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A B S T R A C T

Predictive modeling using structural magnetic resonance imaging (MRI) data is a prominent approach to study 
brain-aging. Machine learning frameworks have been employed to improve predictions and explore healthy and 
accelerated aging due to diseases. The high-dimensional MRI data pose challenges to building generalizable and 
interpretable models as well as for data privacy. Common practices are resampling or averaging voxels within 
predefined parcels which reduces anatomical specificity and biological interpretability. Effectively, naive fusion 
by averaging can result in information loss and reduced accuracy. We present a conceptually novel two-level 
stacking ensemble (SE) approach. The first level comprises regional models for predicting individuals’ age 
based on voxel-wise information, fused by a second-level model yielding final predictions. Eight data fusion 
scenarios were explored using Gray matter volume (GMV) estimates from four large datasets. Performance 
measured using mean absolute error (MAE), R2, correlation and prediction bias, showed that SE outperformed 
the region-wise averages. The best performance was obtained when first-level regional predictions were obtained 
as out-of-sample predictions on the application site with second-level models trained on independent and site- 
specific data (MAE = 4.75 vs baseline regional mean GMV MAE = 5.68). Performance improved as more 
datasets were used for training. First-level predictions showed improved and more robust aging signal providing 
new biological insights and enhanced data privacy. Overall, the SE improves accuracy compared to the baseline 
while preserving or enhancing data privacy. Finally, we show the utility of our SE model on a clinical cohort 
showing accelerated aging in cognitively impaired and Alzheimer’s disease patients.

1. Introduction

The process of aging in humans is complex and it inevitably in
fluences the brain, with negative consequences such as neuro
degeneration which can lead to dementia and also is a mortality risk [1,
2]. The structural changes in the brain can be measured non-invasively 
via Magnetic Resonance Imaging (MRI) scans which capture the brain in 
volumetric form, comprising smaller volume elements called voxels. 
Each scan consists of hundreds of thousands of voxels. Following 
appropriate processing, it is possible to quantify the amount of specific 

brain tissues such as gray matter volume (GMV) at each voxel. This in 
turn permits in-depth study of distinct brain structures in relation to 
various cognitive, pathological and other physiological processes such 
as aging. Structural differences in the GMV have been reported between 
younger and older healthy individuals [3–5] along with continuous, 
widespread reduction in GMV observed from middle age onwards [6–8]. 
Additionally, an accelerated loss of both global and local GMV has been 
documented in neurodegenerative disorders [6,9–13] such as the Alz
heimer’s disease (AD) and mild cognitive impairment (MCI) compared 
to normal aging.
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Leveraging machine learning models to predict chronological age in 
healthy individuals using GMV aims to estimate the trajectory of healthy 
brain aging and through it unravel the links to neurodegenerative, 
psychiatric, and other disorders. Such MRI-derived age-prediction has 
been shown to be a reliable proxy for overall health [10,11,14]. An 
elevated brain age stands as an important risk factor for various 
neurodegenerative and psychiatric disorders [12,13,15–18]. Thus, age 
prediction models can facilitate early detection of health risk and 
facilitate effective prevention and treatment strategies. The success of 
this approach hinges on accurate and biologically meaningful models. 
Furthermore, sharing MRI data or even its derivatives can lead to pri
vacy issues [19]. Hence it is important that new brain age estimation 
methods respect individuals’ privacy. Furthermore, generalizing across 
data from multiple scanners remains challenging due to systematic 
biases. To this end, various machine learning algorithms and 
GMV-derived features have been tested aiming at providing more ac
curate predictions as well as insights into healthy brain aging. For 
instance, Relevance Vector Regression (RVR) outperformed Support 
Vector Regression (SVR) when trained on downsampled voxels -with 
and without feature selection, yielding MAE = 5 years in healthy sub
jects and MAE = 10 years in AD [20]. Gaussian Process Regression using 
structural MRIs was efficient in estimating mortality via brain age [1] 
and outperformed RVR, Kernel Ridge Regression and LASSO [1,2]. 
Additionally, various deep neural network models have been proposed 
such as convolutional neural networks [12,21–26].

In terms of GMV features, previous studies have used voxel-wise 
GMV [1,2,27,28], feature reduction methods such as principal compo
nent analysis and non-negative matrix factorization [29,30] as well as 
regional mean values [31,32]. The voxel-based approach is encumbered 
by the “curse of dimensionality”, high computational demands due to 
the high number of voxels and high intersubject variability. On the other 
hand, the use of regional mean GMV is more conducive for machine 
learning. This simple and efficient type of information fusion can 
enhance robustness and statistical power mitigating the impact of noise 
or variability within individual voxels. Additionally, use of a meaningful 
parcellation scheme increases sensitivity for detecting regional changes, 
yielding results that are easier to interpret from a neuroanatomical 
perspective and can provide critical priors for studying brain basis of 
behavior and disease [33]. Effectively, calculating regional mean of 
GMV as a form of information fusion might be too naive, as it weighs all 
the voxels equally regardless of their reliability and relevance to the 
problem at hand.

