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ARTICLE INFO ABSTRACT

Keywords: Predictive modeling using structural magnetic resonance imaging (MRI) data is a prominent approach to study
MRI o brain-aging. Machine learning frameworks have been employed to improve predictions and explore healthy and
Age-prediction accelerated aging due to diseases. The high-dimensional MRI data pose challenges to building generalizable and

l;r:;;igeensemble interpretable models as well as for data privacy. Common practices are resampling or averaging voxels within
Aging & predefined parcels which reduces anatomical specificity and biological interpretability. Effectively, naive fusion

by averaging can result in information loss and reduced accuracy. We present a conceptually novel two-level
stacking ensemble (SE) approach. The first level comprises regional models for predicting individuals’ age
based on voxel-wise information, fused by a second-level model yielding final predictions. Eight data fusion
scenarios were explored using Gray matter volume (GMV) estimates from four large datasets. Performance
measured using mean absolute error (MAE), R2, correlation and prediction bias, showed that SE outperformed
the region-wise averages. The best performance was obtained when first-level regional predictions were obtained
as out-of-sample predictions on the application site with second-level models trained on independent and site-
specific data (MAE = 4.75 vs baseline regional mean GMV MAE = 5.68). Performance improved as more
datasets were used for training. First-level predictions showed improved and more robust aging signal providing
new biological insights and enhanced data privacy. Overall, the SE improves accuracy compared to the baseline
while preserving or enhancing data privacy. Finally, we show the utility of our SE model on a clinical cohort
showing accelerated aging in cognitively impaired and Alzheimer’s disease patients.

brain tissues such as gray matter volume (GMV) at each voxel. This in
turn permits in-depth study of distinct brain structures in relation to
various cognitive, pathological and other physiological processes such
as aging. Structural differences in the GMV have been reported between

1. Introduction

The process of aging in humans is complex and it inevitably in-
fluences the brain, with negative consequences such as neuro-

degeneration which can lead to dementia and also is a mortality risk [1,
2]. The structural changes in the brain can be measured non-invasively
via Magnetic Resonance Imaging (MRI) scans which capture the brain in
volumetric form, comprising smaller volume elements called voxels.
Each scan consists of hundreds of thousands of voxels. Following
appropriate processing, it is possible to quantify the amount of specific

younger and older healthy individuals [3-5] along with continuous,
widespread reduction in GMV observed from middle age onwards [6-8].
Additionally, an accelerated loss of both global and local GMV has been
documented in neurodegenerative disorders [6,9-13] such as the Alz-
heimer’s disease (AD) and mild cognitive impairment (MCI) compared
to normal aging.
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Leveraging machine learning models to predict chronological age in
healthy individuals using GMV aims to estimate the trajectory of healthy
brain aging and through it unravel the links to neurodegenerative,
psychiatric, and other disorders. Such MRI-derived age-prediction has
been shown to be a reliable proxy for overall health [10,11,14]. An
elevated brain age stands as an important risk factor for various
neurodegenerative and psychiatric disorders [12,13,15-18]. Thus, age
prediction models can facilitate early detection of health risk and
facilitate effective prevention and treatment strategies. The success of
this approach hinges on accurate and biologically meaningful models.
Furthermore, sharing MRI data or even its derivatives can lead to pri-
vacy issues [19]. Hence it is important that new brain age estimation
methods respect individuals’ privacy. Furthermore, generalizing across
data from multiple scanners remains challenging due to systematic
biases. To this end, various machine learning algorithms and
GMV-derived features have been tested aiming at providing more ac-
curate predictions as well as insights into healthy brain aging. For
instance, Relevance Vector Regression (RVR) outperformed Support
Vector Regression (SVR) when trained on downsampled voxels -with
and without feature selection, yielding MAE = 5 years in healthy sub-
jects and MAE = 10 years in AD [20]. Gaussian Process Regression using
structural MRIs was efficient in estimating mortality via brain age [1]
and outperformed RVR, Kernel Ridge Regression and LASSO [1,2].
Additionally, various deep neural network models have been proposed
such as convolutional neural networks [12,21-26].

In terms of GMV features, previous studies have used voxel-wise
GMV [1,2,27,28], feature reduction methods such as principal compo-
nent analysis and non-negative matrix factorization [29,30] as well as
regional mean values [31,32]. The voxel-based approach is encumbered
by the “curse of dimensionality”, high computational demands due to
the high number of voxels and high intersubject variability. On the other
hand, the use of regional mean GMV is more conducive for machine
learning. This simple and efficient type of information fusion can
enhance robustness and statistical power mitigating the impact of noise
or variability within individual voxels. Additionally, use of a meaningful
parcellation scheme increases sensitivity for detecting regional changes,
yielding results that are easier to interpret from a neuroanatomical
perspective and can provide critical priors for studying brain basis of
behavior and disease [33]. Effectively, calculating regional mean of
GMV as a form of information fusion might be too naive, as it weighs all
the voxels equally regardless of their reliability and relevance to the
problem at hand.

