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Abstract

Better understanding of the fitness and flexibility of microbial platform organisms is central
to biotechnological process development. Live-cell experiments uncover the phenotypic
heterogeneity of living cells, emerging even within isogenic cell populations. However, how
this observed heterogeneity in growth relates to the variability of intracellular processes
that drive cell growth and division is less understood. We here approach the question,
how the observed phenotypic variability in single-cell growth rates links to metabolic
processes, specifically intracellular reaction rates (fluxes). To approach this question, we
employ the Maximum Entropy (MaxEnt) principle that allows us to bring together the
phenotypic solution space, derived from metabolic network models, to single-cell growth
rates observed in live-cell experiments. We apply the computational machinery to first-
of-its-kind data of the microorganism Corynebacterium glutamicum, grown on different
substrates under continuous medium supply. We compare the MaxEnt-based estimates of
metabolic fluxes with estimates obtained by assuming that the average cell operates at its
maximum growth rate, which is the current predominant practice in biotechnology.

Keywords: maximum entropy; metabolic flux map distributions; single-cell data; metabolic
networks; Markov chain Monte Carlo

1. Introduction

Biotechnology is concerned with exploiting living cells and optimizing their capacities
to sustainably produce chemicals ranging from bulk products to proteins for detergents
and pharmaceuticals. Recent developments are increasingly addressing circular economies,
where monomers are produced from renewable feedstocks using automatically designed
strains [1,2]. However, in industrial-scale bioprocesses, the phenotypic heterogeneity of
cells is estimated to be responsible for losses of up to 30% [3], severely limiting profitability.
Here, besides variability in gene expression, metabolic heterogeneity is supposed to play
an important role [4].

Phys. Sci. Forum 2025, 12, 3

https://doi.org/10.3390/psf2025012003


https://www.mdpi.com/article/10.3390/psf2025012003?type=check_update&version=1
https://doi.org/10.3390/psf2025012003
https://doi.org/10.3390/psf2025012003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/psf
https://www.mdpi.com
https://orcid.org/0009-0000-9042-949X
https://orcid.org/0000-0002-5026-1546
https://orcid.org/0000-0003-4983-3022
https://orcid.org/0000-0002-2087-9847
https://orcid.org/0000-0002-5407-2275
https://doi.org/10.3390/psf2025012003

Phys. Sci. Forum 2025, 12, 3

2 0f 8

Nowadays, single-cell technologies offer a more refined view and avenue to quantify
phenotypic variability in terms of single-cell growth rates [5-7]. Yet, despite advances
in single-cell analytical technologies [8], drawing actionable conclusions from single-cell
data to help lead the way to design more efficient large-scale bioprocesses, is far from
trivial. Several data- and model-driven approaches have been proposed that target phe-
nomena at different cellular levels and granularities [9-14]. These approaches, however,
have limitations in bridging the scales from a single-cell population to a large-scale one
for various reasons, e.g., computations do not scale (individual-based models cannot be
used to simulate bioreactor-scale experiments) or quantitative modeling paradigms do
not account for stochastic single-cell behavior (e.g., 1*C-metabolic flux analysis). Stoichio-
metric metabolic models mediate between the scales because they relate immeasurable
intracellular metabolic reaction rates (fluxes) to observable growth rates in a linear fashion.

In this paper, we use genome-scale stoichiometric metabolic models to address the
question of how growth rate distributions observed in microfluidic single-cell experiments
performed under steady-state conditions inform our understanding of the variability of
single-cell metabolic fluxes (cf. Figure 1). As devised by De Martino and De Martino [15],
the maximum entropy (MaxEnt) principle acts as a guide to construct a probability distribu-
tion that encodes those metabolic flux constellations that are consistent with data (growth
rate distributions) derived from single-cell experiments. This probability distribution of
metabolic flux constellations is hitherto called metabolic flux map distribution, which is a
complex multivariate non-normal probability distribution ensuing from stoichiometry-
imposed mass balances as well as physiological flux boundaries. MaxEnt-derived metabolic
flux map distributions therefore give insights into the possible spectrum of intracellular
metabolic fluxes, representing the variability observed in microfluidic single-cell experi-
ments. We compare these metabolic flux map distributions with the flux map derived using
the prominent flux balance analysis (FBA) approach [16], which predicts the metabolic flux
map of an “average cell” that is assumed to grow at maximum speed.
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Figure 1. Overview of the MaxEnt workflow for analyzing single-cell data of C. glutamicum. (A) Max-
Ent-based flux map distribution for one substrate condition. (B) Comparison of flux map distributions
for different substrate conditions.

