfied couplers and biases
(see Eq. (2)). We define qF as the fraction of couplers
and biases that are simultaneously satisfied by α and
β (i.e., J α ∩ J β and Hα ∩ Hβ) to the total set of
satisfied terms by α (i.e., J α and Hα),

qF (α, β) =

∑
(i,j)∈J α∩J β

with (αi,αj)=(βi,βj)

|Jij |+
∑

i∈Hα∩Hβ

|hi|

∑
(i,j)∈J α

|Jij |+
∑

i∈Hα

|hi|
.

(5)

By definition, qF ∈ [0, 1], with qF = 1 (0) denot-
ing that Hβ ⊂ Hα

(
Hβ ∩Hα = ∅

)
and J β ⊂ J α(

J β ∩ J α = ∅
)
. We remark that in the singular case

Hα = J α = ∅, we define qF = 1. The addi-
tional condition αi = βi in the first summation of
Eq. (5) ensures that the spins in the simultaneously
satisfied couplers Jij are also aligned with one an-
other, (αi, αj) = (βi, βj). This is necessary because
Jijαiαj = Jijβiβj < 0 would also be satisfied if
(αi, αj) = (βi, βj). Hence, the condition lifts the spin-
reversal symmetry of the spin domains, in order to ac-
count for the Hamming distance between the states.

The definition of qF is based on the observation that
each local minimum α∗ can be uniquely identified (up
to state inversion in case of hi = 0) by the sets of sat-
isfied couplers J α∗

and biases Hα∗
(see Fig. 1c.1-3,

where the local minima satisfy different couplers be-
tween the domains). By ranking each state according
to its energy in the sub spin-glass

(
J α∗

, Hα∗)
, the

parameter qF integrates both the Hamming distance
(qEA) and the energy distance (∆E) from α∗ into the
similarity measure (see Fig. 2a). This allows qF to
distinguish the energy valley of α∗ (i.e. the neighbor-
hood of states around α∗, where some domains are
in an excited state) from the other local minima in
Fig. 1c. As a result, only states with both a small
Hamming distance and energy distance are consid-
ered close to α∗, making qF indifferent to low-energy
states of other energy valleys (see peaks at ∆E ≈ 0
in Fig. 2b).

A key property of qF is its asymmetry (i.e.
qF (α, β) ̸= qF (β, α)), since Eq. (5) considers only
terms that are satisfied by the reference state α, but
ignores additional terms satisfied by β. As a conse-
quence, a state β deeper in the energy valley, with
J β ⊃ J α and Hβ ⊃ Hα, typically has a larger qF

value than a higher-energy state, which violates terms
in Hα and J α. To make the meaning of qF more intu-
itive, an explicit example of this asymmetry for a 16
spin-glass instance is shown in App. A. This means
that qF has an intrinsic bias towards lower-energy
states, which will be crucial for the definition of LDA
in Sec. 4.

3 Adiabatic quantum annealing
Adiabatic quantum annealing, as proposed by Farhi
et al. [18], is a procedure for solving NP-hard combi-
natorial optimization problems (COP) through quan-
tum fluctuations. With the search space of the COP
encoded in the eigenspectrum of a problem Hamilto-
nian HP (e.g. Eq. (1)), the system is complemented
by a driving Hamiltonian HD that is non-diagonal in
the eigenbasis of HP . Since the spin-glass Hamilto-
nian Eq. (1) is diagonal in the computational basis,
we consider the transverse field Ising model

HQA(t) = HP + Γ(t) ·HD with HD = −
N−1∑
i=0

σx
i ,

(6)

which is closely related to the design of D-Wave
quantum annealers (see App. B). Γ(t) is the an-
nealing schedule, defining the relative strength be-
tween HP and HD over time 0 ≤ t ≤ T . Initially,
Γ(t = 0) ≫ J , such that the instantaneous ground

state (GS) is approximately given by |+⟩
⊗

N
(where

|+⟩ = (|0⟩+ |1⟩)/
√

2), which is initially separated by
a large energy gap ∝ Γ(0) from the rest of the spec-
trum. Operating the system at a temperature that is
much smaller than the scale set by Γ(0) is supposed
to initialize it in the GS of HD. To reach the GS of
HP , Γ(t) is decreased adiabatically to zero as t→ T ,
allowing the system to follow the instantaneous GS
of HQA(t) [3, 18]. In order to prevent Landau-Zener
transitions into excited states during this process, the
adiabatic theorem requires T −1 ≪ ∆2

min [6], where
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Figure 3: (a) Instantaneous energy spectrum of the trans-
verse field Ising model (see Eq. (6)) for the 24-qubit spin-
glass instance shown in Fig. 1a, using a linear annealing
schedule Γ(t). The plot presents a selection of energy lev-
els corresponding to the 8 valleys in the energy landscape
(see Fig. 1c). For each valley, the local minimum (solid
lines) is shown along with three states at Hamming distance
dham = 1 (dashed line) and three states at dham = 2 (dash-
dotted lines), representing the lowest-energy states along the
edges of the hypercube. (b) Adiabatic ratios (see Eq. (7))
for the states presented in panel (a). The 24-qubit eigen-
states and eigenvalues in the vicinity of each local minimum
were obtained numerically by solving the time-dependent
Schrödinger equation (see e.g. [53]) for reverse-annealing
starting in the given states.

∆min denotes the minimal energy gap between the
two lowest instantaneous eigenstates of HQA(t).

The minimum annealing time T is the main mea-
sure for the computational complexity of adiabatic
quantum annealing. Significant evidence exists that
the presence of first-order quantum phase transi-
tions (QPTs) during the adiabatic evolution causes
an exponentially fast closure of ∆min with the sys-
tem size N , resulting in exponentially long annealing
times [7, 44]. The authors in [5] argue that ∆min

scales inversely proportional to the square root of the
number of competing local minima (and states near
them) with energies close to the global minimum and
a large Hamming distances dham. Regarding the spin-
glass instances under investigation, the number of lo-
cal minima scales exponentially, 2Ndom , with the num-
ber of domains Ndom ∝ N .

Figure 3a presents the instantaneous energy spec-
trum of the 24-qubit spin-glass instance shown in

Fig. 1a, with the adiabatic ratio [33]

g(t) = |⟨m(t)| ḢQA(t) |GS(t)⟩|
|Em(t)− EGS(t)|2 (7)

depicted in Fig. 3b for the states marked in Fig. 1c.
Here, |m(t)⟩ (|GS(t)⟩) denotes the instantaneous m-
th excited (ground) state, ḢQA(t) is the t derivative
of the instantaneous Hamiltonian and Em(t) (EGS(t))
corresponds to the eigenenergies of the m-th excited
(ground) state.

In agreement with [2, 45], the system undergoes a
second-order QPTs at tc/T ≈ 0.45, by evolving from
the paramagnetic phase (localized in the σx basis) to
an ordered phase (localized in the σz basis). As a re-
sult, the system transitions from a delocalized state,
where it forms a superposition across all valleys, to
a semi-localized state confined to a single valley [7].
During the QPT, all valleys are coupled, as indicated
by the peaks in g for the 8 global and local minima
(see solid lines in Fig. 3b). Additionally, the instan-
taneous energy spectrum exhibits transitions between
states within the same valley. Since these states differ
by small Hamming distances, they remain coupled af-
ter the second-order QPTs for t > tc (see blue dashed
and dashed-dotted curves in Fig. 3b).

While the second-order QPT is generally associated
with a polynomial scaling of T , the presence of addi-
tional anti-crossings at t > tc between semi-localized
states in large spin-glass instances induces first-order
QPTs [2, 7]. These transitions correspond to quantum
tunneling events, where the system relocates entirely
from one valley to another, leading to energy gaps ∆
that close exponentially with the Hamming distance
dham between valleys. Since dham scales linearly with
the system size N in our spin-glass instances, this re-
sults in an exponential scaling of T [44, 45]. Recently,
locally optimized annealing procedures have been pro-
posed, which reduce T by decelerating the anneal-
ing schedule Γ(t) at the vicinity of the QPT [43, 48].
However, these strategies can only provide a quadratic
speed up [5]. Since the required annealing times still
exceed the accessible range on real devices, it is in
practice impossible to solve large spin glasses using a
single annealing run.