Further challenges to real-world use of brain age models are posed by
data heterogeneity and data privacy issues. It is desirable that the
models should work effectively on test data collected from a new
scanner from which no or only limited data is available for training.
However, scanner-induced systematic differences make this challenging
[34,35]. It is also desirable that data is utilized and shared in a way that
preserves privacy, a crucial consideration in healthcare and medicine
[36]. Any use of personal and medical data should ensure it’s ethical for
research and treatment, and comply with legal obligations. For instance,
raw MRI data is enough for face identification of the subjects [37] as
well as information such as MRI-derived connectomes are unique to
individuals like a fingerprint promoting identification [38]. Subjects can
be identified based on their regional GMV, even across different pre-
processing pipelines, indicating that sharing preprocessed data still
poses the risk of privacy violation [34].

To better utilize the information of each voxel, while managing the
very high dimensionality of the data, we propose the use of stacking
generalization or stacking ensemble (SE) models [39] which effectively
mitigate overall bias and variance, and have shown promise in multiple
domains [40-42]. The SE framework is based on weighted voting of
predictions derived from various models (referred to as generalizers in
Ref. [39]). Specifically, we propose a variation of SE in which first level
models are trained on the voxel-wise data from each brain region. In
contrast to the uniform weighting, as done in conventional models that
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use the mean for each region, the first level models weight the contri-
bution of each voxel according to how it captures the aging signal. This
approach can effectively handle regions in which the voxels have
differing signal to noise ratio. A second level model is then trained using
the predictions of the first level models to obtain the final prediction. In
addition, the predictions of the first level models are more aligned with
the target, in our case age. This allows for better fusion of data across
datasets/scanners, in effect mitigating the scanner differences and
allowing to combine datasets to train more accurate and generalizable
models. In other words, pooling age predictions of first level models is
likely to incur lower bias than pooling regional mean GMV. Overall, we
expect that this more nuanced and informative fusion of voxel and
cross-dataset information contrary to the conventional mean approach
will potentially lead to more accurate and biologically meaningful
models. The proposed SE framework, to some degree, addresses also the
privacy issues. By using the output of the first level, i.e. regional age
predictions, for cross-site predictions and sharing our framework pro-
motes interoperability and privacy.

While SE models have been previously used in age-prediction for
combining the predictions of various modalities [11,43], they have not
been used for region-wise structural MRI models. Popescu et al. [28]
utilized structural MRI features to predict age for each brain region,
however, they did not combine regional predictions in a meta model. In
this study we use a SE framework to enhance brain-age predictions and
provide an alternative and more robust biological representation of the
contribution of brain regions in healthy aging. We employed structural
MRI scans of healthy individuals from four large open datasets covering
the adult lifespan. We systematically explored various ways to fuse data
from different sites during training and testing. Specifically, we per-
formed cross-site predictions, by keeping a test site separate from the
training sets, while ensuring consistent training sample sizes across all
set ups. Furthermore, we also explored different methods for conducting
out-of-sample (OOS) predictions with and without site-specific models.
We compared the conventional baseline utilizing the mean GMV for
each region against using the SE framework in all those set ups. Addi-
tionally, we assessed the impact of the number of datasets available for
training and examined their stability on data coming from different
sites. Finally, the two best-performing set-ups were tested on clinical
data consisting of cognitively normal (CN), mild cognitive impairment
(MCI), and Alzheimer’s disease (AD) groups. At the current stage we did
not perform any comparison between SE models and the state-of-the art
(SOTA) methods. Our goal is to demonstrate the theoretical and prac-
tical promise of SE models in this specific context rather than to
immediately outperform highly tuned, task-specific models. Our sys-
tematic analysis provides valuable insights regarding the efficacy of our
proposed stacking ensemble framework in the domain of brain age
prediction, paving the path for clinical applications.