Further challenges to real-world use of brain age models are posed by 
data heterogeneity and data privacy issues. It is desirable that the 
models should work effectively on test data collected from a new 
scanner from which no or only limited data is available for training. 
However, scanner-induced systematic differences make this challenging 
[34,35]. It is also desirable that data is utilized and shared in a way that 
preserves privacy, a crucial consideration in healthcare and medicine 
[36]. Any use of personal and medical data should ensure it’s ethical for 
research and treatment, and comply with legal obligations. For instance, 
raw MRI data is enough for face identification of the subjects [37] as 
well as information such as MRI-derived connectomes are unique to 
individuals like a fingerprint promoting identification [38]. Subjects can 
be identified based on their regional GMV, even across different pre
processing pipelines, indicating that sharing preprocessed data still 
poses the risk of privacy violation [34].

To better utilize the information of each voxel, while managing the 
very high dimensionality of the data, we propose the use of stacking 
generalization or stacking ensemble (SE) models [39] which effectively 
mitigate overall bias and variance, and have shown promise in multiple 
domains [40–42]. The SE framework is based on weighted voting of 
predictions derived from various models (referred to as generalizers in 
Ref. [39]). Specifically, we propose a variation of SE in which first level 
models are trained on the voxel-wise data from each brain region. In 
contrast to the uniform weighting, as done in conventional models that 

use the mean for each region, the first level models weight the contri
bution of each voxel according to how it captures the aging signal. This 
approach can effectively handle regions in which the voxels have 
differing signal to noise ratio. A second level model is then trained using 
the predictions of the first level models to obtain the final prediction. In 
addition, the predictions of the first level models are more aligned with 
the target, in our case age. This allows for better fusion of data across 
datasets/scanners, in effect mitigating the scanner differences and 
allowing to combine datasets to train more accurate and generalizable 
models. In other words, pooling age predictions of first level models is 
likely to incur lower bias than pooling regional mean GMV. Overall, we 
expect that this more nuanced and informative fusion of voxel and 
cross-dataset information contrary to the conventional mean approach 
will potentially lead to more accurate and biologically meaningful 
models. The proposed SE framework, to some degree, addresses also the 
privacy issues. By using the output of the first level, i.e. regional age 
predictions, for cross-site predictions and sharing our framework pro
motes interoperability and privacy.

While SE models have been previously used in age-prediction for 
combining the predictions of various modalities [11,43], they have not 
been used for region-wise structural MRI models. Popescu et al. [28] 
utilized structural MRI features to predict age for each brain region, 
however, they did not combine regional predictions in a meta model. In 
this study we use a SE framework to enhance brain-age predictions and 
provide an alternative and more robust biological representation of the 
contribution of brain regions in healthy aging. We employed structural 
MRI scans of healthy individuals from four large open datasets covering 
the adult lifespan. We systematically explored various ways to fuse data 
from different sites during training and testing. Specifically, we per
formed cross-site predictions, by keeping a test site separate from the 
training sets, while ensuring consistent training sample sizes across all 
set ups. Furthermore, we also explored different methods for conducting 
out-of-sample (OOS) predictions with and without site-specific models. 
We compared the conventional baseline utilizing the mean GMV for 
each region against using the SE framework in all those set ups. Addi
tionally, we assessed the impact of the number of datasets available for 
training and examined their stability on data coming from different 
sites. Finally, the two best-performing set-ups were tested on clinical 
data consisting of cognitively normal (CN), mild cognitive impairment 
(MCI), and Alzheimer’s disease (AD) groups. At the current stage we did 
not perform any comparison between SE models and the state-of-the art 
(SOTA) methods. Our goal is to demonstrate the theoretical and prac
tical promise of SE models in this specific context rather than to 
immediately outperform highly tuned, task-specific models. Our sys
tematic analysis provides valuable insights regarding the efficacy of our 
proposed stacking ensemble framework in the domain of brain age 
prediction, paving the path for clinical applications.

2. Material and methods

2.1. Datasets and preprocessing

We used T1-weighted MRI scans of healthy individuals (total N =
2926, covering the whole adult lifespan (18–88 years), coming from 4 
open datasets: the Cambridge Center for Ageing and Neuroscience 
(CamCAN, N = 650, mean age = 54 ± 18.6, min-max = 18–88) [44], 
Information eXtraction from Images (IXI, N = 562, mean age = 48.7 ±
16.45, min-max = 20–86) (https://brain-development.org/ixi-dataset 
/), the enhanced Nathan Kline Institute-Rockland Sample (eNKI, N =
597, mean age = 48.2 ± 18.5, min-max = 18–85) [45] and the 1000 
brains study (1000Brains, N = 1117, mean age = 61.8 ± 12.4, min-max 
= 21–85) [46]. Additionally, we used 3T T1w images from the Alz
heimer’s Disease Neuroimaging Initiative 3 (ADNI3 N = 404, mean age 
= 79.9 ± 7.45, min-max = 50.4–90.6; https://adni.loni.usc.edu) [47,
48] database to evaluate the utility of our model in neurodegenerative 
disorders. From the available cognitive normal (CN, N = 372), we 

G. Antonopoulos et al.                                                                                                                                                                                                                         Computers in Biology and Medicine 198 (2025) 111182 

2 

https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/
https://adni.loni.usc.edu


selected 66 age- and sex-matched to our available Alzheimer’s disease 
(AD, N = 66) subjects. The remaining 306 CN scans were used exclu
sively for model training. Similarly, we used 66, matched for sex and 
age, subjects with mild cognitive impairment (MCI, N = 66) for testing. 
We used only subjects diagnosed at the baseline.