To overcome this bottleneck, several authors pro-
posed the use of iterative protocols to incorporate
classical information about the ground state into the
annealing process [39, 40, 51]. The reverse anneal-
ing protocol, as proposed by Chancellor [12] and Ya-
mashiro et al. [54], has been implemented on D-Wave
QPUs. It starts by initializing the system in a compu-
tational basis state (e.g. obtained by a previous anneal
or a classical heuristic), with Γ = 0. Quantum fluc-
tuations are slowly introduced by increasing Γ to an
intermediate value Γ̃ at t = Ts, where the process is
paused for a period τ until t = Te. The protocol fin-
ishes by annealing back to Γ = 0 and measuring the
qubits. By repeating this cycle and initializing each
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reverse anneal by the measurement of the previous, it-
erative reverse annealing (IRA) is hoped to move the
system closer to the true ground state and overcome
the above-mentioned limitation of an exponential an-
nealing time T .

In practice, however, reverse annealing performs a
dissipative local search into the neighborhood of the
initial state [13]. The spread of this search is con-
trolled by the inversion point Γ̃ and the QPTs it tra-
verses. If no QPT is crossed, the system spreads lo-
cally (in Hamming distance) within its energy valley.
However, if Γ̃ is chosen large enough, such that a QPT
is crossed, the system explores the search space glob-
ally by tunneling into other energy valleys [12]. Note
that T must be sufficiently short, such that the pro-
cess is non-adiabatic, because otherwise the system
would simply return to its initial state.

In a closed system, there is no direct mechanism in
the reverse annealing protocol to favor the search of
lower-energy states [13]. Instead, the system spreads
uniformly in energy around the initial state, gravi-
tating (over multiple iterations) towards an equilib-
rium state, where the number of states with lower and
higher energies balance. This makes it exponentially
hard to find the ground state for N ≫ 1.

On real devices, however, the QPU is always in in-
teraction with its surrounding environment. In such
open systems, thermal relaxation moderates the tran-
sition between neighboring states [31, 32]. At suffi-
ciently low temperatures, this causes a repopulation
of lower-energy states during the pause, which allows
reverse annealing to improve on the initial state. Pas-
sarelli et. al. [36] argue that thermal relaxation is
the main mechanism driving the performance of re-
verse annealing. This means that the success of IRA
depends mainly on the effective temperature of the
QPU. This gives an intuition as to why the D-Wave
Advantage1 5.4 QPU operating at ≈ 16.4mK [1] is
not able to find the ground state of the large spin
glasses under investigation through IRA (see Sec. 6).

4 Learning-Driven Annealing
With Learning-Driven Annealing (LDA) we introduce
a framework for linking individual QA runs into a
global solution strategy to mitigate hardware limita-
tions, such as finite annealing times and integrated
control errors. LDA differs from other iterative strate-
gies in that it does not tune the annealing procedure
(e.g. annealing time or annealing schedule), but in-
stead learns about the problem structure (i.e. spin do-
mains) to systematically modify the problem Hamil-
tonian. LDA acts on the instantaneous energy spec-
trum in order to change the strength of QPTs be-
tween the energy valleys. This focuses the anneal-
ing evolution into a low-energy region of the Hilbert
space by suppressing QPTs into high-energy valleys.
LDA achieves this by replacing the problem Hamilto-

nian with a so-called feature Hamiltonian in the for-
ward anneal. The construction of this Hamiltonian is
based on the definition of the quantity qF (see Eq. (5))
and adapts the strength of biases and couplers in HP

based on learned information about the domain struc-
ture to energetically isolate low-energy valleys in the
instantaneous energy spectrum. This allows the an-
nealing evolution to successively reach deeper states
in the energy landscape.

The feature Hamiltonian, denoted as HF (α), is de-
fined w.r.t. a classical state α = αN−1 · · ·α1α0 for a
spin glass instance P = (h, J) as

HF (α) =
∑

(i,j)∈J α

Kij +
∑

i∈Hα

hiσ
z
i (8)

Kij = −|Jij |
2

[
αiαjσz

i σz
j + αiσ

z
i + αjσz

j

]
. (9)

Hα and J α denote the sets of satisfied biases and
couplers, respectively (see Eq. (2b) and (2a)). HF (α)
transforms the energy spectrum of P by retaining only
terms that are satisfied by α in P . This deforms the
energy landscape according to the quantity qF (see
Eq. (5)), by arranging the states based on both their
Hamming distance and energy distance from α, with
α becoming the new ground state (see Thm. C.1).

In Eq. (8) we use the transformation Jijσz
i σz

j −→ Kij

to lift the Z2 symmetry of the spin-spin couplers Jij

by introducing a penalty if either of the two spins i
and j does not match the reference state α, i.e.,

Kij |αi, αj⟩ = −3
2 |Jij |, Kij |αi, αj⟩ = 1

2 |Jij |
(10)

Kij |αi, αj⟩ = 1
2 |Jij |, Kij |αi, αj⟩ = 1

2 |Jij |.
(11)

Note that a factor of 1/2 is introduced in Eq. (9) to
ensure that the weighting of the modified couplers re-
mains consistent with the original problem Hamilto-
nian, with energy gaps of 2|Jij |. This transformation
corresponds to the condition αi = βi in Eq. (5) and
removes the degeneracy of the spin domains (i.e., each
domain now has only one GS). Since the domain’s de-
generacy is responsible for the existence of energy val-
leys (see Fig. 1c), removing the Z2 symmetry flattens
the energy landscape, while the restriction of HF (α)
to Hα and J α deforms the landscape in the direc-
tion of the reference state α (see Fig. 4b.1). As a
result, HF (α) is frustration-free (i.e., all couplers and
biases are satisfied in the GS α) and the modified en-
ergy landscape now increases monotonically with qF

from α (see Fig. 2). We remark that the monotonicity
holds only for the feature Hamiltonian HF , which will
be used henceforth to construct the updated problem
Hamiltonian (see Eq. 15 below).

Since the similarity measure qF is asymmetric, a
state β that lies deeper in the energy valley than α
(i.e., it is closer to the local minimum α∗ in terms
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Figure 4: Construction of HF M (e, Eq. (15)) for the 24-qubit spin-glass instance shown in Fig. 1, with λ = 0.1. The feature
Hamiltonian HF (b) is derived from four sampled states (a.1-4) using Eq. (12) and the bitmask M, with mi = 1 if the sampled
states agree in the i-th bit (this is the case for all non-white nodes shown in panel (b)). Panels (c) and (d) depict subsets of the
original problem Hamiltonian, constructed using Eq. (14), with (c) applying to the terms included in HF , and (d) addressing
the remaining biases and couplers. Panels (b-e.1) illustrate the corresponding energy landscapes of the Hamiltonians in (b-e),
with the four sampled states shown as black dots in (b.1).

of qF ) satisfies most of the biases and couplers al-
ready satisfied by α, along with additional terms.
Consequently, Hα ⊂∼ H

β and J α ⊂∼ J
β , such that

qF (α, β) ≈ 1. In this case, β is either a degener-
ate ground state or a weakly excited state of the fea-
ture Hamiltonian HF (α). In contrast, a higher-energy
state in P necessarily frustrates terms satisfied by α,
making it a highly excited state of HF (α) (cf. App. A
for a 16-qubit example). As a result, the modified en-
ergy landscape is nearly flat in the region of Hilbert
space lying deeper in the energy valley than α, termed
the search region, while outside this region the energy
increases monotonically with the Hamming distance
from α (see Thm. C.2 in App. C). The size of the
search region depends on the elements of Hα and J α,
referred to as features. These features represent the
information provided by α about the location of a
nearby local minimum α∗. If α is a high-energy state,
most biases and couplers in P are frustrated, leading
to a highly degenerate HF (α) with a large search re-
gion, as Hα and J α contain only few elements. This
situation changes as α approaches a local minimum
α∗. As the overlap between the satisfied terms of α
and α∗ increases, HF (α) incorporates more features
characterizing the local minimum, resulting in a pro-
gressively deformed energy landscape that narrows
the search region around α∗.