2. Material and methods
2.1. Datasets and preprocessing

We used T1-weighted MRI scans of healthy individuals (total N =
2926, covering the whole adult lifespan (18-88 years), coming from 4
open datasets: the Cambridge Center for Ageing and Neuroscience
(CamCAN, N = 650, mean age = 54 + 18.6, min-max = 18-88) [44],
Information eXtraction from Images (IXI, N = 562, mean age = 48.7 +
16.45, min-max = 20-86) (https://brain-development.org/ixi-dataset
/), the enhanced Nathan Kline Institute-Rockland Sample (eNKI, N =
597, mean age = 48.2 + 18.5, min-max = 18-85) [45] and the 1000
brains study (1000Brains, N = 1117, mean age = 61.8 4+ 12.4, min-max
= 21-85) [46]. Additionally, we used 3T Tlw images from the Alz-
heimer’s Disease Neuroimaging Initiative 3 (ADNI3 N = 404, mean age
= 79.9 + 7.45, min-max = 50.4-90.6; https://adni.loni.usc.edu) [47,
48] database to evaluate the utility of our model in neurodegenerative
disorders. From the available cognitive normal (CN, N = 372), we
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selected 66 age- and sex-matched to our available Alzheimer’s disease
(AD, N = 66) subjects. The remaining 306 CN scans were used exclu-
sively for model training. Similarly, we used 66, matched for sex and
age, subjects with mild cognitive impairment (MCI, N = 66) for testing.
We used only subjects diagnosed at the baseline.

All datasets underwent the exact same preprocessing. Specifically,
we processed the T1 scans to extract modulated GMV in the MNI space
for each subject, using Computational Anatomy Toolbox (CAT) version
12.8 [49]. To ensure accurate normalization and segmentation, initial
affine registration of Tlw images was done with higher than default
accuracy (accstr = 0.8). After bias field correction and tissue class seg-
mentation, optimized Geodesic Shooting [50] was used for normaliza-
tion (regstr = 1). We used 1.5 mm Geodesic Shooting templates and
outputted 1.5 mm isotropic images. The normalized GM segments were
then modulated for linear and non-linear transformations yielding
estimated GMV for each voxel (N = 399184 voxels in total).

2.2. The SE model training

In this study we implemented SE with two levels, denoted as LO and
L1. For both levels, we utilized GLMnet (elastic net) [51] due its ability
to handle multicollinearity in data, such as the voxels of structural MRI,
efficiently. This choice was made to demonstrate the effectiveness of SE,
though other models may yield a better performance and will be eval-
uated in the future. Elastic net regression combines ridge regression (L2
regularization) and LASSO (L1 regularization), which facilitates dealing
with multicollinearity by penalizing large coefficients and promoting
simpler models. We used the glmnet package in R (version R-4.1.0) that
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incorporates an internal process for hyperparameter tuning. By default,
it optimizes the regularization parameter lambda (1) along with the
mixing parameter alpha («) using ‘adaptive resampling’. Features with
near-zero variance were identified and removed. The remaining features
underwent centering -removing the mean-, and scaling -dividing with
the standard deviation.

At the first level LO, GM voxels were grouped into 873 regions
encompassing cortical, subcortical and cerebellar regions, using a par-
cellation atlas [32] with 800 cortical regions from the Schaefer atlas
[52], 36 subcortical regions from the Brainnetome Atlas [53] and 37
cerebellar regions [54]. We chose this specific granularity to retain
anatomical specificity. Our choice of the 800-region Schaefer atlas was
based on prior evidence demonstrating similar performance of 800 and
1000-parcel resolutions [2], while offering a higher computational ef-
ficiency. Nevertheless, other options could be also explored. We used a
stratified 3-fold cross-validation scheme as it employs a smaller training
sets for each fold and maintains a good trade-off between data coverage
and computational efficiency to generate voxel-based and out-of-sample
LO model predictions for each region. Additionally, to establish
robustness, we also trained the LO models using 10-fold CV scheme. LO
predictions (873 per subject) were then used as inputs to train the sec-
ond level L1 model. For application on new unseen samples, a final LO
model (GLMnet) per region was trained on the complete training set.
The L1 GLMnet model was trained on the LO models’ OOS predictions
from the CV and provides the final age prediction. A full overview of the
training process and the application of the model is illustrated in Fig. 1.
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Fig. 1. Illustration of standard age-prediction process. Left: Current standards perform a regional mean of GMV in level-0 (f(Vi) = mean(voxels in region i)) and
with those they train a model in Level-1. In SE models voxels in each region are used to train a model to predict age, in a K-fold scheme, and the predictions are used
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as inputs for the L1 model, which makes the final prediction.
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2.3. Data split and training setups

In our experiments, we estimated models’ performance using Leave-
One-Site-Out (LOSO) validation. The LOSO set up mimics the scenario
when the models are applied to data from a new scanner not available
during training, thus it provides a more accurate estimation of model’s
ability to generalize across different scanners or sites. When using
multiple datasets for training, the training data or models can be com-
bined in various ways. Data from different sites can be either pooled and
used as if they are coming from one source for training LO and L1
models. Alternatively, data from each site can be used separately to train
both in LO and L1 models creating site-specific SE models and the pre-
dictions of L1 models can be then averaged to obtain the final prediction.
In-between set ups are also possible, for instance LO predictions can be
pooled or averaged prior to training a L1 model. We implemented 8 such
set-ups as presented in Table 1. We also examined the impact of training
with one or multiple different sites, always testing in an unseen site.

