001047414 001__ 1047414
001047414 005__ 20251031202035.0
001047414 037__ $$aFZJ-2025-04283
001047414 1001_ $$0P:(DE-Juel1)196602$$aQi, Ji$$b0$$ufzj
001047414 1112_ $$a(Digital) Institute Seminar JCNS-2$$cForschungszentrum Jülich, JCNS$$wGermany
001047414 245__ $$aElucidating barocaloric effect in spin crossover compounds with inelastic scattering methods$$f2025-10-30 - 
001047414 260__ $$c2025
001047414 3367_ $$033$$2EndNote$$aConference Paper
001047414 3367_ $$2DataCite$$aOther
001047414 3367_ $$2BibTeX$$aINPROCEEDINGS
001047414 3367_ $$2ORCID$$aLECTURE_SPEECH
001047414 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1761901678_3662$$xInvited
001047414 3367_ $$2DINI$$aOther
001047414 520__ $$aThe barocaloric effect (BCE) is characterized as a thermal response (variation of temperature or entropy) in solid-state materials induced by external hydrostatic pressure. Cooling technologies based on the BCE have emerged as a promising alternative to conventional vapor-compression cooling. Recently, spin crossover (SCO) transitions, where the low spin (LS) and high spin (HS) states can be switched by hydrostatic pressure, were proposed as a potential mechanism to generate outstanding BCE. In this work, we aim to unveil the correlation between structure change and dynamic properties of a classic SCO complex Fe(PM-BiA)2(NCS)2 (with PM = N-2’- pyridylmethylene and BiA = 4-aminobiphenyl) for elucidating the impact of cooperativity on the barocaloric performance.Fe(PM-BiA)2(NCS)2 crystallizes in two different structures (orthorhombic (OP) with abrupt transition and monoclinic (MP) with gradual transition). The complete and Fe-related density of states are accessed through inelastic neutron scattering (INS) and nuclear inelastic scattering (NIS), respectively. The single crystal diffraction evidences the potential dynamic disorder of phenyl groups. A two-site reorientation mode of the phenyl group at the picosecond time scale has been realized by quasi elastic neutron scattering (QENS). Furthermore, through a combination of complementary inelastic scattering techniques, we quantitatively unveiled the microscopic origin of the giant entropy change, providing direct experimental insight into its underlying mechanism. Our study deepens the understanding of caloric effects in SCO complexes and promotes their potential application as BCE refrigerants.
001047414 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001047414 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001047414 909CO $$ooai:juser.fz-juelich.de:1047414$$pVDB
001047414 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196602$$aForschungszentrum Jülich$$b0$$kFZJ
001047414 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001047414 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001047414 9141_ $$y2025
001047414 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001047414 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001047414 980__ $$atalk
001047414 980__ $$aVDB
001047414 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001047414 980__ $$aI:(DE-82)080009_20140620
001047414 980__ $$aUNRESTRICTED