The monotonicity of the modified energy landscape
outside the search region suppresses all avoided level
crossings in the original instantaneous spectrum that
would drive the system out of the search region, as
they are now separated by large energy gaps. In par-
ticular, second-order QPTs that induce delocalized-

to-localized transitions into competing valleys are re-
moved, since these valleys are flattened in the modi-
fied landscape. Thus, the feature Hamiltonian HF (α)
energetically isolates an annealing path (i.e., a se-
quence of transitions and non-transitions at avoided
level crossings) in the original instantaneous spectrum
that confines the system to the search region. The
length of this annealing path (i.e., the number of tran-
sitions fixed by HF (α)) depends on the features pro-
vided by α and is therefore related to the size of the
search region.

In a forward anneal, the feature Hamiltonian con-
fines the dynamics to the search region. However, be-
cause the energy landscape remains nearly flat within
this region, it cannot resolve the original valley struc-
ture and identify the minimum α∗. As a result, the
system evolves into an almost equal superposition
over the search space. To address this, we reintro-
duce the original problem Hamiltonian HP within the
search region, yielding:

HF (α,M) =
∑

(i,j)∈J α

with mi=mj=1

λ ·Kij +
∑

i∈Hα

with mi=1

λ · hiσ
z
i ,

(12)

HP (M) =
∑
i<j

{
(1− λ) · Jijσz

i σz
j , if mi, mj = 1

Jijσz
i σz

j , else

(13)

+
∑

i

{
(1− λ) · hiσ

z
i , if mi = 1

hiσ
z
i , else

(14)
HF M(α,M) = HF (α,M) + HP (M) (15)
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with the bitmask M = mN−1 . . . m1 m0 controlling
the mixing of HP and HF (α) and the mixing param-
eter λ ∈ [0, 1] specifying the strength of the deforma-
tion of the energy landscape introduced by HF . Note
that for λ = 0, one recovers HF M(α,M) = HP , in-
dependent of M. HF M restores the original energy
relationship between the states in a local subspace
of the hypercube defined by M, while maintaining
the deformed energy landscape outside. In particu-
lar, M = 0 . . . 0 corresponds to using only the orig-
inal problem Hamiltonian HP , whereas M = 1 . . . 1
indicates that only the new feature Hamiltonian HF

is used.
If we constructM from a set of sampled states be-

longing to the same valley as α (i.e., setting mi = 1
if all sampled states share the same spin orientation
at site i, and mi = 0 otherwise), then HP is reintro-
duced only within the search region, thus recovering
the minimum α∗. This is because, spins aligned across
all states of a valley define the subspace of the hyper-
cube in which the valley resides. Hence applying the
feature Hamiltonian to these spins removes all com-
peting valleys from the energy landscape. Note that
α itself is not necessarily a GS of HF M. In the in-
stantaneous spectrum, this construction restores the
avoided crossings and associated dynamics within the
search region, while preserving the annealing path
that first brings the system into this region. Con-
sequently, LDA enables the system to evolve to a spe-
cific point in the original instantaneous spectrum and
then resume the dynamics from that point onward.
This, in turn, makes it possible to retry difficult seg-
ments of the spectrum (i.e., avoided crossings with
narrow gaps) until the transition is successfully tra-
versed.

Figure 4 illustrates an example of HF M constructed
from four sampled states (black dots in Fig. 4b.1).
The bitmask M has a 1 at each bit positions where
the sampled states agree. The corresponding fea-
ture Hamiltonian HF is shown in Fig. 4b, where the
rough energy landscape of the 24-qubit spin glass
(Fig. 1c) is transformed into a more monotonic land-
scape (Fig. 4b.1). Since the sampled states primarily
disagree on the features of the first domain, the land-
scape remains nearly flat between α and α. Incorpo-
rating the original problem Hamiltonian HP in this
domain (Fig. 4d) allows HF M resolving the locations
of the local minima |α, β, γ⟩ and |α, β, γ⟩. As a result,
all avoided crossings in the instantaneous spectrum
are removed, except for the transition between these
two valleys. This focuses the annealing dynamics on
the relevant subspace (Fig. 4e.1), enabling repeated
attempts to traverse the critical transition.

5 Hybrid optimization
LDA gives control over the exploration of the Hilbert
space in quantum annealing by integrating learned in-

formation about the domain structure into the design
of the problem Hamiltonian. By modifying the in-
stantaneous energy spectrum, LDA energetically iso-
lates local minima and creates a more monotonic en-
ergy landscape. Consequently, QPTs can be selec-
tively suppressed, restricting the quantum evolution
to a subspace of the hypercube.

In this section, we demonstrate how LDA can be
used in advanced protocols to solve hard spin-glass
instances. We introduce two algorithms, the local
search and the global search protocol, which use an
iterative application of LDA. Our hybrid optimizer is
constructed as an alternating series of these two algo-
rithms.

5.1 Local search protocol
The local search protocol is designed to converge from
an initial state α0 to a nearby local minimum α∗

through an iterative application of LDA. The proto-
col consists of two phases, a distribution and a con-
vergence phase.

In the distribution phase, the protocol generates
states that spread evenly around the initial state α0
(possibly with higher energies), by biasing the evo-
lution only weakly (i.e. λ ≪ 1). The goal is to iden-
tify those features from α0 that characterize α∗, while
ignoring terms that are violated in the spin domain
ground states. The assumption is that the common
features among the sampled states define a subset of
Hα∗

and J α∗
, providing a search area in the energy

landscape where the protocol assumes α∗ to be lo-
cated in. In the second phase, the protocol then con-
verges towards α∗, by focussing the annealing evolu-
tion onto the search area. This is achieved by deform-
ing the energy landscape outside the area using HF

(i.e. λ ≈ 1). Over multiple iterations of LDA, the
sets of sampled states gradually reveal the elements
of Hα∗

and J α∗
, shrinking the search area until the

local minimum is found.
Each iteration i of the protocol begins with the con-

struction of HF M(αi,Mi) (see Eq. (15)) using the
lowest-energy state αi and the bitmask Mi derived
from the previous iteration. For the first iteration
(i = 0, distribution phase), M0 = 1 . . . 11 is used.
The hyperparameter λ controls the amplification of
extracted features in HF M. It functions as an in-
verse temperature, reflecting the confidence that the
extracted features form a subset of Hα∗

and J α∗
.

