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ARTICLE INFO ABSTRACT

Keywords: The limited intra-hour variability of globally available hourly renewable energy system data leads to inaccuracies
Solar irradiance in the modeling of renewable energy systems. While sub-hourly data can improve model accuracy, such data are
Downscaling

not globally available. The existing approaches to increase the temporal resolution of solar irradiance often rely
on site specific measurements or complex models, limiting global scalability. This work, therefore, presents a
methodology to increase the temporal resolution of the global horizontal irradiance from 1 h to 1 min using non-
dimensional irradiance and parameters matching based on daily irradiance characteristics for arbitrary locations.
The methodology is validated using statistical methods and energy system optimization. The hourly annual
normalized root mean square error and Kolmogorov-Smirnov Integral range from 5 to 7 % and 0.1-0.7,
respectively, for different locations consisting of varying weather conditions. The energy system optimization
results of the synthetic data demonstrate superiority in terms of cost and feasibility relative to the average hourly
resolution data. The use of synthetic minute resolution data significantly improves the design accuracy of dy-
namic components such as inverters and storage systems. The globally applicable method, based on Képpen-
Geiger classification coverage, will enable more reliable energy systems modeling in the future.

Clearness index
Variability index
Temporal resolution
Energy system modeling

1. Introduction Previous research [5] investigated the impact of sub-hourly resolu-

tion on energy system modeling, and showed that sub-hourly resolution

High-resolution solar irradiance data has gained importance in the
last decades, primarily due to the growing incorporation of renewable
energy sources into the energy mix [1]. The prevalence of hourly
resolved measured, reanalyzed, and predicted data, along with the
disproportionate increase in model complexity at higher resolution, has
prompted numerous researchers to use it for modeling purposes. How-
ever, intra-hourly fluctuations, which are not captured in the prevailing
hourly resolutions [2], may have severe impacts on future grid stability.
This issue becomes even more critical as the balancing power provided
by rotating masses from conventional power plants declines, increasing
the risk of grid imbalances [3]. Therefore, modeling in high temporal
resolution is imperative in applications such as photovoltaic system
design, solar energy forecasting, and grid management [4].

is important for policy analysis, electric sector planning, and technology
valuation [6]. Furthermore, it was demonstrated that coarser temporal
resolution leads to underestimation of total annualized cost (TAC), with
a discrepancy of up to 2 % between hourly and minutely resolutions [5,
7,81, generator cycling and flexible generation [9], energy storage ca-
pacity and utilization [9-11], ramping [12], inverter clipping losses
[13-15], and the levelized cost of electricity [16,17], among others. It is
important to note that modeling at hourly resolution can also result in an
infeasible system design. Particularly in the context of renewable energy
systems, the undersizing of dynamically operating components such as
inverters and batteries is an issue when relying on coarse temporal
resolution data [5]. While the main drivers for the use of coarser reso-
lutions have been data scarcity and computational complexity, the latter
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Table 1
Methods of increasing the temporal resolution of solar irradiance.
Downscaling Description Characteristics
Approach
PP Strength Limitation
Deterministic Uses statistical interpolation methods. - Computationally cheap - Limited accuracy
- Lacks comprehension
Stochastic Applies randomness to generate high-frequency data - Comprehensive - Computationally expensive
- Good accuracy - Can produce unrealistic
patterns
Markov Applies probability transitions between irradiance states. - Comprehensive - Computationally expensive

Machine Learning Learns patterns from historical data (e.g. neural networks)

Non-dimensional
indicators

Matches low resolution to normalized high resolution profiles using daily statistical

Good accuracy Complicated transitions

- Comprehensive - Requires large training
datasets
- Poor generalizability
- Computationally expensive
- Comprehensive - Limited by database coverage
- Adaptable to arbitrary
locations

- Good accuracy
- Computationally cheap

can be mitigated by averaging time series sub-samples [18], time series
aggregation [19,20] and parallelization [20].

Several methods have been used so far to increase the temporal
resolution of renewable energy data, particularly solar irradiance. The
approaches for solar irradiance can be classified into Markov, deter-
ministic, stochastic, non-dimensional, and machine learning methods
[21]. As illustrated in Table 1, a comparison is presented of the various
methods, with their description and characteristics. The deterministic
approach utilizes statistical interpolation methods, which frequently
underperform in accurately capturing the intra-hour fluctuations of the
irradiation. The stochastic approaches frequently employ a determin-
istic approach as a foundation, yet prior to incorporating randomization
into the interpolations, they often demonstrate superior accuracy in
comparison to deterministic approaches. However, it should be noted
that the accuracy of these stochastic approaches is significantly influ-
enced by the employed deterministic approach. The stochastic approach
has the capacity to engender a highly complex system through the
introduction of the random variable. The Markov approach has
demonstrated efficacy in capturing the sub-hourly fluctuations. How-
ever, this efficacy is contingent upon the complexity stemming from the
order of the Markov chain that links the data dependencies. Conse-
quently, several Markov approaches employ first-order Markov chains,
which are incapable of fully capturing data dependencies, thereby
resulting in limited accuracy. The machine learning approaches consti-
tute a distinct class of approach. Although their applications in this
context remain limited, they offer considerable potential and, with ac-
cess to sufficient high-quality training data, could have improved per-
formance. In comparison to alternative methods, the non-dimensional
approach is characterized as explainable and comprehensive, uses real
data, is adaptable to arbitrary locations with good accuracy, and has no
modular error at a low computational expense. The non-dimensional
approach downscales low-resolution data to high-resolution by
normalizing solar irradiance and time (see details in Box 1 and section
2.2).

Box 1: The
non-dimensional approach

For downscaling low-resolution data to high-resolution, the non-
dimensional approach normalizes the time between the daily
sunrise and the sunset [22], whereas the normalized irradiance is
the ratio of the irradiance to its corresponding extraterrestrial or
clear sky values [22]. The extraterrestrial irradiance is taken as the
theoretical irradiance at the Earth’s upper atmosphere [23]. The
clear-sky value is defined as the amount of irradiance that reaches
the Earth’s surface when the effect of cloud cover is not taken into
account [24]. Previous articles suggested to use clear sky irradi-
ance when modeling or forecasting direct normal irradiance (DNI)
and extraterrestrial irradiance when modeling or forecasting
global horizontal irradiance (GHI) [25]. Several models have been
developed to capture the clear sky solar irradiance data [26,27],
such as curve fitting and the highly reviewed and benchmarked
REST2V5 [28], MACC2 [29], and McClear models [30], among
others. Given the inherent similarity between data from the same
climate class, a minimum of one year of comparable data for a
location intended for downscaling is necessary for the database of
normalized, non-dimensional irradiance profiles [31]. Conse-
quently, two databases are created, comprising the
non-dimensional curves in minutes and the daily data. The daily
parameters which represent the minutely non-dimensional curves
in the database can be the clearness index (kq), the variability
index (VI), and the distribution (Fy,). An exposition of these three
parameters can be found in section 2.2.2.2. The hourly resolution
to be downscaled produces the daily parameters (kq, VI, and Fy,) of
the nature in the database. The most similar day from the database
to each day of the hourly resolution to be downscaled is selected
and processed back to irradiance to provide highly resolved
downscaled data. A detailed explanation of the non-dimensional
approach is provided in section 2.2.
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Fig. 1. The workflow of the methodology developed in this study.