Additionally, beyond the aforementioned set-ups, we tested the
scenario where a center or a clinic cannot share raw data from patients.
Thus, LO regional predictions could be estimated directly in the test site
(from the test set), using a k-fold CV scheme to get out-of-sample (OOS)
predictions and pass these predictions to L1 models, trained either in
pooled or site-specific data. Note that the L1 models did not include data
from the test site for training. We tested this scenario, using a 3-fold CV
to get LO predictions from the test set.

To benchmark against the conventional standard, we computed the
mean of GMV for each region and trained a GLMnet model to predict
age. This is equivalent to replacing each of the 873 first level models
with an averaging function. We implemented both pooling as well as
different set ups of data/model fusion for the GMV mean data. In order

Table 1

All the setups that we compared, given the possible combinations that can occur
when creating site-specific models or pooling data from all sites in the two levels
of SE models. The subscripts s and p represent “site” and “pooled,” respectively,
indicating whether training was conducted on a per-site basis or using pooled
data.

Train Lo LO train L1 operation L1 train Notation
datasets operation data/ data/
output output
per site f1-873(x) = per site f1100) = three GMV;L1g
mean GLMnet outputs
per site, Mean
mean sites
f1-873(x) = per site fui() = three PredLOsL1g
GLMnet GLMnet outputs
per site, Mean
mean sites
0O0S on per site fui() = three OOSPredgL1g
test set GLMnet outputs
per site, Mean
mean sites
f1.87300) = pool f110) = one GMVpL1p"
mean preds GLMnet on output
pooled LO
preds
f1-873(x) = per site f1100) = one PredLOgL1p
GLMnet GLMnet on output
pooled LO
0O0S on per site f1100) = one OOSPredsL1p
test set GLMnet on output
pooled LO
pooled f1.87300) = pool f1100) = one GMVpL1p*
mean preds GLMnet output
f1-873(x) = pool fu1() = one PredLOpL1p
GLMnet preds GLMnet output
00S on pool 1100 = one 0O0SPredpL1p
test set preds GLMnet output

@ These models are the exact same, as the L0 is local averaging and has nothing
to do with the train data.

Computers in Biology and Medicine 198 (2025) 111182

to have a fair comparison with the set-up where we use the test set in a 3-
fold scheme in LO, we also implemented an approach for the mean GMV
models, where we trained models by pooling the training data sets with
the two training folds from the test site.

In all the scenarios, the train and test datasets were exclusive to avoid
data leakage.

The utility of using additional datasets was evaluated by comparing
the performances of the different setups when using a different number
of training data sets. For this, we examined the cases where one, two and
three datasets were used to train the models in all possible combinations
occurring from our four datasets.

For performance evaluation, we calculated the mean absolute error
(MAE), coefficient of determination (Rz), Pearson’s correlation between
real age and predicted age (r), and prediction bias. The prediction bias is
calculated as the correlation between the actual ages and the prediction
errors (real age - predicted age) and it expresses the tendency of a model
to provide predictions closer to the mean, meaning that younger subjects
are predicted as older and older are predicted as younger [35,55].
Although it is not a standard performance metric, it is important for
brain-age prediction problems. These metrics are widely used and well
described in MRI-based age-prediction problems [56].

2.4. Biological insights

To understand biological aging it is important to identify regions that
are strongly and robustly correlated with the real age. Although corre-
lation doesn’t imply causation, such insights can shed light on the brain-
aging process. To this end, we calculated Pearson’s correlation of real
age with LO predictions and mean regional GMV across subjects. These
values were compared to identify the more robust approach providing
biological insights. Projecting those correlations back to the brain space
reveals regions strongly and robustly associated with aging. We ensured
the stability of those results by evaluating all four datasets to show that
the insights gained are not dataset dependent. This comprehensive
analysis was aimed to provide a holistic perspective on our method’s
robustness and stability.