The goal is to maintain α∗ as a ground state of HF M
throughout the iterations. Typically, a smaller λ indi-
cates a wider spread of sampled states, as the energy
landscape is less deformed (see Fig. 5a). We use a
geometric schedule

λ(i) = λs ·
(

λf

λs

) i
I−1

, (16)

that scales between λs and λf , with I denoting the
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Figure 5: Two iterations of the local search protocol applied
to the 24-qubit spin-glass instance shown in Fig. 1a. The
protocol is executed with QT = 0.98 and NT = 5, using (a)
λ = 0.2 for the first and (b) λ = 1.0 for the second iteration.
The top panels depict the energy landscape (E) of HF M in
the first and second iteration, respectively. Black dots rep-
resent 2000 samples from a quantum annealing simulation
(T = 10), with the probability density (P ) shown on the bot-
tom plane. Red dots indicate the subset T . The initial state
α0 of the first iteration (panel a) is marked as a red dot in
Fig. 1c. The color scales are consistent with those in Fig. 1c.
Panels (a-b.1) display the instantaneous energy spectrum of
the transverse field Ising model with HF M for each iteration.
The energy levels correspond to those in Fig. 3, where the
color of the lines indicates the association to the eight valleys
in the energy landscape of HP . A linear annealing schedule
Γ(t) is used throughout as an example. Panels (a-b.2) show
the adiabatic ratios g (see Eq. (7)) for the states shown in
panels (a-b.1), respectively.

total number of Iterations.
In total, NS states are generated in each iteration

and stored in the set S. To construct the bitmaskM,
the states are sorted in increasing order of their energy
in the original problem Hamiltonian HP . A loop then
traverses the states γ ∈ S and includes them in a
subset T if

|T | ≤ NT − 1 and qF (β, γ) ≤ QT ∀ β ∈ T , (17)

where NT < NS and QT are LDA parameters. This
extracts a dispersed set from the sampled states,

where the second condition ensures that all states
have a minimum distance w.r.t. qF (i.e., they do
not cluster together) and are uniformly distributed
around α∗. The bitmask M = mN−1 . . . m1 m0 is
determined by

mi =
{

1, if |
∑

β∈T βi| = NT

0, else
, (18)

such that bit mi is only set if all states β ∈ T have the
same bit βi, and αi+1 = S[0]. The protocol continues
iterating until αi = αi+1 or i = I − 1, with αi being
the local minimum. The full algorithm is detailed in
Protocol 1.

Figure 5 shows two iterations of the local search
protocol applied to the 24-qubit spin-glass instance
depicted in Fig. 1a, using QT = 0.98 and NT = 5.
The initial state α1 is marked as a red dot in Fig. 1c.
Figures 5a-b.1 demonstrate how the local search pro-
gressively identifies the red curves as corresponding to
the valley of the local minimum (α, β, γ), separating
it in the instantaneous energy spectrum and suppress-
ing QPTs into other valleys (shown in other colors).
Consequently, the evolution is increasingly confined
around the local minimum, until it is sampled with
high probability.

Protocol 1 Local search

Input: α0 ▷ Initial state
HP ▷ Problem Hamiltonian
NS ▷ Size of S
NT ▷ Size of T
QT ▷ Max. similarity between states in T
λs, λf ▷ Initial and final mixing strength
I ▷ Number of iterations
T ▷ Annealing time

Output: α∗ ▷ Local minimum near α0

1: procedure Local search
2: M← 1 . . . 11
3: for i in range (0, I) do
4: λ← update λ (i) ▷ Eq. 16
5: HF M ← generate HF M (HP , αi,M, λ) ▷

Eq. 15
6: S ← sample (HF M, NS , T )
7: T ← select samples (S, HP , NT , QT ) ▷

Eq. 17
8: M← update M (T ) ▷ Eq. 18
9: αi+1 ← T [0]

10: if αi = αi+1 then
11: return αi

12: return αI
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5.2 Global search protocol
The global search protocol is designed to transition
from an initial local minimum α∗ to a state of a
lower-energy valley. The protocol differs from the lo-
cal search, as it does not directly search around α∗,
but uses this state as a reference for LDA to grad-
ually filter out higher-energy valleys from the energy
landscape. This allows the protocol to overcome large
energy barriers, finding lower-energy valleys even at
large Hamming distances. Note that the protocol of-
ten identifies excited states of the new valley, requiring
a subsequent local search to locate the corresponding
local minimum.

To reach a new valley in the energy landscape,
the global search transitions between the degener-
ate ground states of at least one domain, by flipping
its O(N/Ndom) spins in α∗. Notably, the procedure
does not require knowledge about the domain loca-
tions, as the domain structure is inferred from the
hierarchy of local minima [22]. This hierarchy arises
from differences in domain sizes and inter-domain cou-
plings, leading to different energy gaps between do-
main ground states. This means that a set S of en-
ergetically similar sampled states (distributed across
many valleys) is more likely to align in domains where
the two ground states are energetically well-separated,
than in domains that only weakly influence the state
energies. In such cases, the optimal ground state
in these domains can be partially derived from the
aligned spins in S. Consequently, domains where the
spins in S and α∗ match indicate that α∗ resides in
the lower-energy ground state. The bitmask M is
then applied to focus the annealing on the remaining
domains. Through successive iterations, this strategy
gradually substitutes the problem Hamiltonian HP

with the feature Hamiltonian HF (α∗), aligning the
domains with α∗ and eliminating QPTs into higher
energy valleys. Eventually, HP is only applied to the
subspace of suboptimal domains, such that a state
from a lower-energy valley can be sampled with high
probability.

The protocol begins with the unmodified problem
Hamiltonian HF M = HP and M = 0 . . . 0 0. Run-
ning LDA NS times generates the set of sampled
states S, from which the subset T is constructed anal-
ogously to the local search protocol (see Eq. 17 in
Sec. 5.1). Importantly, α∗ is appended to T , and the
bitmask M for the next iteration is determined us-
ing Eq. (18). The protocol continues until a state
with lower energy than α∗ is identified or i = I − 1.
Notably, λ ≈ 1 is used for fast convergence. The com-
plete algorithm is presented in Protocol 2.

It is worth noting that the protocol may return to
the original valley of α∗. To mitigate this, we im-
pose the condition qF (α∗, β) ≤ Qα∗ ∀ β ∈ T , where
the hyperparameter Qα∗ denotes the maximum sim-
ilarity between the selected states and α∗, effectively
ensuring a minimal Hamming distance between them.

Figure 6: Two iterations of the global search protocol ap-
plied to the 24-qubit spin-glass instance shown in Fig. 1a,
using QS = 0.98, Qα∗ = 0.9, NT = 5, and λ = 1.0. (a)
and (b) depict the energy landscape (E) of HF M during
the first and second iterations, respectively. Black dots rep-
resent 2000 samples from a quantum annealing simulation
(T = 10), with the probability density (P ) projected onto
the bottom plane. Green dots indicate the subset T . Green,
brown and yellow dots indicate T from the first iteration
with HF M = HP in Fig. 1c. |α, β, γ⟩ is the initial local min-
imum α∗ (red diamond). The color scales are consistent with
those in Fig. 1c. Panels (a-b.1) display the instantaneous en-
ergy spectrum of the transverse field Ising model with HF M
for each iteration. The energy levels correspond to those in
Fig. 3, where the color of the lines indicates the association
to the eight valleys in the energy landscape of HP . A linear
annealing schedule Γ(t) is used throughout as an example.
Panels (a-b.2) show the adiabatic ratios g (see Eq. (7)) for
the states shown in panels (a-b.1), respectively.

This acts as a search radius, with smaller Qα∗ values
generally leading to valleys farther from α∗. This con-
dition can also be applied to previously identified local
minima to guarantee the exploration of an unvisited
valley.

Figure 6 presents two iterations of the global search
protocol applied to the 24-qubit spin-glass instance
depicted in Fig. 1a, using parameters QT = 0.98,
Qα∗ = 0.9, NT = 5 and λ = 1.0. The state (α, β, γ)
(red diamond) is selected as the initial local minimum
α∗. In the first iteration (see Fig. 6a), the protocol
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identifies α as the optimal ground state of the first do-
main, followed by identifying γ as the optimal ground
state of the third domain in the second iteration (see
Fig. 6b). As a result, the protocol progressively iso-
lates the valleys corresponding to the states (α, β, γ)
(red curves) and

(
α, β, γ

)
(green curves) in the in-

stantaneous energy spectrum (see Fig. 6b.1), yielding
states from the latter (green dots in panel b) with
high probability.