To the best of the authors’ knowledge, the non-dimensional
approach was first developed by Peruchena et al. [22], who obtained
DNI data in minutely resolution for a location from its hourly resolution
using curve fitting for a clear sky model. Meanwhile, the used training
data required a 1-min resolution of a location which confirmed its lo-
cality. The authors further applied the methodology to different climatic
zones [22,32-36]. Larraneta et al. [31,37,38] improved the methodol-
ogy of Peruchena et al. [22] by applying Koppen-Geiger weather clas-
sification’ [39] to categorize the database into different climate zones
and matching the parameters of a location to be downscaled to a similar
location with the same Koppen-Geiger weather classification. Larraneta
et al. also improved the daily parameters from the k4 as utilized by
Peruchena et al. [22] to include the VI and the Fy, [40]. Furthermore, the
matching between similar days to be downscaled and the used database
was improved by utilizing the k-nearest neighbors instead of the
Euclidean distance, cutting down the computational time. Larraneta
et al. [31] also developed the ND tool [41] which downscales DNI or
coupled DNI + GHI from 1 h to 1 min resolution and was used for
application studies in Refs. [36,42].

Although several approaches (as presented in Table 1) have been
proposed by numerous studies to downscale GHI from hourly to sub-
hourly resolutions [43-45], the non-dimensional approach is
outstanding in terms of high accuracy, easy adaptability, and low
complexity. Most existing approaches are either deficient in accurately
capturing sub-hourly fluctuation, site-specific or lack generalizability
across diverse climatic conditions. Furthermore, the current global tool,
ND tool, which is based on the non-dimensional approach has been
predominantly developed for the DNI or coupled DNI + GHI, with no
robust standalone implementation for the GHI. Moreover, the ND tool
relies on the clear-sky index, which is utilized for DNI without distinctly
adapting the GHI dynamics. The objective of this study is to develop a
more robust, parameter-based non-dimensional method to downscale
hourly solar GHI data to a 1-min resolution using a comprehensive
database of non-dimensional curves and defining parameters, to enable
accurate globally applicable data. Furthermore, the downscaled syn-
thetic dataset is validated using an energy system model. Methodologies
that reduce the complexity of energy system modeling are employed to

! The Koppen-Geiger classification is divided into Major groups [Precipita-
tion (Temperature)] as follows: A — tropical [f — Rainforest, m — Monsoon, w —
Savanah], B — Arid [W — Desert (h — Hot, k — Cold), S - Steppe (h — Hot, k —
Cold)], C — Temperate [s — Dry summer (a — Hot summer, b — Warm summer, ¢ —
Cold summer), w — Dry winter (a — Hot summer, b — Warm summer, ¢ — Cold
summer), f — Without dry season (a — Hot summer, b — Warm summer, ¢ — Cold
summer)], D — Cold [s — Dry summer (a — Hot summer, b — Warm summer, ¢ —
Cold summer), w — Dry winter (a — Hot summer, b - Warm summer, c — Cold
summer), f — Without dry season (a — Hot summer, b — Warm summer, ¢ — Cold
summer)], E — Polar [T — Tundra, F — Frost].

Table 2
High-resolution (1-min) irradiance data from ground-based measurements.
City Latitude Longitude Height Koppen- Years
©) ©) (m) Geiger
Climate?
Adelaide —34.95 138.52 2 Csb 14
Alice Springs —23.80 133.89 546 BWh 14
Broome —-17.95 122.24 7.42 BSh 14
Cape Grim —40.68 144.69 95 Cfb 11
Cobar —31.48 145.83 260 BSh 1
Cocos Island -12.19 96.83 3 Ocean/Cfb 10
Darwin —12.42 130.89 30.4 Aw 13
Geraldton —28.80 114.70 29.7 Csa 6
Airport
Geraldton —28.80 114.70 33 Csa 2
Airport Comp.
Kalgoorlie- —30.78 121.45 365.3 BSh 4
Boulder
Learmonth —22.24 114.10 5 BWh 5
Melbourne —37.66 144.83 113.4 Cfb 12
Mildura —34.24 142.09 50 BSk 2
Mt Gambia -37.75 140.77 63 Csb 2
Rockhampton —23.38 150.48 10.4 Cfa 10
Tennant_Creek -19.64 134.18 377.1 BSh 2
Townsville —19.25 146.77 4.34 Aw 4
Wagga —-35.16 147.46 212 Cfa 13

mitigate complexity arising from sub-hourly resolution data from the
model. Fig. 1 illustrates the workflow of this study, which is divided into
two sections:

1) Data: The data set encompasses the measured 1-min resolution data,
which is converted to hourly resolution (by averaging). The non-
dimensional methodology is then applied to downscale the
measured hourly resolution data to 1-min synthetic data

2) Validation: The validation section is employed to assess the accu-
racy of the synthetic 1-min data in comparison to the 1-min
measured data and 1-h measured data. The validation approaches
employed encompass statistical methods and energy system
modeling. As sub-hourly resolution can lead to increased complexity,
approaches for complexity management in regular samplings and
clustering-based time series aggregations are investigated.

The remainder of this work is structured as follows: Section 2 de-
scribes the used data, its preprocessing steps, and the proposed meth-
odology. The methodology encompasses the database constructions to
the downscaling procedures, as well as the validation and performance
metrics of the profile’s statistics and their application to the energy
system model. Section 3 presents the result of both the statistical and
energy system modeling validation of the methodology, which are dis-
cussed in section 4. Finally, section 5 concludes this study.
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Fig. 2. Koppen-Geiger weather classification of Australia for the selected sites for the non-dimensional database construction [39].