2.5. Data privacy

To assess how SE compares to conventional methods in data ano-
nymity and privacy, we conducted a multiclass classification task to
predict the dataset of origin. Identifying the datasets is a step closer to
identifying the subject itself and thus this task serves as a proxy for
gauging the potential for privacy violation. For this task, we employed
LO regional age predictions as features and juxtaposed the dataset pre-
diction performance with that achieved using regional mean gray matter
volume (GMV). We performed model selection with hyperparameter
tuning for both sets of features. The tested models included logistic
regression, linear Support Vector Machine (SVM), SVM with radial basis
function kernel, Random Forest (RF). The exact hyperparameter space is
presented in the Supplementary Table 1. The accuracy of the optimal
model serves as a metric, where higher accuracy indicates better pres-
ervation of dataset-specific information in the corresponding feature
space. Conversely, lower accuracy in the dataset prediction task suggests
a higher level of privacy. This analysis permits to directly compare how
SE preserves data anonymity in contrast to regional GMV.

3. Results
3.1. Performance

The performance of different set ups was evaluated using leave-one-
site-out (LOSO) scheme. We calculated MAE, R%, Pearson’s correlation
between predicted and real values and prediction bias (Fig. 2). A
comparative analysis of 3-fold and 10-fold CV yielded comparable re-
sults (Supplementary Fig. 2). We chose the 3-fold approach as it is
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Fig. 2. Performance of SE models and GMV approaches for chronological age prediction, across four metrics. Performance in terms of MAE (upper left),
Pearson’s correlation (upper right), R? (bottom left) and bias (bottom right) for all setups. Results were extracted by using three datasets for training and one for
testing in all possible combinations. Setups that perform OOS prediction on the test set yield better performance in all metrics except for bias.

computationally more efficient. Overall, SE frameworks showed better
performance. Specifically, the highest performances were observed for
the setups where LO predictions were obtained from the test site:
OOSPredsLlp2 (average MAE = 4.75), closely followed by OOSPredsL1¢
(MAE = 4.9). Setups using pooled LO predictions to train a single L1
model, independently of how LO was trained, i.e. PredLOpL1, and
PredLOgL1,, showed MAE = 5.1. When using mean region-wise GMV,
the model trained using the training data sets together with the 2
training folds from the test site, GMVL1,ext, showed MAE = 5.7.
Performance was worse for the other two region-wise mean GMV models
trained in three datasets, with the L1p setup (pooled predictions from LO
to train L1) being slightly better compared to L1s (train L1 models from
different sites), MAE = 6.2 and MAE = 6.7 respectively. The perfor-
mance ranking was the same for R?, slightly changed in Pearson’s T,
where the best model was the one where both LO and L1 models were
trained on pooled data. The performance of the models regarding age
bias was rather different. The lowest bias was found for GMVpL15p fol-
lowed by PredLOpL1p and OOSPredsLlp (b = —0.41, b = —0.43 and b
= —0.44, respectively). Detailed results can be found in Supplementary
Material Table 2.

All setups exhibited significant performance improvement with the
inclusion of more datasets in the training process (Fig. 3). Higher im-
provements in performance were observed when transitioning from one
to two datasets, compared to the increase from two to three. This trend
underscores the positive impact of creating the training data with mul-
tiple datasets, particularly in the initial stages of model development.

3.2. Biological insights

Correlation values between mean regional GMVs and chronological
age across subjects is commonly used for identifying aging-related brain
regions. Similar insights from SE models can be derived using the
regional age-predictions provided by the LO models. The results showed
that regional predictions of the LO models exhibit a stronger alignment
to age (Fig. 4). Correlation coefficients’ mean (mean of absolute values)
for LO predictions-age was I'mean = 0.6 and rmean = 0.32 respectively for
GMV-age, yielding significant difference (p<0.01e'®). Frontal and
cerebellar areas were highlighted in both methods, notably stronger
though in SE models. Remarkably, subcortical areas which exhibited
positive mean GMV-age correlation, demonstrated a more pronounced

2 The subscripts s and p represent “site” and “pooled,” respectively, indi-
cating whether training was conducted on a per-site basis or using pooled data.

and positive association in SE models. Specifically, four regions had
positive GMV-age correlation for all datasets, with the mean across
datasets ranging from r = 0.12 to r = 0.29. In comparison, the corre-
sponding LO predicted—age to real-age correlations were notably higher,
ranging from r = 0.62 tor = 0.8.