All datasets underwent the exact same preprocessing. Specifically, 
we processed the T1 scans to extract modulated GMV in the MNI space 
for each subject, using Computational Anatomy Toolbox (CAT) version 
12.8 [49]. To ensure accurate normalization and segmentation, initial 
affine registration of T1w images was done with higher than default 
accuracy (accstr = 0.8). After bias field correction and tissue class seg
mentation, optimized Geodesic Shooting [50] was used for normaliza
tion (regstr = 1). We used 1.5 mm Geodesic Shooting templates and 
outputted 1.5 mm isotropic images. The normalized GM segments were 
then modulated for linear and non-linear transformations yielding 
estimated GMV for each voxel (N = 399184 voxels in total).

2.2. The SE model training

In this study we implemented SE with two levels, denoted as L0 and 
L1. For both levels, we utilized GLMnet (elastic net) [51] due its ability 
to handle multicollinearity in data, such as the voxels of structural MRI, 
efficiently. This choice was made to demonstrate the effectiveness of SE, 
though other models may yield a better performance and will be eval
uated in the future. Elastic net regression combines ridge regression (L2 
regularization) and LASSO (L1 regularization), which facilitates dealing 
with multicollinearity by penalizing large coefficients and promoting 
simpler models. We used the glmnet package in R (version R-4.1.0) that 

incorporates an internal process for hyperparameter tuning. By default, 
it optimizes the regularization parameter lambda (λ) along with the 
mixing parameter alpha (α) using ‘adaptive resampling’. Features with 
near-zero variance were identified and removed. The remaining features 
underwent centering -removing the mean-, and scaling -dividing with 
the standard deviation.

At the first level L0, GM voxels were grouped into 873 regions 
encompassing cortical, subcortical and cerebellar regions, using a par
cellation atlas [32] with 800 cortical regions from the Schaefer atlas 
[52], 36 subcortical regions from the Brainnetome Atlas [53] and 37 
cerebellar regions [54]. We chose this specific granularity to retain 
anatomical specificity. Our choice of the 800-region Schaefer atlas was 
based on prior evidence demonstrating similar performance of 800 and 
1000-parcel resolutions [2], while offering a higher computational ef
ficiency. Nevertheless, other options could be also explored. We used a 
stratified 3-fold cross-validation scheme as it employs a smaller training 
sets for each fold and maintains a good trade-off between data coverage 
and computational efficiency to generate voxel-based and out-of-sample 
L0 model predictions for each region. Additionally, to establish 
robustness, we also trained the L0 models using 10-fold CV scheme. L0 
predictions (873 per subject) were then used as inputs to train the sec
ond level L1 model. For application on new unseen samples, a final L0 
model (GLMnet) per region was trained on the complete training set. 
The L1 GLMnet model was trained on the L0 models’ OOS predictions 
from the CV and provides the final age prediction. A full overview of the 
training process and the application of the model is illustrated in Fig. 1.

Fig. 1. Illustration of standard age-prediction process. Left: Current standards perform a regional mean of GMV in level-0 (f(Vi) = mean(voxels in region i)) and 
with those they train a model in Level-1. In SE models voxels in each region are used to train a model to predict age, in a K-fold scheme, and the predictions are used 
to train the Level-1 model, which is used to estimate the final prediction. Right: In L0 the trained models (or local averaging) are applied and their output is provided 
as inputs for the L1 model, which makes the final prediction.
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2.3. Data split and training setups

In our experiments, we estimated models’ performance using Leave- 
One-Site-Out (LOSO) validation. The LOSO set up mimics the scenario 
when the models are applied to data from a new scanner not available 
during training, thus it provides a more accurate estimation of model’s 
ability to generalize across different scanners or sites. When using 
multiple datasets for training, the training data or models can be com
bined in various ways. Data from different sites can be either pooled and 
used as if they are coming from one source for training L0 and L1 
models. Alternatively, data from each site can be used separately to train 
both in L0 and L1 models creating site-specific SE models and the pre
dictions of L1 models can be then averaged to obtain the final prediction. 
In-between set ups are also possible, for instance L0 predictions can be 
pooled or averaged prior to training a L1 model. We implemented 8 such 
set-ups as presented in Table 1. We also examined the impact of training 
with one or multiple different sites, always testing in an unseen site.

Additionally, beyond the aforementioned set-ups, we tested the 
scenario where a center or a clinic cannot share raw data from patients. 
Thus, L0 regional predictions could be estimated directly in the test site 
(from the test set), using a k-fold CV scheme to get out-of-sample (OOS) 
predictions and pass these predictions to L1 models, trained either in 
pooled or site-specific data. Note that the L1 models did not include data 
from the test site for training. We tested this scenario, using a 3-fold CV 
to get L0 predictions from the test set.