Table 3 Table 4
Correlated Koppen-Geiger climate. Validation irradiance data measurements.
Location Number Correlated Koppen-Geiger Location Latitude Longitude Height Koppen- Year
of Days EEED;I:ZGHEEF Climate Represented? © © (m) gﬁ;ﬁze
Darwin, Townsville 4531 Aw Aw, Am, Af, As Berlin, 52.46 13.52 34 Cfb 2017
Broome, Cobar, 6552 Bsh Bsh, Bsk Germany 2018
Kalgoorlie Boulder, 2019
Tennant Creek, 2020
Mildura Milan, Italy 45.50 9.16 120 Cfa 2017
Alice Springs, 6942 Bwh Bwh, Bwk Tamanrasset, 22.79 5.53 1385 BWh 2009
Learmonth Algeria
Rockhampton, Wagga 7123 Cfa Cfa Tateno, Japan 36.06 140.13 25 Cfa 2013
Cape Grim, Melbourne, 6507 Cfb Cfb, Cfc Toravere, 58.24 26.46 70 Dfb 2008
Geraldton, Geraldton 2453 Csa Csa Estonia
Airport
Adelaide, Mt Gambia 5150 Csb Csb, Csc, Cwa, Cwb,
Cwe the data employed for the validation of the methodology, including
Rockhampton, Wagga, 15527 Cfa/Cfb/Ocean  Dfa, Db, Dfc, Dsa, various weather classifications and conditions.
Cape Grim, Dsb, Dsc, Dwa, Dwb,
Melbourne, Cocos Dwe, EF, ET
Island 2.1.1. Data for database construction

2. Data and methodology
2.1. Data description

This section presents the data used for the developed methodology.
Section 2.1.1 describes the data source for database construction,
encompassing diverse climatic conditions classified according to the
Koppen-Geiger system and multiple years of data. Section 2.1.2 details

The 1-min resolution data in Table 2, which was utilized for database
construction, was obtained from the Australian Bureau of Meteorology.”
Fig. 2 provides the geographic distribution and climate diversity of the
selected cities of Australia, encompassing diverse Koppen-Geiger
climate zones. As the McClear clear sky model [30] includes data
starting from 2004, this is the earliest year represented in the database
and hence the earliest downscaling year of the methodology.

2 https://reg.bom.gov.au/climate/reg/oneminsolar/index.shtml.
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Fig. 3. Flow chart of the non-dimensional methodology of this study.

Consequently, the non-dimensional database spans from 2004 to 2021.
The GHI measurements obtained from the Australian Bureau of Meteo-
rology were derived from CM-11 pyranometers manufactured by the
company Kipp&Zonen. The Australian Bureau of Meteorology adheres
to the World Meteorological Organization-approved standard of the
‘Alternate Method’ [46] for reporting and calibration. The GHI data
undergoes quality control procedures by pvanalytics [47], and any days
meeting the following criteria are excluded from the analysis:

- Measurements with night values

- GHI data with values less than 0 (negative data), or greater than the
solar constant of 1361.1W,/m? [48]

- Data with gaps or stale data

- Data with any measurement errors or unavailable values

Since Table 2 does not contain all the Koppen-Geiger climate zones, a
correlated Koppen-Geiger climate is provided as shown in Table 3 to
represent all the Koppen-Geiger climates [41] in the database. The final
database encompasses 50,749 days from the 18 different locations in
Table 2, with each day having 1000 non-dimensional data points,
yielding 41,155 days after the quality control (Table 3), retaining 81.1 %
of the original data in Table 2.

2.1.2. Data for validation

The validation data (see Table 4) is obtained from open sources,
including Berlin [49], Milan [50], and Baseline Surface Radiation
Network (BSRN) locations of Tamanrasset, Tateno, and Toravere [51].
The Berlin data was measured with the combination of SP-Lite2, CMP11,
and SMP21 pyranometers of Kipp&Zonen using weather data of HTW
Berlin. Data preprocessing, including the handling of missing values,
was carried out by HTW Berlin. The missing values were imputed or
replaced depending on the data gap. For gaps shorter than 1 h, linear
interpolation was used for imputation. For gaps exceeding 1 h, missing
values were replaced using data from the previous hour or the same hour
of the previous day. The Milan data of 2017 has about 1 % of missing
data points. Of these missing data points, two complete days (days 115
and 116) are replaced by their previous days and other days with
missing data are imputed using k-nearest neighbors as suggested by
Mantuano et al. [52]. The BSRN locations of Tamanrasset, Tateno, and
Toravere were measured with Pyranometer, Eppley, PSP, SN 30123 F3,
WRMC No. 42001; Pyranometer, Kipp & Zonen, CMP21, SN 090229,
WRMC No. 16035; and Pyranometer, Kipp & Zonen, CM11, SN 903301,
WRMC No. 9005, respectively. The Tamanrasset and Toravere have 8

and 3 missing days, respectively, with the missing days being replaced
by their previous days. The locations are selected to represent diverse
Koppen-Geiger climates, demonstrating the methodology’s applicability
across a wide range of global conditions.

2.2. Methods

Fig. 3 below shows the flow chart of the developed methodology.
Two databases are used: Firstly, the non-dimensional minutely resolved
solar GHI against the non-dimensional time (non-dimensional highly
resolved database or database 1). Secondly, the non-dimensional daily
matching parameters (non-dimensional daily database or database 2)
containing the kg, VI, normalized variability index (NVI), Fy,, and inte-
grated complementary cumulative distribution function (ICCDF) for
each day of the minutely resolved solar GHI in database 1. The exposi-
tion of database 1 and database 2 is found in sections 2.2.2.1 and 2.2.2.2,
respectively. The 1-h resolution (green color) data to be downscaled
requires the input parameters of the hourly resolved GHI, simulation
duration (start and end time), and the site metadata (latitude, longitude,
and elevation of the location). From these, the daily matching parame-
ters (blue color) are calculated and matched with database 2, and the
closest day to each day using the k-nearest neighbor algorithm is
selected. The corresponding high-resolution data (orange color) to the
selected day is substituted to the hour resolution.

The methodology section comprises the downscaling procedure
(section 2.2.1), the database construction (section 2.2.2), as well as the
validation and performance metrics split into statistics and energy sys-
tem modeling (section 2.2.3).

2.2.1. Downscaling procedure
The developed downscaling procedure includes five steps, which are
explained in the following.

- Step 1: Collection and Preparation of Input Parameters.

The input data to be downscaled is collected, extracted, and pro-
cessed. This includes the simulation duration, which states the start and
end time of the downscaling process, and the site metadata (latitude,
longitude, and altitude) through which the solar angles from pvlib [53]
and Koppen-Geiger weather class are obtained. The combination of the
simulation duration and the site metadata produces the extraterrestrial
irradiance from the McClear clear sky model.
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Fig. 4. Non-dimensional database construction consisting
- Step 2: Extraction of Defining Parameters from Low-Resolution Data

The defining parameters (kg, VI, NVI, Fp,,, and ICCDF) are calculated
for each day from hourly resolution data to be downscaled. These pa-
rameters are detailed in section 2.2.2.2. The Koppen-Geiger weather
class is also obtained to determine the closest weather class to the
defining parameters.