Next, we sought to compare the stability of the biological insights
provided by the two methods across different datasets. To this end, we
calculated the correlation values between age and LO regional age OOS-
predictions across datasets and compared it to the correlation values
calculated between age and regional mean GMV. Correlations between
age and regional LO age predictions demonstrated higher consistency
across all datasets compared to the correlations of age and mean GMV
(Fig. 5). Cortical regions exhibited an average LO predictions-age cor-
relation of r = 0.54, while the GMV-age correlation was negative at r =
—0.4. In subcortical regions, the mean LO predictions-age correlation
was r = 0.75, with the mean GMV-age correlation (absolute values) at r
= 0.35. Interestingly, some regions showed positive GMV-real age cor-
relations; for instance, some thalamic regions had correlations of r =
0.28 and r = 0.29 when LO predictions and real age correlations in these
regions were r = 0.8 and r = 0.62, respectively. For the cerebellum, the
mean LO predictions-age correlation was r = 0.60, while the GMV-age
mean was r = —0.38.

3.2.1. Stability across datasets

To mitigate the possibility that the associations between subjects’
age and LO predictions or GMV, are driven by datasets’ idiosyncratic
properties, we computed the correlation values separately for each
dataset. The results (Fig. 6) consistently exhibited the same pattern
across datasets, affirming the overall stronger association of LO (mean =
0.86 ranging from 0.79 to 0.91) regional age predictions with age
compared to mean regional GMV (mean = 0.81 ranging from 0.75 to
0.9).

3.2.2. Application to clinical data

To assess clinical applicability, we evaluated our two best-
performing model set-ups, OOSPredsL1, and OOSPredsL1 in an in-
dependent clinical cohort of CN, MCI and AD subjects. Consistent with
clinical data common practice, a bias correction model was applied
whose parameters were derived from the CN training subjects excluded
from the age- and sex-matched test set ([57], Suppl. Figs. 3-4). For both
set-ups, the brain-age gap (BAG, the difference between predicted age
and real age) mirrored expected cognitive decline trends, with statisti-
cally significant differences observed among all diagnostic groups (CN
vs. MCI vs. AD, Fig. 7).
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(bottom-right).

3.3. Privacy

For estimating whether SE can enhance the data privacy compared to
the baseline of using mean GMV, we performed a multiclass classifica-
tion task. The objective here was to predict the dataset of origin for each
subject using either the regional LO age predictions - out-of-sample es-
timations within each dataset-, or regional mean GMV as features. We
performed a nested 5-fold cross validation with model selection and
hyperparameter tuning happening within the inner CV. For both feature
spaces linear SVM was chosen resulting in balanced accuracy ACCpy =
0.63 for SE LO predictions and ACCpy = 0.87 for mean GMV. The GMV
model showed an overall higher confusion while the LO predictions
model was biased towards two sites (Fig. 8).

4. Discussion

Understanding and modeling healthy brain aging is crucial for

developing individualized precision methods for various neurodegen-
erative and pathological brain disorders. Previous work has shown that
advanced MRI-derived brain-age, i.e. a higher predicted age than actual
age, is associated with neurodegenerative, psychiatric and other dis-
eases [12,13,15,16,18]. Nevertheless, several important aspects need to
be refined prior to integrating brain-age prediction into clinical practice:
1) improved performance and robustness, 2) interpretability and bio-
logical insights from prediction models, and 3) improved data privacy.
In this context, we propose a two-level stacking model for MRI-based
age-prediction. This novel approach performs voxel-based age pre-
dictions for each predefined brain region in its first level, which are then
fused by a second-level model. Compared to the oftused baseline
approach of averaging regional voxels’ GMV, our approach offers a more
sophisticated data fusion. Contrary to models using regional mean GMV,
SE models make better use of the voxel-wise information. Our numerical
experiments using large datasets with a wide age range suggest that the
proposed SE model provides more reliable and accurate results.
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Furthermore, datasets can be fused in different ways forming varia-
tions of SE models. Therefore, we tested setups differing in the way that
training datasets were combined at both levels of the SE. Specifically,
using a LOSO scheme, we evaluated three setups: pooling data from
different sites, training per site and averaging results or performing OOS
predictions in the first level using the test dataset. First we compared the
performance of all SE setups and models to the standard approach of
using regional mean GMV, in terms of MAE, R2, Pearson’s correlation
and age bias. Overall, SE setups outperformed the regional mean GMV
models in terms of MAE, R? and Pearson’s correlation. Notably, all SE
setups using a part of the test site data for LO models to obtain out-of-
sample predictions performed better than other setups in terms of
MAE and R? (Suppl. Table 2), with those using regional GMV being the
worst. In terms of Pearson’s correlation, all SE setups showed r = 0.93
(rounded in the second decimal digit) except for PredLoPL;P (pooling
data for both LO and L1) that had a slightly better performance (r =
0.94), and all outperformed GMV setups (r = 0.89-0.9). This way of
obtaining OOS LO predictions effectively models the idiosyncrasies of
the specific dataset. Additionally, it also offers the advantage that cen-
ters/clinics do not need to share their raw data but only LO predictions.
In this scenario, the test sites can benefit from SE models (specifically
L1) trained on publicly available data while only using their own data
for LO models. In terms of the age bias, the results were more mixed. The
best and worst bias were both setups using GMV, GMVPL;Pext b =
—0.49 and GMVSL;S b = —0.56. However, the high bias can be
addressed by using bias correction, a common practice in age-prediction
which can benefit all models [55]. Although a comparison with other
models would provide some important insights regarding the perfor-
mance of SE, such a comparison would be unfair and potentially
misleading. While SOTA models demonstrate comparable performance
(see e.g. [2], Coles et al.,, 2018), they typically undergo rigorous