Protocol 2 Global search

Input: α∗ ▷ Initial local minimum
HP ▷ Problem Hamiltonian
NS ▷ Size of S
NT ▷ Size of T
QT ▷ Max. similarity between states in T
Qα∗ ▷ Max. similarity to α∗

λ ▷ Mixing strength
I ▷ Number of iterations
T ▷ Annealing time

Output: β ▷ State from a lower-energy valley

1: procedure Global search
2: M← 0 . . . 00
3: for i in range (0, I) do
4: HF M ← generate HF M (HP , α∗,M, λ) ▷

Eq. 15
5: S ← sample (HF M, NS , T )
6: T ← select samples (S, HP , NT , QT ) ▷

Eq. 17
7: T ← T + [α∗]
8: M← update M (T ) ▷ Eq. 18
9: β ← T [0]

10: if Eβ < Eα∗ then
11: return βi

12: return β

6 Benchmarks
We assess the performance of the proposed hybrid
solver with LDA against other quantum and classi-
cal methods on large spin-glass instances. We focus
on random spin glasses that can be natively mapped
onto currently available D-Wave Advantage1 QPUs.
Specifically, we investigate 10 NAT-7 [24, 30] in-
stances that almost fully utilize the Advantage1 5.4
QPU [1], using 5, 580 qubits and 39, 898 couplers. The
instances are generated by assigning random coupling
strengths J to each coupler, where J is uniformly cho-
sen from the set J = {±1/7, ±2/7, . . . , ±1}. No bi-
ases h are applied to the qubits, maintaining a global
Z2 symmetry. Using multiples of 1/7 ensures that
the problem and feature Hamiltonians are well within

the precision limits of the QPU [16]. Moreover, the
use of a non-Sidon [46] set (i.e., the pairwise sum of
two elements from the set can be an element of the
set again) allows for vanishing fields and causes degen-
eracies between states. The problem instances are de-
signed to feature numerous low-energy local minima,
that have energies within a percent of the ground state
energy but are separated by large energy barriers (i.e.,
dham = O(102); O here denotes order of magnitude in
the physics convention rather than asymptotic scaling
in the computer-science convention). This enables us
to investigate the capability of quantum and classical
solvers to navigate rough energy landscapes.

Figure 7 presents the benchmarking results of var-
ious quantum and classical algorithms for the NAT-7
instances, with the relative energy to the best state
detailed as a function of runtime for the first problem
instance in panels (a)–(e). Results for the remain-
ing instances are summarized in panels (f.1-5) (for
reference, comparisons in terms of absolute energies
are given in Fig. 11 in App. E). For each problem
instance i, a reference state Ψi (black dots) is de-
termined, which is the lowest-energy state obtained
from a forward annealing run on the D-Wave Advan-
tage1 5.4 QPU, using an annealing time of 2ms and
generating 2000 samples. This reference state Ψi is
used to initialize the proposed hybrid solver and other
quantum strategies, to ensure a fair comparison with
regard to the use of the QPU to explore the energy
landscape.

Panel 7a shows results of the proposed hybrid
solver executed on the D-Wave Advantage1 5.4 QPU.
The two stages of the algorithm are distinguished by
marker shape: squares denote 8 iterations of the lo-
cal search protocol, while diamonds represent 8 itera-
tions of the global search protocol. Starting from Ψ1,
the solver produces 2000 samples per iteration with
an annealing time of 2ms and spin-reversal transfor-
mations enabled (see App. B). Examples of sampled
states for the two protocols are shown in App. D. The
solver achieves the best energy of −9828.14 (∆E = 0)
within 4 cycles, corresponding to a wall-clock runtime
of ≈ 6 minutes. This runtime includes both active
CPU time and QPU access time reported by D-Wave,
but excludes QPU queue waiting time. The classi-
cal processing overhead of LDA amounts to ≈ 49s,
or ≈ 13.5% of the total runtime, due to serial post-
processing of the sampled states. Notably, this over-
head could be reduced substantially through paral-
lelization.

For comparison, panel 7d presents the lowest ener-
gies (orange dots) from 30 independent runs on the
QPU for the unmodified problem Hamiltonian us-
ing the same annealing parameters as before. The
data shows that the QPU samples a mean energy of
∆E ≈ 30.51 (see dotted orange line) with a root-
mean-square deviation of σ∆E ≈ 2.18. Already the
first iteration of the local search (first square in (a))
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Figure 7: Performance comparison of various quantum and classical solver on 10 random 5580-qubit NAT-7 spin-glass in-
stances. (a)–(e) Relative energy to the best solution as a function of algorithm runtime for the first problem instance. Note
that only the active QPU and CPU runtimes are reported, thus excluding queue waiting times. Classical code was executed
on the JUWELS Booster supercomputer [23]. (a) The proposed hybrid solver using the D-Wave Advantage1 5.4 QPU for
sampling (2ms annealing time, spin-reversal transformation, 2000 samples per run). (b) The proposed hybrid solver using SA
from the D-Wave Neal SDK [15] for sampling (500, 000 sweeps, 200 samples, 48 threads on an Intel Xeon Platinum 8168
CPU). In both panels, squares denote the local protocol (8 iterations) and diamonds show the global protocol (8 iterations). (c)
4 executions of SA using JUPTSA [20] (Intel Xeon Platinum 8168 CPU with 48 threads) and a geometric annealing schedule
form β = 0.1 to β = 10 with 600K (≈ 10m), 4M (≈ 1h), 40M (≈ 10h), and 96M (≈ 24h) spin evaluations. (d) Quan-
tum algorithms on the D-Wave Advantage1 5.4 QPU: forward annealing (orange dots, annealing schedule: [(0, 0), (2000, 1)],
2000 samples, spin-reversal transformation, mean: orange dotted line); reverse annealing [39] (purple dots, annealing sched-
ule: [(0, 1), (200, 0.7), (1800, 0.7), (2000, 1)], reinitialize state=false, 2000 samples, spin-reversal transformation, mean: purple
dotted line); cyclic annealing [51, 57] (pink dots, h-gain schedule: [(0, 0), (1, 0.03), (4, 0.03), (2000, 0)], annealing schedule:
[(0, 1), (1, 1), (4, 0.7), (2000, 1)], 2000 samples, spin-reversal transformation). (e) Proprietary/classical solvers: Gurobi [19]
(yellow dots), D-Wave hybrid [14] (teal dots, classified as a classical solver here as the QPU access time was ≲ 1% of the
total runtime) using 1m, 10m and 1h time limits, Toshiba’s SBM algorithm [49] implemented in Ref. [37] (brown dots; 4
Nvidia H100 GPUs) and VeloxQ [21, 37] (light blue dots; 4 Nvidia H100 GPUs; instance specific tuning of parameters). (f.1-5)
Cumulative results of all 10 NAT-7 instances and solvers. Note, that for each problem instance i the proposed hybrid solver
(both QPU and SA sampling), reverse- and cyclic-annealing, and Gurobi use the same initial state Ψi (black dot), which is
the lowest-energy state obtained from a single forward annealing run on the D-Wave Advantage1 5.4 QPU (2ms annealing
time, spin-reversal transformation, 2000 samples). See App. B for a detailed description of the QPU settings.
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is significantly below this energy, with ∆E ≈ 23.43.
This demonstrates that LDA effectively guides the
system through the instantaneous energy spectrum
by focussing the dynamics on critical transitions, i.e.,
avoided crossings with small gaps, thereby allowing
the system to repeatedly attempt traversing them. As
a result, LDA gradually eliminates avoided crossings
from the spectrum and thereby reach deeper regions
of the energy landscape that are inaccessible within
the annealing time of the QPU.

While LDA is primarily designed to suppress QPTs
during QA, the gradual simplification of the en-
ergy landscape can also benefit classical sampling
techniques such as simulated annealing (SA), TABU
search, and evolutionary algorithms. To explore this
potential, we replace QPU sampling in our hybrid
solver with SA in Panel 7b. For convenience, we
employ the SA implementation from the D-Wave
Neal SDK [15], generating 200 samples with 500, 000
sweeps on 48 threads of an Intel Xeon Platinum 8168
CPU, initialized from Ψ1 (black dot). With SA, the
hybrid solver identifies the best energy within a single
cycle in ≈ 30min. Although classical sampling with
SA is considerably slower than QPU sampling (not-
ing that runtime could be reduced with more com-
putational ressources), this result demonstrates that
LDA is applicable beyond QA. Moreover, other clas-
sical sampling methods combined with LDA may con-
verge even faster to the solution state, though we leave
a detailed study on classical sampling for future work.