To benchmark against the conventional standard, we computed the 
mean of GMV for each region and trained a GLMnet model to predict 
age. This is equivalent to replacing each of the 873 first level models 
with an averaging function. We implemented both pooling as well as 
different set ups of data/model fusion for the GMV mean data. In order 

to have a fair comparison with the set-up where we use the test set in a 3- 
fold scheme in L0, we also implemented an approach for the mean GMV 
models, where we trained models by pooling the training data sets with 
the two training folds from the test site.

In all the scenarios, the train and test datasets were exclusive to avoid 
data leakage.

The utility of using additional datasets was evaluated by comparing 
the performances of the different setups when using a different number 
of training data sets. For this, we examined the cases where one, two and 
three datasets were used to train the models in all possible combinations 
occurring from our four datasets.

For performance evaluation, we calculated the mean absolute error 
(MAE), coefficient of determination (R2), Pearson’s correlation between 
real age and predicted age (r), and prediction bias. The prediction bias is 
calculated as the correlation between the actual ages and the prediction 
errors (real age - predicted age) and it expresses the tendency of a model 
to provide predictions closer to the mean, meaning that younger subjects 
are predicted as older and older are predicted as younger [35,55]. 
Although it is not a standard performance metric, it is important for 
brain-age prediction problems. These metrics are widely used and well 
described in MRI-based age-prediction problems [56].

2.4. Biological insights

To understand biological aging it is important to identify regions that 
are strongly and robustly correlated with the real age. Although corre
lation doesn’t imply causation, such insights can shed light on the brain- 
aging process. To this end, we calculated Pearson’s correlation of real 
age with L0 predictions and mean regional GMV across subjects. These 
values were compared to identify the more robust approach providing 
biological insights. Projecting those correlations back to the brain space 
reveals regions strongly and robustly associated with aging. We ensured 
the stability of those results by evaluating all four datasets to show that 
the insights gained are not dataset dependent. This comprehensive 
analysis was aimed to provide a holistic perspective on our method’s 
robustness and stability.

2.5. Data privacy

To assess how SE compares to conventional methods in data ano
nymity and privacy, we conducted a multiclass classification task to 
predict the dataset of origin. Identifying the datasets is a step closer to 
identifying the subject itself and thus this task serves as a proxy for 
gauging the potential for privacy violation. For this task, we employed 
L0 regional age predictions as features and juxtaposed the dataset pre
diction performance with that achieved using regional mean gray matter 
volume (GMV). We performed model selection with hyperparameter 
tuning for both sets of features. The tested models included logistic 
regression, linear Support Vector Machine (SVM), SVM with radial basis 
function kernel, Random Forest (RF). The exact hyperparameter space is 
presented in the Supplementary Table 1. The accuracy of the optimal 
model serves as a metric, where higher accuracy indicates better pres
ervation of dataset-specific information in the corresponding feature 
space. Conversely, lower accuracy in the dataset prediction task suggests 
a higher level of privacy. This analysis permits to directly compare how 
SE preserves data anonymity in contrast to regional GMV.

3. Results

3.1. Performance

The performance of different set ups was evaluated using leave-one- 
site-out (LOSO) scheme. We calculated MAE, R2, Pearson’s correlation 
between predicted and real values and prediction bias (Fig. 2). A 
comparative analysis of 3-fold and 10-fold CV yielded comparable re
sults (Supplementary Fig. 2). We chose the 3-fold approach as it is 

Table 1 
All the setups that we compared, given the possible combinations that can occur 
when creating site-specific models or pooling data from all sites in the two levels 
of SE models. The subscripts s and p represent “site” and “pooled,” respectively, 
indicating whether training was conducted on a per-site basis or using pooled 
data.

Train 
datasets

L0 
operation

L0 train 
data/ 
output

L1 operation L1 train 
data/ 
output

Notation

per site f1-873(x) =
mean

per site fL1(x) =
GLMnet 
per site, 
mean sites

three 
outputs 
Mean

GMVSL1S

f1-873(x) =
GLMnet

per site fL1(x) =
GLMnet 
per site, 
mean sites

three 
outputs 
Mean

PredL0SL1S

OOS on 
test set

per site fL1(x) =
GLMnet 
per site, 
mean sites

three 
outputs 
Mean

OOSPredSL1S

f1-873(x) =
mean

pool 
preds

fL1(x) =
GLMnet on 
pooled L0 
preds

one 
output

GMVPL1P
a

f1-873(x) =
GLMnet

per site fL1(x) =
GLMnet on 
pooled L0

one 
output

PredL0SL1P

OOS on 
test set

per site fL1(x) =
GLMnet on 
pooled L0

one 
output

OOSPredSL1P

pooled f1-873(x) =
mean

pool 
preds

fL1(x) =
GLMnet

one 
output

GMVPL1P
a

f1-873(x) =
GLMnet

pool 
preds

fL1(x) =
GLMnet

one 
output

PredL0PL1P

OOS on 
test set

pool 
preds

fL1(x) =
GLMnet

one 
output

OOSPredPL1P

a These models are the exact same, as the L0 is local averaging and has nothing 
to do with the train data.
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computationally more efficient. Overall, SE frameworks showed better 
performance. Specifically, the highest performances were observed for 
the setups where L0 predictions were obtained from the test site: 
OOSPredsL1p