We use the MaxEnt framework to provide insight into the metabolism of C. glutamicum,
an important biotechnological platform organism (cf. Figure 1). C. glutamicum is well-
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known for its ability to utilize a wide range of carbon substrates, making it an interesting
case to reveal differences in metabolic flux variability between different substrate conditions.
Therefore, microfluidic single-cell experiments are performed with media supplemented
with three different carbon sources. Each carbon source fuels a different part of the central
carbon metabolism of C. glutamicum, thereby requiring the core metabolic pathway fluxes
to operate differently. We use the marginal MaxEnt flux map distributions to highlight those
fluxes of the core metabolism that differ the most between the studied conditions. Our
analysis unmasks not only the great flexibility of the central metabolism of C. glutamicum
but also enables us to quantify this variability.

The flux map distributions obtained using the MaxEnt approach reveal that the single-
cell data is compatible with a wide range of fluxes. This is an advantage of our approach
over FBAs when seeking to better understand the heterogeneity of intracellular metabolic
processes, as the latter make statements about a hypothetical “average cell”, assuming
knowledge of its cellular objective.

2. Materials and Methods
DSMZ—German Collection of Microorganisms and Cell Cultures GmbH.

2.1. Microfluidic Live-Cell Experiments

Corynebacterium glutamicum wild-type ATCC 13032 was obtained from Leibniz Insti-
tute DMSZ (German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig,
Germany). CGXII was used as standard mineral medium without glucose (PCA), with
27 mM D-glucose (GLC), and CGXII with 27 mM D-citrate with 5 mM CaCl, (CIT). Cultiva-
tion of C. glutamicum microcolonies was performed in a microfluidic device accommodating
a few hundred cultivation chambers, ensuring monolayer growth [17] using standard pro-
cedures [18] with constant medium infusion. Microscopic imaging was performed using
an inverted epifluorescence microscope (TI-Eclipse, Nikon GmbH, Diisseldorf, Germany)
for phase-contrast time-lapse imaging (15 min intervals), a Nikon Plan Apo 100 Ph3 DM
Oil objective, a Nikon fluorescence excitation light source (Intensilight), digital cameras
(Clara DR-3041 and Neo sCMOS, Andor Technology Plc., Belfast, United Kingdom), and
an LED light source (pE-100 white, CoolLed Ltd., Andover, UK).

Recorded time-lapse image stacks were analyzed using ObiWan-Microbi [19]. In
short, segmentation was performed using the Omnipose bacterial phase-contrast model [20],
followed by a filtering step that removed potential cell detection artifacts with an area,
width, or length outside given lower and upper bounds. The bounds were derived from
usual cell shapes observed in the time lapses. The growth rate of microcolonies per growth
chamber was estimated based on the temporal development of the total single-cell area,
assuming an exponential growth model, and a linear regression on the log-space of the
total singe-cell area was performed. Before, potential biases by lag or stationary phases
were excluded by truncating the image sequences, thereby only analyzing images with at
least 8 cells and stopping when more than 80% of the region of interest was covered with
cell mass, and limiting effects were expected. Multiple image stacks were evaluated for
each substrate condition (11 for PCA, 42 for GLC, and 33 for CIT), from which the mean

(Ameas) values were derived.