In the context of QA, the success of the SA-based
hybrid solver highlights a general property of LDA:
the ability to reach the GS does not depend on the
quality of the sampled states. Lower-quality samples
merely increase the number of cycles required to reach
the GS. In this experiment, the SA-based version con-
verged in fewer cycles than the QPU version, as it
produced lower-energy samples. This indicates that
LDA is broadly applicable to a wide range of NISQ
devices, where QA is limited by integrated control
errors and finite annealing times [1, 16], since conver-
gence speed (i.e., number of cycles) naturally adapts
to the available coherence time.

In panel 7c, we present results from conventional
SA using a parallel SA software called JUPTSA [20]
with 48 threads. A total of 4 runs was conducted
with a geometric annealing schedule from β = 0.1
to β = 10, and 600K (≈ 10m), 4M (≈ 1h), 40M
(≈ 10h), and 96M (≈ 24h) spin evaluations. Notably,
with an energy of ∆E ≈ 3.14, SA does not reach the
best energy within the 24h time limit, emphasizing
the difficulty of the problem instance. Compared to
panels (a) and (b), our hybrid solver finds the final
energy of the 24h run in 168.13s and 961.45s using
QPU and SA sampling, respectively. This speed-up
is the result of the proposed local and global search
protocols, and highlights their efficiency in navigating
the rough energy landscape and locating low-energy

valleys. The comparison of panels (b) and (c) also re-
veals that short annealing runs are better for LDA, as
it gives the algorithm greater control over the time-
evolution to focus the dynamics into promising re-
gions of the Hilbert space.

This observation is further supported by the results
of alternative quantum algorithms shown in panel 7d,
which make use of advanced programming features
of D-Wave QPUs. The first ansatz we examine is
reverse annealing using the IRA scheme [39] as dis-
cussed in Sec. 3 (purple dots). Initializing the sys-
tem in the state Ψ1 (black dot), we execute in to-
tal 30 runs on the QPU, with reinitialize state=false
and [(0, 1), (200, 0.7), (1800, 0.7), (2000, 1)] as the an-
nealing schedule (see App. B). Each dot denotes the
lowest-energy state of 2000 samples from each itera-
tion. The data shows that reverse annealing improves
on the initial energy, but fails to reach the best energy
with a mean of ∆E ≈ 25.26 (see dotted purple line)
with a root-mean-square deviation of σ∆E ≈ 1.94.
As discussed in Sec. 3, this is likely because reverse
annealing is constrained by the QPU’s effective tem-
perature.

The second strategy we investigate termed cyclic
annealing (pink dots) was proposed by Wang et
al. [51, 57] and combines reverse annealing with
the h gain schedule feature (which controls the
function b(t) in Eq. (20), see App. B) to cycle around
the tricritical point of the many-body localization
transition [35]. This is achieved using a reference
Hamiltonian that encodes the initial state of each cy-
cle through local biases. The strength of this reference
Hamiltonian is controlled via the h gain schedule
[(0, 0), (1, 0.05), (40, 0.05), (2000, 0)]. The
reverse annealing schedule is
[(0, 1), (1, 1), (40, 0.4), (2000, 1)]. Although cyclic
annealing achieves lower energies than reverse an-
nealing alone (best energy at ∆E ≈ 20.90), we
observe that each cycle results in only minor changes
to the bit string, with O(101) Hamming distance
between initial and final state (for comparison, the
proposed global search protocol achieves O(102) bit
flips). As a result, cyclic annealing often becomes
trapped in local minima. This behavior likely arises
from the design of the reference Hamiltonian, which
biases states based on their Hamming distance to the
initial state, restricting the search to nearby states.
Given that energy barriers can span O(102) bits,
cyclic annealing is unlikely to transition between
energy valleys, instead requiring exponentially many
restarts to locate the GS.

As a result, all tested purely QPU-based strategies
fail to find the best energy on the D-Wave Advantage1
5.4 QPU. While future generations of QPUs might be
able to natively sample the best energy, our SA results
(panels b, c) indicate that a hybrid protocol, modify-
ing the problem Hamiltonian according to Eq. (15),
might still be the best choice for practical quantum
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computation, as it can guide the evolution more ef-
fectively (panel a).

As our final benchmark, we consider propri-
etary/classical solvers in panel 7e. These in-
clude Gurobi [19] (yellow dots), D-Wave hybrid [14]
(teal dots), and two quantum-inspired-algorithms
(QIA): Toshiba’s simulated bifurcation machine
(SBM) [49] implemented in Ref. [37] (brown dots),
and VeloxQ [21, 37] (light blue dots). Note that QIA
are often regarded as a classical baseline for quantum
algorithms [56]. For Gurobi, we conducted two exe-
cutions: one without an initial state and one initial-
ized with the state Ψ1 (black dot). Both executions
had a 24h time limit. Only the results of the second
run are shown, as the first run failed to achieve an
energy lower than ∆E ≈ 474.57. Using the initial
state, Gurobi improves within the first minute, reach-
ing an energy of ∆E ≈ 24.2857. However, subsequent
progress was minimal, with the only improvements oc-
curring to the lower-bound energy of the ground state,
such that the best energy was not reached within the
24h runtime. Regarding D-Wave hybrid, we evalu-
ated runtimes of 1min, 10min, and 1h, with the latter
reaching an energy of ∆E ≈ 17.71. Throughout these
runs, QPU access time was ≲ 1% of the total run-
time, suggesting the solver operated predominantly as
a classical solver. The poor QPU utilization is likely
due to the difficulty of finding a suitable embedding
for the problem. Toshiba’s SBM and VeloxQ achieve
energies of ∆E ≈ 26.72 and ∆E ≈ 9.14, respectively.
Note that both QIA solvers were executed on substan-
tially more powerful classical hardware (four Nvidia
H100 GPUs) compared to the other classical solvers
(Intel Xeon Platinum 8168 CPU). We remark that
the lowest energies were found by SA and our hy-
brid solver, while all investigated proprietary classical
solvers would likely require longer runtimes or more
computing resources to reach similar energies.

In panel (f), we present the cumulative results for
the 10 problem instances. Across all instances, we
observe consistent qualitative behavior for the evalu-
ated algorithms. Notably, the proposed hybrid solver
(both the QPU and SA implementation) finds the low-
est energy across all investigated problem instances,
surpassing the other algorithms in both lowest energy
and total runtime. Only for the fifth and ninth spin-
glass instance, SA is able to match the energy of the
proposed hybrid solver in the 24h run.

7 Conclusion
In this work, we have introduced Learning-Driven An-
nealing (LDA), a framework designed to link individ-
ual quantum annealing (QA) runs into a global so-
lution strategy to mitigate hardware constraints such
as finite annealing times and integrated control er-
rors. LDA differs from other iterative strategies in
that it does not change the annealing procedure (i.e,

annealing schedule or annealing time). Instead, it
learns about the problem structure (i.e. the spin do-
mains) to adaptively modify the problem Hamilto-
nian HP . LDA replaces HP with a so-called feature
Hamiltonian HF to iteratively eliminate QPTs in the
instantaneous energy spectrum. HF is defined w.r.t. a
reference state α, retaining only the biases and cou-
plers from HP that are satisfied by α. These retained
terms, called features, encode the location of a nearby
local minimum α∗ in the energy spectrum.

We have demonstrated that HF deforms the energy
landscape according to both the Hamming distance
and the energy distance from α. When combined with
a bitmaskM that restricts the application of the fea-
ture Hamiltonian to a subset of spins, the time evo-
lution through the instantaneous energy spectrum is
partially set, allowing LDA to concentrate the dynam-
ics on critical transitions with small energy gaps. This
is achieved by gradually removing competing valleys
from the energy landscape. In this way, LDA iter-
atively eliminates avoided crossings to access states
deep within the energy valley that would otherwise
remain inaccessible within the QPU’s annealing time.