optimization through model selection and feature engineering processes
which we did not do here. Our best performing model achieved MAE =
4.75 years, which compares favorably with established classical ma-
chine learning approaches for brain-age prediction from structural MRI.
Similar studies report MAE = 5.004 years using SVR with GMV features
[58] and MAE = 4.3-4.5 years for multi-cohort SVR ensembles [32].
While more complex pipelines using whole-brain VBM, PCA, and
intensive hyperparameter tuning can achieve slightly better perfor-
mance (MAE = 3.66-4.69 years [31]), our simpler GMV-only approach
with default set up performs competitively within this range.

As expected, increasing the number of datasets used for training led
to prediction performance improvements (Fig. 3). Especially for MAE,
when using three datasets, was improved by 0.99 on average for GMV
models, 0.42 for models that perform OOS predictions in level 0 and
0.45 for the other models (averaged across different train datasets and
setup variations), compared to using one dataset for training. It is worth
mentioning, however, that this was not the case for age bias, which
demonstrates an unclear pattern in relation to the number of data sets. In
fact, differences in bias increased with the number of datasets, likely due
to differing age distributions across datasets. Since bias is influenced by
the age distribution of the training subjects, its interpretation is chal-
lenging in a LOSO setup.

Our analysis of brain age in ADNI participants revealed distinct
performance patterns across clinical groups. The brain-age gap of both
set-ups differentiated the three groups. This result shows the potential of
our proposed methods to capture clinically relevant differences
providing an image derived biomarker and aligns with established
literature [2,14] linking brain age gaps to neurodegenerative diseases.

A coherent and robust association between chronological age and
regional metrics can provide valuable biological insights into the
healthy aging mechanism and consequently facilitate identification of
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brain regions susceptible to neurodegenerative and psychiatric diseases
[27,28]. To this end, we conducted a comparative analysis of the cor-
relations between age and two metrics: the regional mean GMV and
regional LO age predictions. The results showed that the correlations
were more pronounced for the LO predictions, suggesting that the
associated regional models provide robust biological insights and rep-
resentation of healthy brain aging (Figs. 4 and 5). Additionally, this
result underscores the ability of SE models to capture nuanced aging
patterns in brain regions, offering a richer perspective than traditional
analyses using mean GMV. Interestingly, subcortical areas showed a
weak positive correlation with mean GMV, indicating that their volume
increases with age which contradicts the current knowledge [3-8]. This
effect could be, however, due to preprocessing artifacts [34]. Specif-
ically, regions in thalamus had a positive GMV-real age correlation of r
= 0.28 and r = 0.29, but showed high positive correlation of LO pre-
dictions and real age, r = 0.8 and r = 0.62 respectively. Regional pre-
dictions from subcortical areas in SE showed a much higher correlation
r = 0.75, when the mean in subcortical areas for GMV was r = 0.35
(mean of absolute values). This suggests that the LO models were able to
extract age-related information from individual voxels whereas their
signal was diluted by the GMV averaging. Subcortical regions have been
implicated in neurodegeneration processes related to Parkinson’s dis-
ease and Alzheimer’s disease [59,60]. Therefore, appropriate modeling
of GMV in those regions regarding healthy aging is essential for clinical
application of brain age. In essence, SE effectively uses information from
voxels that otherwise is “lost in the crowd” during averaging. Our cor-
relations analysis between datasets suggests that the regional age pre-
dictions from SE models maintain a robust and stable association with
age across all datasets, further underlining the reliability of the observed
correlations (Figs. 5 and 6). This result further supports the notion that
the alignment of LO regional age predictions with chronological age
represents biological insights and is not contingent on specific charac-
teristics of datasets. Moreover, with the SE framework individualized
brain aging maps could be generated translating brain age predictions
into clinically actionable biomarkers. Such maps might reveal distinct
spatial patterns and help distinguish between disease subtypes and
facilitate monitoring at the individual level. Future work is needed to
validate and optimize such results to provide improved -clinical
interpretations.