2 (average MAE = 4.75), closely followed by OOSPredsL1s 
(MAE = 4.9). Setups using pooled L0 predictions to train a single L1 
model, independently of how L0 was trained, i.e. PredL0pL1p and 
PredL0sL1p, showed MAE = 5.1. When using mean region-wise GMV, 
the model trained using the training data sets together with the 2 
training folds from the test site, GMVpL1pext, showed MAE = 5.7. 
Performance was worse for the other two region-wise mean GMV models 
trained in three datasets, with the L1p setup (pooled predictions from L0 
to train L1) being slightly better compared to L1s (train L1 models from 
different sites), MAE = 6.2 and MAE = 6.7 respectively. The perfor
mance ranking was the same for R2, slightly changed in Pearson’s r, 
where the best model was the one where both L0 and L1 models were 
trained on pooled data. The performance of the models regarding age 
bias was rather different. The lowest bias was found for GMVPL1P fol
lowed by PredL0PL1P and OOSPredSL1P (b = − 0.41, b = − 0.43 and b 
= − 0.44, respectively). Detailed results can be found in Supplementary 
Material Table 2.

All setups exhibited significant performance improvement with the 
inclusion of more datasets in the training process (Fig. 3). Higher im
provements in performance were observed when transitioning from one 
to two datasets, compared to the increase from two to three. This trend 
underscores the positive impact of creating the training data with mul
tiple datasets, particularly in the initial stages of model development.

3.2. Biological insights

Correlation values between mean regional GMVs and chronological 
age across subjects is commonly used for identifying aging-related brain 
regions. Similar insights from SE models can be derived using the 
regional age-predictions provided by the L0 models. The results showed 
that regional predictions of the L0 models exhibit a stronger alignment 
to age (Fig. 4). Correlation coefficients’ mean (mean of absolute values) 
for L0 predictions-age was rmean = 0.6 and rmean = 0.32 respectively for 
GMV-age, yielding significant difference (p≪0.01e13). Frontal and 
cerebellar areas were highlighted in both methods, notably stronger 
though in SE models. Remarkably, subcortical areas which exhibited 
positive mean GMV-age correlation, demonstrated a more pronounced 

and positive association in SE models. Specifically, four regions had 
positive GMV-age correlation for all datasets, with the mean across 
datasets ranging from r = 0.12 to r = 0.29. In comparison, the corre
sponding L0 predicted–age to real–age correlations were notably higher, 
ranging from r = 0.62 to r = 0.8.

Next, we sought to compare the stability of the biological insights 
provided by the two methods across different datasets. To this end, we 
calculated the correlation values between age and L0 regional age OOS- 
predictions across datasets and compared it to the correlation values 
calculated between age and regional mean GMV. Correlations between 
age and regional L0 age predictions demonstrated higher consistency 
across all datasets compared to the correlations of age and mean GMV 
(Fig. 5). Cortical regions exhibited an average L0 predictions-age cor
relation of r = 0.54, while the GMV-age correlation was negative at r =
− 0.4. In subcortical regions, the mean L0 predictions-age correlation 
was r = 0.75, with the mean GMV-age correlation (absolute values) at r 
= 0.35. Interestingly, some regions showed positive GMV-real age cor
relations; for instance, some thalamic regions had correlations of r =
0.28 and r = 0.29 when L0 predictions and real age correlations in these 
regions were r = 0.8 and r = 0.62, respectively. For the cerebellum, the 
mean L0 predictions-age correlation was r = 0.60, while the GMV-age 
mean was r = − 0.38.

3.2.1. Stability across datasets
To mitigate the possibility that the associations between subjects’ 

age and L0 predictions or GMV, are driven by datasets’ idiosyncratic 
properties, we computed the correlation values separately for each 
dataset. The results (Fig. 6) consistently exhibited the same pattern 
across datasets, affirming the overall stronger association of L0 (mean =
0.86 ranging from 0.79 to 0.91) regional age predictions with age 
compared to mean regional GMV (mean = 0.81 ranging from 0.75 to 
0.9).

3.2.2. Application to clinical data
To assess clinical applicability, we evaluated our two best- 

performing model set-ups, OOSPredsL1p and OOSPredsL1s in an in
dependent clinical cohort of CN, MCI and AD subjects. Consistent with 
clinical data common practice, a bias correction model was applied 
whose parameters were derived from the CN training subjects excluded 
from the age- and sex-matched test set ([57], Suppl. Figs. 3-4). For both 
set-ups, the brain-age gap (BAG, the difference between predicted age 
and real age) mirrored expected cognitive decline trends, with statisti
cally significant differences observed among all diagnostic groups (CN 
vs. MCI vs. AD, Fig. 7).