To demonstrate the efficacy of LDA, we have devel-
oped a hybrid quantum-classical solver for large-scale
spin-glass problems. The solver alternates between a
local and global search protocol, both using an itera-
tive application of LDA.

The local search protocol converges from an initial
state α0 to a nearby local minimum α∗. It begins with
a distribution phase that scatters the system around
the initial state to identify characteristic features of
the energy valley, followed by a convergence phase
that gradually narrows the search area to isolate α∗.
Numerical simulations on a 24-qubit spin-glass con-
firmed that this approach isolates the energy valley
of α∗ in the instantaneous energy spectrum, ensuring
that the search is restricted to transitions within the
valley.

The global search protocol transitions from a local
minimum α∗ to a state in a lower-energy valley by
leveraging the hierarchy of local minima. Using α∗

as a reference, the protocol identifies spin domains in
suboptimal configurations and gradually replaces the
problem Hamiltonian HP with the feature Hamilto-
nian HF . Through numerical simulation, we verified
that this process isolates lower-energy valleys in the
instantaneous energy spectrum, allowing the system
to cross high and wide energy barriers and reach a
lower-energy valley even at large Hamming distances.

We have benchmarked the proposed hybrid solver
against leading quantum and classical methods, in-
cluding reverse annealing [12], cyclic annealing [51,
57], simulated annealing [20], Gurobi [19], Toshiba’s
SBM [49], D-Wave hybrid [14] and VeloxQ [21, 37], on
5580-qubit NAT-7 [24, 30] spin-glass instances. The
results show that the proposed hybrid solver outper-
forms all competing algorithms in both runtime and
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lowest energy using both QPU sampling from the D-
Wave Advantage1 5.4 and SA sampling. Remarkably,
none of the other methods matched the best energies
found by the proposed hybrid solver within a 24h time
limit (except for SA in the fifth and ninth problem
instance), effectiveness of our protocols in exploring
rugged energy landscapes and identifying low-energy
valleys, even for large-scale instances.

It is important to emphasize that these results do
not demonstrate a quantum advantage, as the same
energies obtained with QPU sampling can also be re-
produced by combining LDA with classical SA. Nev-
ertheless, our experiments on real quantum hardware
show that LDA effectively mitigates hardware limi-
tations of NISQ devices (particularly short coherence
times) by systematically guiding the time evolution
through the instantaneous spectrum. This indicates
that, in principle, NISQ devices could solve any COP
that can be embedded onto the hardware using LDA,
although further studies are needed to assess the ap-
plicability of our local and global search protocols
to other problem classes. Moreover, LDA could be
integrated with hybrid quantum–classical sampling
strategies (e.g., combining classical local search with
QPU-based global search), potentially enabling even
faster convergence. Overall, LDA represents a step
toward practical quantum optimization by providing
classical control over the quantum time evolution, al-
lowing current quantum annealers to compete with
state-of-the-art classical solvers in both runtime and
solution quality.
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Supercomputing Centre (JSC). The authors grate-
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Juptsa: Jülich parallel tempering simulated an-
nealer, in house software, 2024.

[21] P. Hanussek, J. Paw lowski, Z. Mzaouali, and
B. Gardas. Solving quantum-inspired dynam-
ics on quantum and classical annealers. 2025.
DOI: 10.48550/arXiv.2509.03952. URL https:
//arxiv.org/abs/2509.03952.

[22] G. Hed, A. K. Hartmann, D. Stauffer, and E. Do-
many. Spin domains generate hierarchical ground
state structure in j = +/-1 spin glasses. Physi-

cal Review Letters, 86(14):3148–3151, 2001. ISSN
0031-9007. DOI: 10.1103/PhysRevLett.86.3148.
URL https://www.researchgate.net/publi
cation/12044094_Spin_Domains_Generate_Hi
erarchical_Ground_State_Structure_in_J_1
_Spin_Glasses.
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A Asymmetry of qF

Figure 8 compares the similarity measure qF for two
reference states α and β on a 16-qubit spin-glass in-
stance with four energy valleys. Here, α corresponds
to the global minimum, while β is a state located in
the same energy valley. Both states have a Hamming
distance of dham = 2. The problem graph shown in
panel (a) reveals that the satisfied terms J α,J β and
Hα,Hβ coincide for most couplers and biases, indi-
cated in green. State α satisfies five couplers not satis-
fied by β (shown in blue), whereas β satisfies three ad-
ditional couplers and two biases (shown in red). Panel
(b) depicts qF for both reference states across all com-
putational basis states γ, highlighting the asymmetry
of the similarity measure. Notably, while the global
minimum (at qF (α, γ) = 1) also yields qF (β, γ) ≈ 1,
the reverse overlap qF (α, β) is significantly smaller.
This demonstrates that qF is intrinsically biased to-
ward lower-energy states. As a result, the feature
Hamiltonian on average guides the system down an
energy valley.

B QPU settings
The time-dependent Hamiltonian implemented on the
D-Wave Advantage1 5.4 QPU is defined as

HQA(t) =− A (s(t))
2

[∑
i

σi
x

]
(19)

+ B (s(t))
2

b(t) ·
∑

i

hiσ
i
z +

∑
i<j

Jijσi
zσj

z

 ,

(20)

where hi and Jij represent the linear and quadratic
terms of the problem Hamiltonian HP , respectively.
The function s(t) ∈ [0, 1] parameterizes the annealing
schedule for which A and B are the strengths of the
driving and problem Hamiltonians, respectively (the
particular functions A(s) and B(s) for the QPU used
are shown in [1]). The function b(t) is called h gain
schedule.

For forward annealing, we use s(t) = t/T and
b(t) = 1, where T is the total annealing time. Ad-
ditionally, we apply a spin-reversal transformation to
HP for every batch of 400 samples from the QPU.
This transformation involves generating a random bi-
nary string r ∈ {±1}N

and modifying the problem
terms via hi −→ hiri and Jij −→ Jijrirj . Sampled
states α are transformed back using αi −→ αiri. We
use the spin-reversal transformation to mitigate mem-
ory effects on the QPU when rapidly submitting sim-
ilar problems.

Reverse annealing is realized by changing the an-
nealing schedule via s(t) to begin at s(0) = 1 where
B(s) ≫ A(s). The schedule is specified as a series of
tuples [t/T, s] (see Sec. 6), with linear interpolation

between points. Inspired by [13], we use a sched-
ule with a symmetric pause, by first annealing to
an intermediate value 0 < s′ < 1, holding s′, and
then returning to s = 1. For the large spin glasses
under investigation, we found s′ = 0.7 to be opti-
mal. For all reverse annealing runs, we set reinitial-
ize state=false, initializing each run from the previ-
ously sampled state.

Cyclic annealing uses both reverse annealing and
the QPU’s h gain feature, which introduces a time-
dependent gain b(t) for the linear terms hi in HP .
Similar to s(t), b(t) is defined as series of tuples
[t/T, b], with linear interpolation between points.
Since the large spin glasses under investigation have
no linear biases (i.e., hi = 0), we use these terms to en-
code the initial state α of each cycle, setting hi = −αi.
The schedules for s(t) and b(t) are inspired by [57].

C Properties of HF

Theorem C.1. Given the feature Hamiltonian
HF (α) (see Eq. (8)) to a reference state α, then α
is a ground state of HF (α).