- Step 3: Matching Algorithm

The daily defining parameters obtained in step 2 are compared
against database 2, which contains the corresponding daily defined
minutely resolved profiles in the same correlated Koppen-Geiger
weather class (see Table 3). The comparison is performed using the k-
nearest neighbor machine learning algorithm with one neighbor,
enabling the selection of the single most similar day matching. The

Non-dimensional time
Measured Irradiance

Non-dimensionalIrradiance

of daily non-dimensional irradiance over non-dimensional time.

matching is performed using the five daily indicators elaborated in
section 2.2.2.2. The Euclidean distance is used to determine similarity in
the five-dimensional feature space. The day in the database with the
smallest distance to the current day’s indicators is selected as the best
match.

- Step 4: Selection of High-Resolution Data
The best match from step 3 and the corresponding highly resolved
data from database 1 is selected. The selected highly resolved profile is
non-dimensional and needs to be converted to a dimensional solar
irradiance in W/m?.

- Step 5: Unpacking the 1 Minute Data

The specific time of the day between sunrise and sunset is obtained
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for each day. The highly resolved data from step 4 is then distributed
over the daytime to create the non-dimensional irradiance. This, in turn,
is multiplied by the 1-min extraterrestrial irradiance and a constant
daily value k, to create a 1-min resolution synthetic GHI. The value of k
is optimized for each day such that the difference between the daily sum
of measured data and the daily sum of the synthetic data is minimized.

2.2.1.1. Optimization of k factor for daily Cummulative

min (GHImemmd — GHI, 60) 1

GHI =k X kna x I, (2

where, GHIeasureq i the measured irradiance in hourly resolution,
GHIy;, is the synthetic irradiance in minutely resolution, k is the daily
scaling factor, kg is the non-dimensional irradiance, I, is the extrater-
restrial irradiance.

A summary of the downscaling procedure, consisting of the steps,
descriptions, inputs, and outputs, is presented in Table 6 of Appendix A.

2.2.2. Database construction

The two databases explained in the following sections 2.2.2.1 and
2.2.2.2 are constructed and categorized based on their Koppen-Geiger
weather conditions.

2.2.2.1. Database 1 with one minute resolution data. The non-
dimensional highly resolved database comprises non-dimensional GHI
and time. The database 1 comprises several daily profiles of minutely
non-dimensional irradiance against the non-dimensional time as shown
in Fig. 4, which presents three consecutive days in 2004 for Adelaide as
shown in Table 2. As evident in Fig. 4, the extraterrestrial irradiance
provides a better GHI envelope as compared to the clear sky irradiance,
hence its adoption for GHI, irrespective of the cloudiness of the location.
For further illustrations, Fig. 14 in Appendix B presents the plots of
measured, clear sky and extraterrestrial irradiance in a polluted climate
of Delhi, India (latitude = 28.58°, longitude = 77.45°, altitude = 207m).
It is evident that even though this location is prone to high pollution, the
clear sky irradiance envelope does not accurately capture the variability
of the measured irradiance as compared to the extraterrestrial irradi-
ance. Therefore, the extraterrestrial irradiance which is determined
solely by astronomical factors such as the Earth’s distance from the sun
and the solar zenith angle, is considered instead of the clear sky irra-
diance for GHI [25]. The clear sky irradiance instead depends on the
local atmospheric conditions such as water vapor, aerosol levels, and
surface albedo, and therefore limits the GHI due to the air mass passage
of the irradiance [25]. The non-dimensional solar irradiance is therefore
the ratio of the measured irradiation to the extraterrestrial irradiance,
while the non-dimensional time is the normalization of the daily time
between sunrise and sunset. The normalization workflow involving the
creation of this database is presented in Fig. 15 of Appendix C.

2.2.2.2. Database 2 with daily parameter aggregates. Database 2 contains
the daily profiles of the defining parameters for the minutely resolved
non-dimensional database in section 2.2.2.1. The defining parameters
are clearness index kg, VI, NVI, Fp,,, and ICCDF. These parameters, which
are elaborated in the following, are both purely statistical and
geographically influenced:

- Clearness Index:
The clearness index, kq, is the ratio of the measured irradiance of a
location to its corresponding extraterrestrial irradiance [25]. Mathe-

matically, kq is expressed as shown in Equation (3).

ka=— 3
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Here, kq is the daily clear sky index, H is the daily measured irradi-
ance, and H, is the daily extraterrestrial irradiance from the McClear
model [30]. The kq indicates the cloudiness of the day, and ranges from
0 (cloudy or overcast atmospheric conditions) to 1 (clear atmospheric
conditions).

- Variability Index:

The variability index, VI, is the ratio of the length of the variations of
the daily measured irradiance of locations to its corresponding extra-
terrestrial irradiance [54]. The VI provides information about the vari-
ability of the day and is quantified by Equation (4).

z”: (Hk — Hk,1)2 + At?
2 4

VI=—= -
; \/(Ho.k - Ho,k—l) + At?
=2

Here, VI is the variability index, Hy and Hy.; are measured irradiance at
time steps k and k-1, respectively, Ho x and Hg k.1 are measured extra-
terrestrial irradiance at k and k-1, respectively.

- Normalized Variability Index:

The concept of the normalized variability index, NVI, was proposed
by Moreno-Tejera et al. [55]. The VIis not purely statistical as it depends
on the time of the year and geographical location, but the NVI is a sta-
tistical approach which normalizes the irradiance without considering
its corresponding atmospheric conditions. With the NVI, the statistical
variability of a location can be assessed without atmospheric influence.
The NVI (see Equation (5)) is the ratio of the length of the variations of
the daily irradiance of a location to the length of the maximum vari-
ability of the daily profile.

n
S/ (Hy — Hi1)? + AR
NVI=—*=

i - ®)
\/(Hmax‘k - Hmax.k—l) + At?

k=2

Here, NVI is the normalized variability index, Hy and Hy.; are measured
irradiance at time steps k and k-1, respectively, Hpaxx and Hpaxk.1 are
maximum measured irradiance at k and k-1, respectively.

- Distribution:

The distribution, Fy, (see Equation (6)), is the ratio of the total
morning fraction of the irradiance to the total daily irradiance [31].
Hmn
F,= H ©
Here, Fy, is the distribution, Hy,y, is the total morning fraction of the
irradiance, and Hr is the total daily irradiance. The total morning frac-
tion is obtained by extracting the irradiance value when the hour angle®
is below zero. Analysis of the distribution fraction allows for the quan-
tification of the diurnal radiation profile, specifically assessing the
concentration of irradiance between the pre-and post-solar noon
intervals.