Identifying the origin dataset of individuals serves as an indirect
measurement of privacy. A feature space that “hides” the dataset of
origin also complicates subjects’ identification. Dataset identification
using LO predictions of SE proved more challenging compared to using
GMV (ACCpy = 0.63 and ACCp, = 0.87 respectively). For both feature
spaces, linear SVM demonstrated the best performance among tested

models (see Supplementary Table 1). Classification analyzes to predict
the dataset suggest, to a certain extent, that the efficacy of SE concealing
more information essential for identifying the dataset and consequently
a subject’s identity compared to GMV. This privacy preservation could
be further improved by employing more complex models in the first
level, such as tree-based models and deep neural networks. However, it
is noteworthy that despite the high misclassification between subjects
from IXI and eNKI, for CamCAN data and mostly for 1000Brains data the
classification was accurate. A potential explanation for that can be the
differences in data quality as well as the generally older population of
these datasets. Nonetheless, this analysis can serve as a blueprint for
other use cases helping the general radiomics community in developing
privacy preserving and accurate methods. A potential improvement to
the SE, aligned with privacy protection principles, would involve clinics
sharing their first-level predictions and/or models with a remote central
unit which could then train a comprehensive second-level model. This
idea is similar to the approach used in federated learning in spirit and
further architectures that combine it with SE could be developed [61].

This study has several limitations that warrant discussion. First, the
GLMnet model was chosen due to its interpretability and computational
efficiency. We acknowledge that alternative learning algorithms (e.g.,
random forests, Gaussian process) might yield better performance and
additional insights. Second, our analysis was restricted to the Schaefer-
800 parcellation, while other atlases or granularities should be evalu-
ated. We used 3-fold CV to generate out-of-sample predictions for the
stacking model. Future studies could test other choices of number of
folds. These choices were deliberate to prioritize the feasibility testing of
our method and future work is needed to identify optimal choices. Taken
together, our comprehensive analyses allowed for a thorough under-
standing of the SE model generalizability and its ability to capture
meaningful biological patterns. Future work could consider the appli-
cation of more, and perhaps more suitable, models through a model
selection process together with a more thorough hyperparameter tuning
in both stacking ensemble levels. Such refinements will contribute to the
overall effectiveness of the ensemble. At first, by improving the diversity
and individual performance of base learners, and then by optimizing the
combination of their predictions by the meta learner and refining the
final prediction, leading to more robust and accurate models which will
facilitate clinical application. As performance increased with training
data size, including more sites in the training data we can further
improve the performance of our SE model. A thorough exploration of
model selection, parcellation atlas, and large-scale validation require
significantly more computational resources and warrants a separate,
carefully designed study. Such carefully designed and well-tuned models
will pave the path for broader clinical applications and facilitate
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research into specific neurological disorders, including Parkinson’s
disease and other neurodegenerative conditions. Additionally, the final
performance can be further enhanced by applying age-bias-correction in
second level outcomes.

5. Conclusion

Here, we introduced a novel two-level SE model for MRI-based brain-
age prediction. Our approach demonstrates superior performance and
robustness compared to the conventional method of using regional mean
GMV. Although all SE configurations outperformed the mean GMV
models, the highest accuracy was obtained in configurations where
level-0 predictions were derived from the test site, thereby optimizing
the utilization of the available data. The SE framework not only achieves
competitive predictive accuracy but also offers enhanced biological
interpretability by capturing nuanced, voxel-wise aging patterns that are
lost during averaging. Furthermore, the model shows potential for
application to new data and improved data privacy, as it relies on
sharing regional predictions rather than raw data, aligning with prin-
ciples of federated learning. Crucially, the model’s applicability to
clinical data was demonstrated in an independent cohort, where the
brain-age gap derived from our best-performing setups successfully
differentiated between cognitively normal, mild cognitive impairment,
and Alzheimer’s disease subjects, aligning with expected cognitive
decline trends. This demonstrates the potential of our SE model as a
clinically relevant biomarker for neurodegenerative progression. Over-
all, our SE model is powerful for modeling healthy brain aging and holds
potential for future clinical application as a biomarker for neurode-
generative and psychiatric diseases.
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