Proof. Let HF (α) be the feature Hamiltonian to a
reference state α = αN−1 . . . α1α0 and let β =
βN−1 . . . β1β0 be an arbitrary state, with αi, βi ∈
{−1, 1}. Then

Eβ = ⟨β|HF (α) |β⟩ (21)

=
∑

(i,j)∈J α

−|Jij |
2 · [αiαjβiβj + αiβi + αjβj ]

(22)

+
∑

i∈Hα

hiβi. (23)

For each term in the first sum, we have

αiαjβiβj + αiβi + αjβj

=


3 if (βi, βj) = (αi, αj)
−1 if (βi, βj) = (αi, αj)
−1 if (βi, βj) = (αi, αj)
−1 if (βi, βj) = (αi, αj)

, (24)

so Eq. (22) is minimal if (βi, βj) = (αi, αj) for all
(i, j) ∈ J α. Similarly, for the second sum in Eq. (23),
we have

hiβi < 0⇔ βi = αi, (25)

by the definition ofHα (see Eq. (2b)) Thus, the energy
Eβ is minimal if β = α. Therefore, α is a ground state
of HF (α).

Theorem C.2. Given the feature Hamiltonian
HF (α) (see Eq. (8)) to a reference state α, then the
energy Eβ of an arbitrary state β ̸= α (see Eq. (21))
is monotonic as a function of Hamming distance
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dham(α, β) from α. This means that there exists a
path from β to α via dham(α, β) successive single bit
flips, each of which either maintains or decreases the
energy.

Proof. Let HF (α) be the feature Hamiltonian to
a reference state α = αN−1 . . . α1α0, and let
β = βN−1 . . . β1β0 be an arbitrary state such
that α ̸= β, with αi, βi ∈ {−1, 1}. To prove
the statement, we construct a path P = (α =
γ(0), γ(1), . . . , γ(dham(α,β)−1) = β) with monotonically
increasing energies.

Let γ(0) = γ
(0)
N−1 . . . γ

(0)
1 γ

(0)
0 = α. Then by

Lem. C.1, γ(0) is a ground state of HF (α), with all
terms in Eγ(0) giving only negative contributions. To
construct the path P , we define the step from γ(n) to
γ(n+1) for n = 0, . . . , dham(α, β) − 2. The energy of
γ(n) is, according to Eq. (24),

Eγ(n) =
∑

(i,j)∈J α

(γ
(n)
i

,γ
(n)
j

)=(αi,αj)

−3|Jij |
2 (26)

+
∑

(i,j)∈J α

(γ
(n)
i

,γ
(n)
j

)=(αi,αj)

|Jij |
2 (27)

+
∑

(i,j)∈J α

(γ
(n)
i

,γ
(n)
j

)=(αi,αj)

|Jij |
2 (28)

+
∑

(i,j)∈J α

(γ
(n)
i

,γ
(n)
j

)=(αi,αj)

|Jij |
2 (29)

+
∑

i∈Hα

hiγ
(n)
i . (30)

Let i ∈ {0, . . . , N−1} be the first bit for which γ
(n)
i ̸=

βi and set γ(n+1) to be the state with the single bit i

flipped, i.e., γ(n+1) = γ
(n)
N−1 . . . γ

(n)
i+1βiγ

(n)
i−1 . . . γ

(n)
0 . If

bit i occurs in the set J α (see Eq. (2a)), this sin-
gle bit flip will either increase the energy of the cou-
pling contribution by moving terms from Eq. (26) to
Eq. (27) or Eq. (28)—thereby increasing the energy
by multiples of 2|Jij |—or it will maintain the energy
by moving terms from Eq. (27) or Eq. (28) to Eq. (29).
Similarly, if bit i occurs in the set Hα (see Eq. (2b)),
the bit flip will increase the energy of the bias con-
tribution in Eq. (30) by 2|hi|. Thus each step from
γ(n) to γ(n+1) for n = 0, . . . , dham(α, β)−2 will either
increase or maintain the energy. After N iterations,
γ(dham(α,β)−1) = β by the definition of the Hamming
distance. Therefore, P is a path of states with mono-
tonically increasing energies.

D Illustration of the local and global
search protocol
Figures 9 and 10 show representative illustrations
of the local and global search protocols applied to
the first 5580-qubit NAT-7 spin-glass instance (see
Fig. 7), respectively. They depict the set of sampled
states S, the set of selected states T and the feature
Hamiltonian HF M across four iterations of the pro-
tocols.

E Benchmarking results of NAT-7 in-
stances
Figure 11 compares the benchmarking results of the
investigated quantum and classical solvers in Sec. 6
within the 10 NAT-7 spin-glass instances. The figure
is based on the same data shown in Fig. 7 but high-
lights the absolute energies found by each solver. Note
that the problem instances are designed to feature nu-
merous low-energy local minima, that have energies
within a percent of the ground state energy but are
separated by large energy barriers (dham = (100)).
This allows us to study the solvers’ ability to navi-
gate rough energy landscapes. Consequently, the en-
ergy differences between solvers are typically small
relative to the overall energy scale of the problems,
but their corresponding states exhibit a large Ham-
ming distance dham from one another. The proposed
hybrid solver (both QPU and SA sampling), reverse-
and cyclic-annealing, and Gurobi use the same initial
state Ψi (black dot), which is the lowest-energy state
obtained from a single forward annealing run on the
D-Wave Advantage1 5.4 QPU (2ms annealing time,
spin-reversal transformation, 2000 samples).
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Figure 8: Asymmetry of the similarity measure qF w.r.t. the global minimum α and a state β located in the global minimum
well. (a) 16-qubit spin-glass graph, where nodes represent biase hi and edges represent couplers Jij . Colors indicate whether
hi and Jij belong to the sets of couplers J α, J β and biases Hα, Hβ satisfied by α and/or β. (b) Comparison of qF (α, γ)
and qF (β, γ) across all computational basis states γ, illustrating the asymmetry of the similarity measure. While qF (β, α) is
close to one, while qF (α, β) is significantly lower, revealing an intrinsic bias toward the lower-energy state.
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Figure 9: Four iterations of the local search protocol ap-
plied to the first NAT-7 spin-glass instance, shown in
Fig. 7. (a) Set S of 6000 sampled states for each itera-
tion, presented as a function of their Hamming distance
from the protocol’s final state (purple circle) and their en-
ergy difference ∆E relative to the best-known state. The
energy axis is consistent with Fig. 7a. The black circle
denotes the reference state for the protocol, while blue,
red, green, and purple dots represent sampled states from
the first, second, third, and fourth iterations, respectively.
Colored circles depict the elements of the subset S⊂ used
for the calculation of the bitmask M (see Eq. (18)) of
each iteration. (b) Embedding of the feature Hamiltonian
on the D-Wave Advantage1 5.4 QPU [1], with qubits
represented as nodes. Purple nodes indicate qubits for
which a coupler and/or bias was modified in the feature
Hamiltonian in the fourth iteration relative to the original
problem Hamiltonian. Black nodes represent qubits for
which the original problem Hamiltonian was used.

Figure 10: Four iterations of the global search protocol
applied to the first NAT-7 spin-glass instance, shown in
Fig. 7. (a) Set S of 6000 sampled states for each itera-
tion, presented as a function of their Hamming distance
from the protocol’s final state (purple circle) and their en-
ergy difference ∆E relative to the best-known state. The
energy axis is consistent with Fig. 7a. The black circle
denotes the reference state for the protocol, while blue,
red, green, and purple dots represent sampled states from
the first, second, third, and fourth iterations, respectively.
Colored circles depict the elements of the subset S⊂ used
for the calculation of the bitmask M (see Eq. (18)) of
each iteration. (b) Embedding of the feature Hamilto-
nian on the D-Wave Advantage1 5.4 QPU [1], with qubits
represented as nodes. Colored nodes indicate qubits for
which a coupler and/or bias was modified in the feature
Hamiltonian relative to the original problem Hamiltonian,
with the color encoding the iteration in which the modi-
fication occurred. Black nodes represent qubits for which
the original problem Hamiltonian was used. Since con-
nected qubits are typically spatially close on the QPU, the
spin-glass domain structure is reflected in the clustering
of colored nodes.
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Figure 11: Performance comparison of various quantum and classical solver on 10 random 5580-qubit NAT-7 spin-glass
instances. The data corresponds to Fig. 7, but depicts the absolute energies found by each solver.
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