2.2. Genome-Scale Metabolic Model

The metabolic network of C. glutamicum used for the study is an updated version
of the published genome-scale model iEZ475 [21]. The updated model was previously
validated for standard CGXII media with glucose under aerobic conditions. The P/O
ratio, a major source of uncertainty in the C. glutamicum model containing two terminal
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oxidases, was experimentally determined using '3C-metabolic flux analysis [22]. The net-
work has 582 reactions and 413 metabolites. It covers central carbon metabolism, amino
acid synthesis, oxidative phosphorylation, lipid metabolism, nucleotide salvage, cofactor
biosynthesis, alternate carbon metabolism, and a comprehensive biomass formation. The
studied cultivation conditions, represented by three different carbon sources supplemented
to the CGXII media—PCA, GLC, and CIT—were implemented in the model by adjusting
the respective uptake reactions.

2.3. Constraint-Based Modeling

Under the applied experimental conditions, i.e., continuous medium supply, cell
metabolism is expected to be at steady state. Mass balancing for all biochemical reactions
in the genome-scale metabolic network then gives a stoichiometric equation system for the
fluxes v € R": N -v = 0 [23]. Additionally, physiologically reasonable upper and lower
bounds were applied for all fluxes (vfnin < v; < 0"™) so that the achievable growth rates
for each substrate condition match the observations. Together, this system of (in)equality
constraints limits the feasible flux space to a bounded convex polytope P [24]. Depending
on the supplied carbon source, the flux polytopes have dimensions between 79 and 81.
Using the model, FBA-based metabolic fluxes were obtained using the maximize growth
objective [16], which assumes that the cells have evolved towards maximizing their biomass
production. These calculations were performed with COBRApy version 0.29 [25].

Wasserstein Distance

To quantify the difference between flux map distributions between the applied sub-
strate conditions, we used the Wasserstein distance [26]. Intuitively, the Wasserstein-1
distance can be seen as a way of transporting a hill of sand with distribution y to another
hill of sand with distribution v. Here, the transport cost of one unit mass from x to y is
described by |x — y|. More precisely, for a set of densities I1(, v) with marginal densities y
and v, the Wasserstein-1 distance is defined by

W = inf —y|d . 1
()= int [ = ylan(oy) )

3. Results
3.1. Maximum Entropy-Based Metabolic Flux Analysis

Inferring unknown model parameters from data equates to determining a probability
distribution compatible with the model formulation and data. More often than not, however,
the given information is insufficient to uniquely determine a probability distribution. In
contrast to side-stepping the lack of uniqueness by imposing additional assumptions,
the statistical MaxEnt principle constructs the least-biased probability distribution that is
compatible with available information [27]. The principle states that, among the compatible
probability distributions, the distribution with the largest entropy, the so-called MaxEnt
distribution, should be selected.

In our study, we aim to identify the MaxEnt-based metabolic flux map probability
distribution p(v) out of all possible flux maps, compatible with a model-imposed con-
vex polytope P, as well as a measured mean growth rate Ameas- Mathematically, these
requirements are formalized as follows:

/73 p(v)dv=1 and Ameas =Ey(A(v)) ()

where E, (A(v)) is the expected value of the growth rates obtained from the model A(v) for
v ~ p(v). Given the constraints in Equation (2), the Boltzmann distribution
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_exp (B-A(0)) veEP
pﬁ (z)) = jP exp (B-A(v))dv (3)

0 otherwise

has maximum entropy [15]. Herein, the parameter § € R is estimated for a given model
and observed growth rate such that Equation (2) holds. Finding B therefore amounts
to root-finding an integral equation [15]. Because the convex polytopes P arising from
realistic metabolic networks are high-dimensional, the integral equation cannot be solved
analytically but needs to be estimated numerically.

3.2. Numerical Results

We estimated S for each of the three growth conditions using Markov chain Monte
Carlo (MCMC) integration. Specifically, we drew uniform samples from P using the convex
polytope sampling software hopsy v.1.5.0 [28]. From the samples, we obtained a Monte
Carlo estimate for E,(A) as a function of B. Using scipy [29], we solved Equation (2) for
B numerically. The numerical accuracy of the § estimates depends on the variance of the
Monte Carlo estimate for E,,(A). We repeatedly applied importance sampling as a variance
reduction technique to refine the § estimates.