- Integrated Complementary Cumulative Distribution Function:
The integrated complementary cumulative distribution function,

ICCDF (see Equation (7)), is another statistical parameter which pro-
vides the overall picture of the solar irradiance variability. The ICCDF is

3 The hour angle is the angular displacement of the Sun from its position at
solar noon, measured relative to the local solar time.
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Fig. 5. The self-sufficient building model as presented by Knosala et al. [60]. The rSOC is a reversible solid oxide cell and the LOHC is a liquid organic

hydrogen carrier.

calculated as the area under the complementary cumulative distribution
function daily curve [56]. Mathematically, the ICCDF is calculated
below:

Hmax
ICCDF= | CCDF(H)dH )

Huin

Here, ICCDF is the integrated complementary cumulative distribution
function, and CCDF is the complementary cumulative distribution
function. The CCDF is 1 — CDF, where CDF is the cumulative distribution
function. The Hy,j, and Hy,x represent the minimum and the maximum
values of the irradiance, respectively.

2.2.3. Validation and performance metrics

To validate the developed model for downscaling solar irradiance,
three different validation metrics are considered, namely the normalized
root mean square error (NRMSE), the Kolmogorov-Smirnov Integral test
(KSI), and an energy system model, to which the synthesized minutely
resolved data is applied.

- Normalized Root Mean Square Error (NRMSE)

The root mean square error is the measure of the root of the squared
errors between synthetic data and the original measured data [21]. The
NRMSE is the root mean square error that is normalized between the
minimum and the maximum values of the measured data. The lower the
value of the NRMSE, the more accurate the synthetic data is, relative to
the measured data. Equation (8) below gives the mathematical repre-
sentation of the NRMSE.

2=
=

I
—_

i —¥:)?
NRMSE=1 — ®)

max — Ymin

Here, y; is the synthetic data, §; is the measured data, n is the number of
data points, and y,;, and y,., are the minimum and maximum values of
measured data, respectively.

- Kolmogorov-Smirnov Integral Test

The Kolmogorov-Smirnov Integral (KSI) Test is used for comparing
the statistical distribution of downscaled data with actual measurements
(see Equations (9)-(11)) (KSD) [31].

Xmax

IF(x) — G(x)|dx
KS[=" 9)
Qcritical
Acritical = Vc (xma.x - xmin) (10)
Vc:@; n> 35 an
vn

Here, F(x) is the synthetic data, G(x) is the measured data, Xpi, and Xmax
are the minimum and the maximum values of the measured data, and n
is the number of data points.

- Energy System Modeling

As discussed by Mantuano et al. [52], highly resolved renewable
time series data is increasingly applied to energy system models.
Therefore, synthesized minutely resolved time series may also be eval-
uated by determining whether they yield similar results to measured
data when applied to energy system models. For that sake, we consider a
self-sufficient building energy system model in this study (see Fig. 5).
Energy self-sufficiency means that the building is off-grid and powered
by its own renewable energy system [57]. The model optimizes the
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Table 5
Validations of different locations. Due to a lack of data availability, the inter-
annual uncertainty analysis could only be performed for Berlin.

Location Koppen- Year NRMSE NRMSE KSI
Geiger Minute (%) Hour (%) Hour
Climate (%)
Berlin, Cfb 2017  9.11 7.45 0.12
Germany 2018 8.32 6.95 0.11
2019 833 6.97 0.11
2020 8.80 6.71 0.10
Milan, Italy Cfa 2017  8.42 6.93 0.74
Tamanrasset, BWh 2009 7.85 5.58 0.14
Algeria
Tateno, Japan Cfa 2013 9.32 7.09 0.21
Toravere, Dfb 2008 8.26 7.34 0.24
Estonia

building energy by integrating renewable energy with efficient energy
storage systems, including battery, thermal storage, hydrogen storage,
and liquid organic hydrogen carriers to achieve the optimal utilization
of solar energy for meeting electrical and thermal demands. The un-
derlying equations of the capacity expansion optimization problems of
the models are described by Omoyele et al. [5]. The model is optimized
using the ETHOS.FINE [58] optimization framework with the objective
of optimizing the TAC of the system (see Equation (12)). Table 7 in
Appendix D presents the techno-economic parameters of the
self-sufficient building model. The demand for the self-sufficient build-
ing energy system modeling is in 1-min resolution and simulated using
SynPro [59], which is presented in Table 8 of Appendix E for Milan 2017
and Berlin 2019.

TAC = CAPEX x < -+ OPEX,d) (12)

i
Where the TAC is the total annualized cost, CAPEX is the capital
expenditure, OPEX,, is the operational expenditure relative to the
capital expenditure, i is the interest rate, and n is the components’
lifetime.

Validation: For validation purposes, the model is solved with
minutely resolved measured data. Then it is also solved with the
minutely resolved synthetic data. The percentage of variation in terms of
the TAC and the capacities of the installed technologies is quantified.
Since the 1-h resolution is the most common resolution for energy sys-
tem modeling, the model is also solved for a 1-h resolution. The per-
centage of accuracy loss between the measured minutely resolution to
hourly resolution that can be recovered by the synthetic minutely res-
olution data is also quantified.

Reducing Complexity: Apart from the lack of sub-hourly resolution
data for sub-hourly resolved modeling, another deterrent is the
computational complexity and associated long runtimes that arise owing
to the significantly larger number of constraints and variables in
minutely resolved optimization models as compared to hourly resolved
ones. To ameliorate this, different methods ranging from non-exact
heuristics to exact methods based on brute-force computational power
and parallelization can be leveraged to overcome this problem [18].
These methods are the mean of the regular hourly samples of the 1-min
resolution and the time series aggregation using a hierarchical clustering
algorithm. The mean of the regular samples is obtained by solving the 60
different samples of the 1-min resolution (00:00, 01:00, 02:00 ... 23:00
for sample 1; 00:01, 01:01, 02:01 ... 23:01 for sample 2 up to 00:59,
01:59, 02:59 ... 23:59 for sample 60). In this case, 60 different hourly
resolution optimizations are obtained, and the average is taken [5,15].

The time series aggregation utilizes clustering algorithms to reduce
the number of data points which can be in typical periods or segments
[19,61]. The typical period is the representative periods or days the time
series data can be reduced to, while the segment is the number of data
points that each typical period contains. Both typical periods and
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segments rely on feature-based data selection using hierarchical clus-
tering [62,63]. The time series aggregation package used is an
open-access Python package, tsam” [19,63]. The aim is to achieve ac-
curate and reliable designs while taking significantly less computing
time than the 1-min resolution modeling. As recommended by Omoyele
et al. [18] for a highly resolved self-sufficient building model, 160 or
365 typical days with 24 segments are employed (other configurations
can be used with tsam). The 160 typical days with 24 segments can be
denoted by TD160, while the 365 typical days with 24 segments can be
denoted by TD365. In terms of the computational runtime, the 60
different hourly optimizations from the regular sampling can be solved
with a computing cluster array in parallel. Hence, making the whole
process run at the computational speed of the traditional average hourly
resolution of the original time series. Tsam technically reduces the data
points to 160 or 365 typical periods and 24 segments which is still
typically reducing the data points around average hourly resolution
(365 x 24 = 8760, which is the annual average hourly resolution time
series). This makes the optimization solve at a significantly reduced
computational runtime while maintaining accuracy [64].