Fig. 2. Performance of SE models and GMV approaches for chronological age prediction, across four metrics. Performance in terms of MAE (upper left), 
Pearson’s correlation (upper right), R2 (bottom left) and bias (bottom right) for all setups. Results were extracted by using three datasets for training and one for 
testing in all possible combinations. Setups that perform OOS prediction on the test set yield better performance in all metrics except for bias.

2 The subscripts s and p represent “site” and “pooled,” respectively, indi
cating whether training was conducted on a per-site basis or using pooled data.
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3.3. Privacy

For estimating whether SE can enhance the data privacy compared to 
the baseline of using mean GMV, we performed a multiclass classifica
tion task. The objective here was to predict the dataset of origin for each 
subject using either the regional L0 age predictions - out-of-sample es
timations within each dataset-, or regional mean GMV as features. We 
performed a nested 5-fold cross validation with model selection and 
hyperparameter tuning happening within the inner CV. For both feature 
spaces linear SVM was chosen resulting in balanced accuracy ACCbal =

0.63 for SE L0 predictions and ACCbal = 0.87 for mean GMV. The GMV 
model showed an overall higher confusion while the L0 predictions 
model was biased towards two sites (Fig. 8).

4. Discussion

Understanding and modeling healthy brain aging is crucial for 

developing individualized precision methods for various neurodegen
erative and pathological brain disorders. Previous work has shown that 
advanced MRI-derived brain-age, i.e. a higher predicted age than actual 
age, is associated with neurodegenerative, psychiatric and other dis
eases [12,13,15,16,18]. Nevertheless, several important aspects need to 
be refined prior to integrating brain-age prediction into clinical practice: 
1) improved performance and robustness, 2) interpretability and bio
logical insights from prediction models, and 3) improved data privacy. 
In this context, we propose a two-level stacking model for MRI-based 
age-prediction. This novel approach performs voxel-based age pre
dictions for each predefined brain region in its first level, which are then 
fused by a second-level model. Compared to the oftused baseline 
approach of averaging regional voxels’ GMV, our approach offers a more 
sophisticated data fusion. Contrary to models using regional mean GMV, 
SE models make better use of the voxel-wise information. Our numerical 
experiments using large datasets with a wide age range suggest that the 
proposed SE model provides more reliable and accurate results.

Fig. 3. Comparison of setups’ performances across different numbers of train datasets. The impact of the number of sites in the training process in terms of 
MAE (upper left), Pearson’s correlation between predicted and real values (upper right), R2 (bottom left) and bias (bottom right). Increase in the number of training 
sets yields better performance for MAE and R2. Pearsons’s correlation demonstrates small improvement and bias seems to be dependent on the setup.

Fig. 4. Regional GMV-age and L0 predictions-age Pearson’s correlations, presented in violin plots and projected in the brain. The left panel illustrates 
Pearson’s correlations, across subjects, between age and negated mean GMV per region (green), and that with L0 voxelwise predictions per region (orange). L0 
predictions were more correlated to age, but more importantly all regions are positively correlated to age. The right panel demonstrates the same correlation values 
in the brain space. Positive correlation for GMV is found in the subcortical areas (upper-right), where the correlation of age-L0 predictions appears to be very high 
(bottom-right).
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Furthermore, datasets can be fused in different ways forming varia
tions of SE models. Therefore, we tested setups differing in the way that 
training datasets were combined at both levels of the SE. Specifically, 
using a LOSO scheme, we evaluated three setups: pooling data from 
different sites, training per site and averaging results or performing OOS 
predictions in the first level using the test dataset. First we compared the 
performance of all SE setups and models to the standard approach of 
using regional mean GMV, in terms of MAE, R2, Pearson’s correlation 
and age bias. Overall, SE setups outperformed the regional mean GMV 
models in terms of MAE, R2 and Pearson’s correlation. Notably, all SE 
setups using a part of the test site data for L0 models to obtain out-of- 
sample predictions performed better than other setups in terms of 
MAE and R2 (Suppl. Table 2), with those using regional GMV being the 
worst. In terms of Pearson’s correlation, all SE setups showed r = 0.93 
(rounded in the second decimal digit) except for PredL0PL1P (pooling 
data for both L0 and L1) that had a slightly better performance (r =
0.94), and all outperformed GMV setups (r = 0.89–0.9). This way of 
obtaining OOS L0 predictions effectively models the idiosyncrasies of 
the specific dataset. Additionally, it also offers the advantage that cen
ters/clinics do not need to share their raw data but only L0 predictions. 
In this scenario, the test sites can benefit from SE models (specifically 
L1) trained on publicly available data while only using their own data 
for L0 models. In terms of the age bias, the results were more mixed. The 
best and worst bias were both setups using GMV, GMVPL1Pext b =
− 0.49 and GMVSL1S b = − 0.56. However, the high bias can be 
addressed by using bias correction, a common practice in age-prediction 
which can benefit all models [55]. Although a comparison with other 
models would provide some important insights regarding the perfor
mance of SE, such a comparison would be unfair and potentially 
misleading. While SOTA models demonstrate comparable performance 
(see e.g. [2], Coles et al., 2018), they typically undergo rigorous 

optimization through model selection and feature engineering processes 
which we did not do here. Our best performing model achieved MAE =
4.75 years, which compares favorably with established classical ma
chine learning approaches for brain-age prediction from structural MRI. 
Similar studies report MAE = 5.004 years using SVR with GMV features 
[58] and MAE = 4.3–4.5 years for multi-cohort SVR ensembles [32]. 
While more complex pipelines using whole-brain VBM, PCA, and 
intensive hyperparameter tuning can achieve slightly better perfor
mance (MAE = 3.66–4.69 years [31]), our simpler GMV-only approach 
with default set up performs competitively within this range.