The estimated B values for each substrate are shown in Figure 2 along with the
measured growth rate and uniform and Boltzmann distributions. As a result of adapting
the model to the different substrate conditions (PCA, GLC, CIT), the convex polytopes
are different for each condition, and the estimated § should therefore not be compared
to each other directly. Instead, we compared the Boltzmann distributions to the uniform
distributions (limit for § — 0) [30]. We see that for PCA, the Boltzmann distribution is close
to the uniform distribution, indicating that the measured growth rate is close to random.
In the other two cases, GLC and CIT, the MaxEnt distribution has a mean that deviates
distinctly from the means of the uniform distributions. Especially for CIT, the observed high
mean growth rate “forces” the Boltzmann distribution away from the uniform distribution.

Substrate PCA

B=11.628
Amaxent=0.156/h

Substrate GLC Substrate CIT
| B=20016 50 | B=75.067
Amaxent=0.583/h L Amaxent=0.714/h
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Figure 2. Marginal Boltzmann distributions fitted to the measured growth rates Ameas (blue). The
measured (green) and marginal uniform (orange) distributions, as well as the estimated  and
means of each distribution, are shown. Four parallel Markov chains were used to generate 1.4 x 10°
samples for each of the Boltzmann distributions. The effective sample sizes were over 500, and all
rank-normalized 7 values were below 1.01 in each case [31].

Using the estimated f values, we then computed the marginal Boltzmann distribution
of the fluxes for each substrate condition. Despite the genome-scale model of C. glutamicum
having over 500 reactions, to understand how the metabolism of C. glutamicum operates
with different substrates, we focus our evaluation on the 40 fluxes of the central metabolism.
To quantify how different MaxEnt-based metabolic flux map distributions are between two
for the substrate conditions, we use the Wasserstein-1 metric [29] to compute the pairwise
distances between their marginal distributions. For each flux, there are three Wasserstein-1
distances, one for each pairwise combination of the three conditions.
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Figure 3 shows the Wasserstein-1 distances, along with an overview of the central
metabolism of C. glutamicum. In addition, for each central pathway (Embden Meyerhof
pathway—EMDP, pentose phosphate pathway—PPP, Anaplerosis—ANA, tricarboxylic acid
cycle—TCA, and glyoxylate shunt—GLX), the marginal flux map distributions that have
the largest Wasserstein-1 distance for every pairwise substrate combination are shown. To
highlight the benefits of the MaxEnt approach, we also compare the MaxEnt results to FBA,
cf. Section 2.3. While FBA finds a flux map compatible with the data under the applied
assumption, this flux map is only a single solution. The MaxEnt approach, on the other hand,
guarantees covering all solutions that are compatible with the given information. For some
fluxes, i.e., transketolase—tkt_2, malate synthase—aceB, and pyruvate carboxylase—pyc,
the FBA solutions are identical, regardless of the substrate condition tested. Here, the
MaxEnt approach uncovers that the set of fluxes compatible with the given datasets differ.
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Figure 3. Selection of metabolic fluxes from the central metabolism of C. glutamicum. We use the
Wasserstein-1 metric to compute the distances between marginal MaxEnt-based flux map distributions
for each pairwise combination of substrate condition tested. For every pair of substrate conditions,
the highest Wasserstein-1 distance in each pathway is used as a selection criterion for which fluxes are
shown (red reactions). We show the marginal MaxEnt-based metabolic flux map distributions along
with the FBA point estimates. In some cases, e.g., isocitrate dehydrogenase—icd, the FBA solution for
citrate (CIT) is located in a low-density region of the marginal MaxEnt distribution.

4. Conclusions

We evaluated a novel single-data set of C. glutamicum growing under three differ-
ent substrate conditions using the MaxEnt approach. The MaxEnt principle guided us in
constructing the metabolic flux map distributions that are compatible with growth rates
observed from single-cell experiments. We highlighted that the MaxEnt-based metabolic
flux map distributions reveal that all fluxes are consistent with the available biological
information. We used the MaxEnt-based distributions to uncover the variability of the
central metabolism of C. glutamicum within, as well as across, different substrate conditions.
Comparing the outcome of an FBA (a single flux map) with that of the MaxEnt-based ap-
proach demonstrates the added value of the latter in providing insights into the relationship
between phenotypic variability and the variability of intracellular metabolic fluxes.
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