3. Results

The results are split into two parts, which are the statistical valida-
tion of the methodology and the energy system modeling, comparing the
measured data, synthetic data, average hourly resolution of the
measured data, as well as additional methods to accelerate computa-
tional time, concretely, by means of regular samples and clustering-
based time series aggregation methods.

3.1. Statistical validation

Table 5 below presents the statistical results of the validation in the
predefined locations comprising different climatic conditions. The
validation metrics used are the NRMSE and the KSI. The minutely and
hourly NRMSE are both determined. The hourly resolution data of these
locations is determined by taking the hourly average of their respective
minutely resolution data.

For the minutely resolved measurement data of Milan, Berlin 2019,
Tamanrasset, Tateno, and Toravere, extended validation results are
presented in Figs. 6-10, respectively. Figs. 6-10 delve deeper into the
statistical validation by presenting line and CDF plots of the locations for
measured and synthetic profiles. Each of the figures is divided into 4
parts based on its daily NRMSE values. Part (a) represents three selected
random days. Part (b) represents the days with the lowest NRMSE
values. Part (c) represents days with the highest NRMSE values, and Part
(d) is the plot of the annual daily NRMSE values. The lower the NRMSE,
the better the result of the synthetic irradiance profile. Therefore, Part
(b) and Part (c) of the profiles correspond to the best and worst days
captured, respectively. A clearer exposition of Figs. 6 and 7 showing the
comparison of measured and synthetic GHI in Milan 2017 and Berlin
2019 for three different days are presented in Figs. 16 and 17 of Ap-
pendix F. Furthermore, box plots showing the statistical properties of the
measured and synthetic data for each location are presented in Fig. 18 in
Appendix G.

The validation data spans across different locations, years, and
weather classes. This helps to perform some sensitivity analyses on the
methodology. For example, to assess the database diversity, the Milan
validation site is tested across the entire database to see which database
matches the location, as presented in Table 9 of Appendix H. Further-
more, the validation site of Milan is tested for database size across
different years of the corresponding weather class database, which is
presented in Table 10 of Appendix H.

* https://github.com/FZJ-IEK3-VSA/tsam.


https://github.com/FZJ-IEK3-VSA/tsam

0. Omoyele et al.

Day 296 - Line Plot

Renewable Energy 256 (2026) 124551

Day 296 - CDF Plot

(a) Day 115 - Line Plot >, g D3 115 CDF Plot (b) s00 e
1000 . NRMSE =0.1220 5 NRMSE =0.0197 3 = ‘
E 10 s Ea00 o,7sv/ ‘
£ s00 ©0.50 2 050
= 2 200 2 |
S 250 S025: & 80.25 ‘
3 S
0 £0.00 o £o0.00.
0 200 400 600 800 1000 1200 1400 © 0 500 1000 0 200 400 600 800 1000 1200 1400 © 400 600
Time (Minutes) Irradiance (W/m?) Time (Minutes) Irradiance (W/m?)
Day 220 - Line Plot Day 220 - CDF Plot Day 1 - Line Plot 4.5 Day 1 - CDF Plot
1000 | NRMSE = 0.1658 = -] e 4% 2 NRMSE =0.0267 3 _ ‘
E 750 ?E‘300 ‘
2 s00 2200 ‘
T 250 Bo2s 5 100 ‘
0 = £0.00 o A |
0 200 400 600 800 1000 1200 1400 © 500 1000 [ 200 400 600 800 1000 1200 1400 200 400
Time (Minutes) Irradiance (W/m?) Time (Minutes) Irradiance (W/m?)
0 Day 315 - Line Plot >, g D2Y 315 - CDF Plot Day 343 - Line Plot 3100, D2Y 343 - CDF Plot
ull NRMSE =0.0736 & " o 400 NRMSE=0.0313 [5 " e \
T 0.75 — e | (R
% 400 o & 300 [— ‘
E .50 2200 ¢ 0.50¢
=200 B = = |
5 Bo.25 & 100! 50.25 ‘
o L 000 o \ - €000
0 200 400 00 800 1000 1200 1400 O 0 200 400 600 0 200 400 800 1000 1200 1400 O 0 200 400
Time (Minutes) Irradiance (W/m?) Time (Minutes) Irradiance (W/m?)
—— Measured GHI Synthetic GHI —— Measured GHI Synthetic GHI
Day 127 - Line Plot & Day 127 - CDF Plot d
© NRMSE = 0.2565 5 -°° o (@
£ 1000 0.75 o Daily Normalized Root Mean Squared Error
B3 o
E 3 0.50() £
I 500 £ 5025
5 Z025 T
o — = = £0.00 =
0 200 400 600 800 1000 1200 1400 © 500 1000 % 0.20
Time (Minutes) Irradiance (W/mz) T
Day 191 - Line Plot Day 191 - CDF Plot v
e c
NRMSE =0.2512 T
~1000 $ 0.15
£ =
B a
= s00 ¢ °
2 <}
& S0, go.l1o
0 €0.00 k]
0 200 400 800 1000 1200 1400 © 500 1000 N
Time (Minutes) Irradiance (W/m’) = 0.05
Day 205 - Line Plot Day 205 - CDF Plot £
1000 NRMSE =0.2404 |2 0° - S
£ 750 W3 =
§ 500 050
& 250 ".\M 025
[ | | o — Eooo -
0 200 400 600 800 1000 1200 1400 © 500 1000
Time (Minutes) Irradiance (W/m2) Average hourly NRMSE = 6.93% Average hourly KSI =0.74
—— Measured GHl  —— Synthetic GHI

Fig. 6. Comparison of measured and synthetic GHI in Milan 2017 for (a) three random days, (b) days with lowest normalized root mean squared error, (c) days with
highest normalized root mean squared error, (d) annual daily normalized root mean squared error. The CDF is the cumulative distribution function.
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Fig. 9. Comparison of measured and synthetic GHI in Tateno for (a) three random days, (b) days with lowest normalized root mean squared error, (c) days with
highest normalized root mean squared error, (d) annual daily normalized root mean squared error. The CDF is the cumulative distribution function.
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Fig. 10. Comparison of measured and synthetic GHI in Toravere for (a) three random days, (b) days with lowest normalized root mean squared error, (c) days with
highest normalized root mean squared error, (d) annual daily normalized root mean squared error. The CDF is the cumulative distribution function.

3.2. Energy system modeling validation

Different data are tested in the energy system optimization model to
quantify the accuracy relative to the measured original data of the Milan
2017 and Berlin 2019 locations. The results are presented in Figs. 11-13,
with comprehensive data provided in of Tables 11 and 12 of Appendix I.
While Fig. 11 presents the bar plot of the TAC, the corresponding
computational time of each input data method (in purple), and the
associated cost deviation from the original measured result (in green),
Figs. 12 and 13 present the capacity deviation of the components of the
self-sufficient building model.

