001047420 001__ 1047420
001047420 005__ 20260122203304.0
001047420 037__ $$aFZJ-2025-04289
001047420 041__ $$aEnglish
001047420 1001_ $$0P:(DE-Juel1)206720$$aVan Dael, Lies$$b0$$eCorresponding author$$ufzj
001047420 1112_ $$aBernstein Conference$$cFrankfurt am Main$$d2025-09-29 - 2025-10-02$$wGermany
001047420 245__ $$aJoint excitatory-inhibitory clustering supports realistic spiking statistics and signal propagation
001047420 260__ $$c2025
001047420 3367_ $$033$$2EndNote$$aConference Paper
001047420 3367_ $$2BibTeX$$aINPROCEEDINGS
001047420 3367_ $$2DRIVER$$aconferenceObject
001047420 3367_ $$2ORCID$$aCONFERENCE_POSTER
001047420 3367_ $$2DataCite$$aOutput Types/Conference Poster
001047420 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1769065324_21492$$xOther
001047420 520__ $$aThe connectivity among billions of neurons underlies the brain’s cognitive and information processing functions. Fully characterizing the single-neuron structural connectivity of the entire brain is technically not feasible. Furthermore, most studies focus on a single scale (population, area or single-neuron level); thus, bridging brain scales remains a challenge in neuroscience. Experimental data indicate that neuronal connections in the cerebral cortex are clustered, with stronger connections within clusters and weaker ones across them. Previous models linked such clustering to observed cortical activity. However, the mechanisms governing large-scale cortical dynamics - specifically reliable inter-area signal propagation, while maintaining stable activity and realistic spiking statistics- remain unclear. This study examines how joint clustering of excitatory and inhibitory cells contributes to explaining these dynamics. We hypothesize that local cortical circuits form joint clusters of excitatory and inhibitory neurons, and explore how this affects resting-state activity, inter-area signal transmission, and trial-to-trial variability. Building on a previously developed unclustered spiking neural network model of all vision-related areas in one hemisphere of the macaque cortex, each cortical area is modeled by a 1 mm2 microcircuit with biologically realistic neuron and synapse densities, avoiding downscaling artifacts. We extend this by subdividing each area equally into a number of joint excitatory-inhibitory clusters. Figure 1 schematically shows this organization.Validation against in vivo resting-state data reveals that the model with joint clusters of excitatory and inhibitory cells matches observed activity better than the unclustered model, in terms of firing behavior, firing rate distributions, and inter-spike interval variability. This type of clustering also enables reliable signal propagation across areas in feedforward and feedback directions, with biologically plausible response latencies. Finally, the clustered model reproduces the experimentally observed phenomenon of reduced trial-to-trial variability in response to stimulus onset.To conclude, these results demonstrate that joint clustering of excitatory and inhibitory neurons is a plausible organizational principle of local cortical circuits. This architecture simultaneously supports resting-state spiking statistics, inter-area signal propagation, and trial-to-trial variability dynamics.
001047420 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001047420 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
001047420 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001047420 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x3
001047420 536__ $$0G:(GEPRIS)313856816$$aDFG project G:(GEPRIS)313856816 - SPP 2041: Computational Connectomics (313856816)$$c313856816$$x4
001047420 536__ $$0G:(DE-Juel1)jinb33_20220812$$aBrain-Scale Simulations (jinb33_20220812)$$cjinb33_20220812$$fBrain-Scale Simulations$$x5
001047420 7001_ $$0P:(DE-Juel1)165321$$aPronold, Jari$$b1
001047420 7001_ $$0P:(DE-Juel1)190767$$aShimoura, Renan$$b2
001047420 7001_ $$0P:(DE-Juel1)156383$$aRostami, Vahid$$b3
001047420 7001_ $$0P:(DE-Juel1)176593$$aMorales-Gregorio, Aitor$$b4
001047420 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b5
001047420 909CO $$ooai:juser.fz-juelich.de:1047420$$popenaire$$pVDB$$pec_fundedresources
001047420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206720$$aForschungszentrum Jülich$$b0$$kFZJ
001047420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165321$$aForschungszentrum Jülich$$b1$$kFZJ
001047420 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)165321$$aRWTH Aachen$$b1$$kRWTH
001047420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190767$$aForschungszentrum Jülich$$b2$$kFZJ
001047420 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)156383$$aExternal Institute$$b3$$kExtern
001047420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176593$$aForschungszentrum Jülich$$b4$$kFZJ
001047420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b5$$kFZJ
001047420 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)138512$$aExternal Institute$$b5$$kExtern
001047420 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001047420 9141_ $$y2025
001047420 920__ $$lyes
001047420 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001047420 980__ $$aposter
001047420 980__ $$aVDB
001047420 980__ $$aI:(DE-Juel1)IAS-6-20130828
001047420 980__ $$aUNRESTRICTED