As expected, increasing the number of datasets used for training led 
to prediction performance improvements (Fig. 3). Especially for MAE, 
when using three datasets, was improved by 0.99 on average for GMV 
models, 0.42 for models that perform OOS predictions in level 0 and 
0.45 for the other models (averaged across different train datasets and 
setup variations), compared to using one dataset for training. It is worth 
mentioning, however, that this was not the case for age bias, which 
demonstrates an unclear pattern in relation to the number of data sets. In 
fact, differences in bias increased with the number of datasets, likely due 
to differing age distributions across datasets. Since bias is influenced by 
the age distribution of the training subjects, its interpretation is chal
lenging in a LOSO setup.

Our analysis of brain age in ADNI participants revealed distinct 
performance patterns across clinical groups. The brain-age gap of both 
set-ups differentiated the three groups. This result shows the potential of 
our proposed methods to capture clinically relevant differences 
providing an image derived biomarker and aligns with established 
literature [2,14] linking brain age gaps to neurodegenerative diseases.

A coherent and robust association between chronological age and 
regional metrics can provide valuable biological insights into the 
healthy aging mechanism and consequently facilitate identification of 

Fig. 5. Regional GMV-age and L0 predictions-age Pearson’s correlations across datasets. Pearson correlation across subjects was estimated between regional 
predicted age and real age, as well as between mean regional GMV and real age. The four panels show these correlations plotted against each other for each region for 
four datasets. Cortical regions are depicted in yellow, subcortical in pink and cerebellar in blue. We observed that SE L0 predictions to be more aligned with the real 
age indicating that it better captures the aging process. Here we demonstrate only the cases when one dataset was used for training.
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Fig. 6. Dataset based regional GMV-age and L0 predictions-age Pearson’s correlations plotted against other datasets. Pearson correlation was estimated 
between regional predicted age and real age, as well as between mean regional GMV and real age, across subjects. The scatter plots show these correlations against 
each other for each region. The plots show that SE L0 predictions are more aligned with the real age and can thus provide a better biological insight of the aging 
process in healthy individuals. Here we demonstrate the predictions obtained via a 3-fold CV scheme for each dataset.

Fig. 7. BAG estimates within CN, MCI, and AD groups from the ADNI dataset. The CN and MCI groups were age- and sex-matched to the AD group. Results are shown 
for the two best-performing configurations: OOSPredsL1p left (a) and OOSPredsL1s right (b). Significant differences (two-sample t-test, after correction for multiple 
comparisons) were observed between all groups for both configurations.
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brain regions susceptible to neurodegenerative and psychiatric diseases 
[27,28]. To this end, we conducted a comparative analysis of the cor
relations between age and two metrics: the regional mean GMV and 
regional L0 age predictions. The results showed that the correlations 
were more pronounced for the L0 predictions, suggesting that the 
associated regional models provide robust biological insights and rep
resentation of healthy brain aging (Figs. 4 and 5). Additionally, this 
result underscores the ability of SE models to capture nuanced aging 
patterns in brain regions, offering a richer perspective than traditional 
analyses using mean GMV. Interestingly, subcortical areas showed a 
weak positive correlation with mean GMV, indicating that their volume 
increases with age which contradicts the current knowledge [3–8]. This 
effect could be, however, due to preprocessing artifacts [34]. Specif
ically, regions in thalamus had a positive GMV-real age correlation of r 
= 0.28 and r = 0.29, but showed high positive correlation of L0 pre
dictions and real age, r = 0.8 and r = 0.62 respectively. Regional pre
dictions from subcortical areas in SE showed a much higher correlation 
r = 0.75, when the mean in subcortical areas for GMV was r = 0.35 
(mean of absolute values). This suggests that the L0 models were able to 
extract age-related information from individual voxels whereas their 
signal was diluted by the GMV averaging. Subcortical regions have been 
implicated in neurodegeneration processes related to Parkinson’s dis
ease and Alzheimer’s disease [59,60]. Therefore, appropriate modeling 
of GMV in those regions regarding healthy aging is essential for clinical 
application of brain age. In essence, SE effectively uses information from 
voxels that otherwise is “lost in the crowd” during averaging. Our cor
relations analysis between datasets suggests that the regional age pre
dictions from SE models maintain a robust and stable association with 
age across all datasets, further underlining the reliability of the observed 
correlations (Figs. 5 and 6). This result further supports the notion that 
the alignment of L0 regional age predictions with chronological age 
represents biological insights and is not contingent on specific charac
teristics of datasets. Moreover, with the SE framework individualized 
brain aging maps could be generated translating brain age predictions 
into clinically actionable biomarkers. Such maps might reveal distinct 
spatial patterns and help distinguish between disease subtypes and 
facilitate monitoring at the individual level. Future work is needed to 
validate and optimize such results to provide improved clinical 
interpretations.