4. Discussion

The discussion is divided into two parts: Sections 4.1 and 4.2 present
statistics and energy system modeling, respectively.

4.1. Statistics

It can be inferred from the daily line plot that the synthetic data
captures the measured data effectively. The selected days in Fig. 6 (a) to
Fig. 10 (a) are all cloudy (days without smooth curves) days, and it can
be shown that even though the daily NRMSE varies between 0 % and 35
%, the days with large NRMSE still have similar profiles for both
measured and synthetic data, and their large NRMSE values arise from
the high irradiation values of such days. While the cloudy days are
subject to high fluctuations and may therefore have medium to high
NRMSE, the clear days (days with smooth curves) have the best NRMSE,
as shown in Fig. 6 (b)-10 (b). This means that the clear days are sta-
tistically well captured. Fig. 6 (c) to Fig. 10 (c) present the daily highest
NRMSE corresponding to the worst-represented days, where the model
does not find perfect non-dimensional data matching the days. This
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problem is primarily due to the limitation of the database arising from
the lack of sufficient 1-min resolution data in the database. It may also
be as a result of the possible inaccuracies of the measured data of such
days, which are not subject to quality control. For example, in Fig. 6 (c),
the worst selected days are affected by problems with the measured
data. These problems come from interpolations, large jumps in the
irradiance data, and stale data. However, some of these days have low
irradiance values, and therefore, the deviations have less impact on the
energy system modeling and optimization. Fig. 6 (d)-10 (d), which
depict the annual daily NRMSE, show that there exists a strong agree-
ment between the synthetic and measured irradiance, with an hourly
average NRMSE of approximately 7 %. These data are recorded at a
minute resolution and checked for adverse measurement error and un-
available data. For instance, in the case of Milan, two days in 2017 were
completely replaced by their previous days and other missing data are
imputed with k-nearest neighbors (as discussed in section 2.2.1).

The corresponding CDF plot of the line plots of Figs. 6-10 is plotted
to show the distribution of the measured and the synthetic CDFs, indi-
cating that the model accurately captures the overall distribution of the
irradiance. While the CDF plots demonstrate strong alignment between
the measured and the synthetic GHI in Fig. 6 (a and b) to Fig. 10 (a and
b), a discrepancy is observed in the distribution of GHI, particularly in
the high irradiance ranges in Fig. 6 (c)-10 (c). The average hourly KSI
test is also presented with values less than 1 % indicating a good match
in the distribution of the measured and the synthetic values. While both
Milan and Tateno are classified under the temperate climate of Cfa, their
KSI values differ markedly from 0.74 % for Milan to 0.21 % for Tateno,
despite the similar NRMSE around 7.0 %. The elevated KSI at Milan may
be due to the specific dynamics that are not prevalent in Tateno. For
example, Milan is situated in the Po Valley, a region prone to low-level
haze, fog, and aerosol accumulation [65]. These factors introduce
complex irradiance patterns which are more difficult to model, as
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Fig. 11. Results of the total annualized cost for (a) Milan in 2017 (b) Berlin in
2019, using different data in measured, average hourly, synthetic data, average
of 60 hourly samples in 1-min, typical days of 160 (TD160), and typical days of
365 (TD365). The corresponding computational time and the deviation from
the measured value of each input data method is on the bar plot in purple and
green colors, respectively.

compared to other locations with lower KSI values. This phenomenon
illustrates the influence of the regional meteorological factors on the
performance of the downscaling model. The analysis of interannual
uncertainty revealed a NRMSE range between 6.71 % and 7.45 % for the
Berlin location, with an average NRMSE of 7.02 %. The KSI is averaged
at 0.11 % with minor standard variation, suggesting excellent consis-
tency in capturing irradiance distribution and relatively stable model
performance across the years. Furthermore, the box plots across multi-
ple locations (see Figure 5) illustrate the annual distribution of GHI
values, with both measured and synthetic data closely matching in
median, interquartile range, and variability. The plotted mean and
standard deviation markers further confirm the consistency of the syn-
thetic data in capturing the central tendency and spread of measured
GHI values. Minor variations in extreme values are visible through the
whiskers and outliers, which are expected given natural variability and
model approximations. Overall, these box plots reinforce the reliability
of the synthetic irradiance data in representing the observed measure-
ments across diverse climatic conditions.

For the various climates considered during the validation process,
the location of Tamanrasset (see Fig. 8), which corresponds to the arid
hot desert location (BWh), demonstrated remarkable performance. This
location is characterized by minimal seasonal variability and predomi-
nantly clear skies. The Tamanrasset achieved an exceptional result, with
an hourly NRMSE of 5.58 and a KSI of 0.14. Conversely, the temperate
climate of Cfa and Cfb, analogous to the climates of Tateno (see Fig. 9),
Milan (see Fig. 6), and Berlin (see Fig. 7), exhibits intermediate char-
acteristics. Despite the decline in model accuracy in these climates
compared to Tamanrasset, which exhibits less variability, the daily CDF
plots demonstrate a high degree of correspondence with the observed
data. This suggests that the models possess notable strengths in preser-
ving distributions under varying dynamics. These arid (B climate class)
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Fig. 12. Result of the components’ capacity deviation of different optimization
and acceleration approaches from the measured data in percentage for the self-
sufficient building for Milan in 2017. TAC - Total Annualized Cost; PV —
Photovoltaic; SOEC — Solid Oxide Electrolyzer Cell; SOFC — Solid Oxide Fuel
Cell; HYD - Hydrogenation; DEHYD — Dehydrogenation; Hex — Heat Exchanger;
LOHC - Liquid Organic Hydrogen Carrier; TD — Typical Days.

and temperate (C climate class) climates corroborate the effectiveness of
the model performance in clear climates with less variability over cloudy
climates with high variability. The Toravere region, characterized by a
cold, no dry season and warm summer, exhibits pronounced seasonal
variability. This phenomenon is characterized by low irradiance values
in winter and high ones in summer, transitioning to low NRMSE values
in winter and high NRMSE in summer.