Identifying the origin dataset of individuals serves as an indirect 
measurement of privacy. A feature space that “hides” the dataset of 
origin also complicates subjects’ identification. Dataset identification 
using L0 predictions of SE proved more challenging compared to using 
GMV (ACCbal = 0.63 and ACCbal = 0.87 respectively). For both feature 
spaces, linear SVM demonstrated the best performance among tested 

models (see Supplementary Table 1). Classification analyzes to predict 
the dataset suggest, to a certain extent, that the efficacy of SE concealing 
more information essential for identifying the dataset and consequently 
a subject’s identity compared to GMV. This privacy preservation could 
be further improved by employing more complex models in the first 
level, such as tree-based models and deep neural networks. However, it 
is noteworthy that despite the high misclassification between subjects 
from IXI and eNKI, for CamCAN data and mostly for 1000Brains data the 
classification was accurate. A potential explanation for that can be the 
differences in data quality as well as the generally older population of 
these datasets. Nonetheless, this analysis can serve as a blueprint for 
other use cases helping the general radiomics community in developing 
privacy preserving and accurate methods. A potential improvement to 
the SE, aligned with privacy protection principles, would involve clinics 
sharing their first-level predictions and/or models with a remote central 
unit which could then train a comprehensive second-level model. This 
idea is similar to the approach used in federated learning in spirit and 
further architectures that combine it with SE could be developed [61].

This study has several limitations that warrant discussion. First, the 
GLMnet model was chosen due to its interpretability and computational 
efficiency. We acknowledge that alternative learning algorithms (e.g., 
random forests, Gaussian process) might yield better performance and 
additional insights. Second, our analysis was restricted to the Schaefer- 
800 parcellation, while other atlases or granularities should be evalu
ated. We used 3-fold CV to generate out-of-sample predictions for the 
stacking model. Future studies could test other choices of number of 
folds. These choices were deliberate to prioritize the feasibility testing of 
our method and future work is needed to identify optimal choices. Taken 
together, our comprehensive analyses allowed for a thorough under
standing of the SE model generalizability and its ability to capture 
meaningful biological patterns. Future work could consider the appli
cation of more, and perhaps more suitable, models through a model 
selection process together with a more thorough hyperparameter tuning 
in both stacking ensemble levels. Such refinements will contribute to the 
overall effectiveness of the ensemble. At first, by improving the diversity 
and individual performance of base learners, and then by optimizing the 
combination of their predictions by the meta learner and refining the 
final prediction, leading to more robust and accurate models which will 
facilitate clinical application. As performance increased with training 
data size, including more sites in the training data we can further 
improve the performance of our SE model. A thorough exploration of 
model selection, parcellation atlas, and large-scale validation require 
significantly more computational resources and warrants a separate, 
carefully designed study. Such carefully designed and well-tuned models 
will pave the path for broader clinical applications and facilitate 

Fig. 8. Results of dataset prediction when GMV and L0 predictions are provided as features. Confusion matrices for multilabel classification task of dataset of 
origin prediction with L0 regional predictions (left) and regional GMV (right). A high dataset prediction performance indicates a higher potential for identification of 
individuals.
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research into specific neurological disorders, including Parkinson’s 
disease and other neurodegenerative conditions. Additionally, the final 
performance can be further enhanced by applying age-bias-correction in 
second level outcomes.

5. Conclusion

Here, we introduced a novel two-level SE model for MRI-based brain- 
age prediction. Our approach demonstrates superior performance and 
robustness compared to the conventional method of using regional mean 
GMV. Although all SE configurations outperformed the mean GMV 
models, the highest accuracy was obtained in configurations where 
level-0 predictions were derived from the test site, thereby optimizing 
the utilization of the available data. The SE framework not only achieves 
competitive predictive accuracy but also offers enhanced biological 
interpretability by capturing nuanced, voxel-wise aging patterns that are 
lost during averaging. Furthermore, the model shows potential for 
application to new data and improved data privacy, as it relies on 
sharing regional predictions rather than raw data, aligning with prin
ciples of federated learning. Crucially, the model’s applicability to 
clinical data was demonstrated in an independent cohort, where the 
brain-age gap derived from our best-performing setups successfully 
differentiated between cognitively normal, mild cognitive impairment, 
and Alzheimer’s disease subjects, aligning with expected cognitive 
decline trends. This demonstrates the potential of our SE model as a 
clinically relevant biomarker for neurodegenerative progression. Over
all, our SE model is powerful for modeling healthy brain aging and holds 
potential for future clinical application as a biomarker for neurode
generative and psychiatric diseases.
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