As indicated in Appendix H, Tables 9 and 10 show sensitivity ana-
lyses on the impact of location diversity and database size on the



0. Omoyele et al.

_____________________________________________ Average
-0.1% W Synthetic
TAC 0.2% —0.6% s I
2 2% ampling
1.3%| N TD160
77777777777777777777777777777777777777777777 2.7% TD365
PV 3.6%
o
_—0.5%
e 2.3%
1.0% -
Heatpump 1.0%) -
-0.3%
1.8% -
1.0%
SOEC/ #"-O%
4%
SOFC 0.3%
mz 1.4%
1.0% -
Compressorl #" o
0.3%
-o.3% 1.4%
— 5.9%
- ____________ER
Compressor2 4.1%
-0.2%M
2.8%
0.5%
HYD e
1%
B 8%
DEHYD O
0.3%
-0 3% 0.9%
-0.4% S
LOHC i 0 -9%
10.1%
-0.5%
-2 -1 1 2 3 4 5 6
Error in Component Size (%)
................................... Average
18.8% i
— 13 5% E— - Synthetic
nverter 36.7%) _ Sampling
0%
58.4% . TD160
7777777777777777777777 11.9% TD365
7.2%
Eheater W—.2% 16.7%
-0.4%]
4.4%
3% 4%
Expanderl |- “2.9%
-1.5%)
-3.79
Expander2 L3 ke
2.2%
B 32.4%
are
Hex1 -_3 " Ojaz_/f;%
£70.3%
L2 1%
Hex2 250/.-‘ 5 17.6%
e 5.6%
151120/30/‘, """"""""
Battery B
9
-24.7% 01%
”””””””””””””””””””””””””””””” 8 4% M. 16.5%
Hydrogen 2%
-5.6% M
8,290
e
Thermal qm‘ °
7%
24.9%
-60 —40 20 40

=20 0
Error in Component Size (%)

Fig. 13. Result of the components’ capacity deviation of different optimization
and acceleration approaches from the measured data in percentage for the self-
sufficient building for Berlin in 2019. TAC - Total Annualized Cost; PV —
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Cell; HYD - Hydrogenation; DEHYD — Dehydrogenation; Hex — Heat Exchanger;
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downscaling method. For the location tested (Milan), the best-matching
climate with the lowest NRMSE and KSI is its corresponding Koppen-
Geiger class of Cfa, which corresponds to a temperate climate with no
dry season and a hot summer. However, a Cfb corresponding to a
temperate climate, no dry season, and warm summer, yields a nearly
identical result. This is attributable to the marked similarity between the
two climate classes. Furthermore, the effect of database size on model
performance is evident in the decrease in NRMSE with increasing
database size (see Table 5). For instance, the NRMSE decreases from
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7.85 % with a one-year database to 6.93 % with a database spanning
19.5 years. Conversely, the KSI remains virtually constant at 0.74 %
across all database sizes, indicating that a modest training database of
one year is adequate for reproducing the distribution of the profiles. The
negligible changes in KSI suggest that the model already captures the
key distributional characteristics of the irradiance data with limited
data. This outcome is indicative of the efficacy of the underlying
matching algorithm in reproducing distributional characteristics.

Having a historical data of the site to downscale is useful in
improving the methodology significantly. However, the developed
methodology has a global application without sites’ historical mea-
surements. An improvement of the climate classes in cold and polar
Koppen-Geiger climates with currently little or no data in the database
may help improve the results. In addition, other machine learning al-
gorithms may be incorporated into the methodology to capture days
better, which have profiles that do not have perfect equivalents in the
created database.

4.2. Energy system modeling

From the energy system modeling result, it can be inferred that
comparing the synthetic result and the average hourly result, the syn-
thetic data provides a better result in terms of the TAC as compared to
the widely used hourly average result, as it deviates less from the results
obtained for the real measured data (see Fig. 8). The average hourly
result shows an underestimation of the TAC by 0.9 % and 1.3 % for
Milan 2017 and Berlin 2019, respectively. This underestimation is
attributable to the hourly resolution’s incapacity to adequately capture
the inherent intra-hour fluctuations present in the sub-hourly data.
Consequently, the process of averaging leads to a minimization of the
maxima and a maximization of the minima of the input data. The syn-
thetic data shows an overestimation of the TAC by only 0.0 % and 0.2 %
for Milan 2017 and Berlin 2019, respectively. The very low over-
estimation by the synthetic data is attainable through the introduction of
the daily sum match between the measured and the synthetic data (as
discussed in step 5 of section 2.2.1), which significantly improved the
results. The computational acceleration methods [18] using the mean of
the regular samples, as well as clustering-based time series aggregation
of 160 and 365 typical days with 24 segments (TD160 and TD365), are
also applied to the optimization (Fig. 11).

While TD160 successfully reduces the computational runtime, it fails
to accurately capture the result of the 1-min resolution data due to over-
aggregation of the model. Consequently, an overestimation of 0.9 % and
0.6 % for Milan and Berlin, respectively, is observed. Therefore, a more
precise result would be one that captures the entirety of the dataset
without significant aggregation. In this case, the regular samples
average (sampling) and TD365 are the most appropriate metrics. The
most effective computational acceleration method results in terms of
TAC are obtained by these two metrics. It is important to note that
TD160 considers 160 typical days and 24 segments. This results in a
reduction of the input data from 525,600 datapoints (the full 1-min
resolution) to 3840 (160 x 24). In contrast, the TD365 reduces the
input datapoints from 525,600 to 8760 (365 x 24 or full 1-h resolution).
The TD160 is less accurate than the TD365, yet it is more efficient in
terms of computational runtime savings.

The optimal accuracy-complexity compromise is obtained for TD365
as recommended by Omoyele et al. [18], and thus the best approach for
optimizing the minutely resolved energy system model with an
aggregation-based method that reduces computational time to a level
comparable to optimizations at hourly resolution. The TD365 shows an
underestimation of the TAC by 0.2 % and 0.1 % for Milan 2017 and
Berlin 2019, respectively. The highly dynamic components (inverters
and storage, e.g., the battery) are subject to large deviations when
optimized using average hourly resolution (see Figs. 12 and 13), which
leads to the infeasibility of the model when such capacities are tested for
feasibility using the measured data. However, this is ameliorated using
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the synthetic data, as the initial inverter underestimation for Milan 2017
and Berlin 2019 of 51.2 % and 58.4 % respectively are now 0 %, and the
battery underestimation for Milan 2017 and Berlin 2019 of 7.8 % and
24.7 %, respectively are now replaced by 4 % overestimation and 0.1 %
underestimation yielding a more feasible energy system model design,
as illustrated in Figs. 12 and 13. For the two cases of Milan 2017 and
Berlin 2019, the mean of regular samples and TD365 give an improved
result as compared to the mean hourly resolution for the capacities of
highly dynamically operated components such as the inverter and the
battery.

While the energy system analysis of this study has been on a self-
sufficient building system, the proposed methodology demonstrates
strong potential for scalability to grid-connected solar energy system
applications. The ability of the methodology to generate high-quality,
high-resolution synthetic irradiance data across diverse climatic sys-
tems underscores its generalizability and robustness. For further appli-
cation to real-time grid-connected systems, the methodology can
support operation forecasting and decision-making by providing high-
quality sub-hourly irradiance data in locations where high-quality
data are limited. Due to its computational tractability, it can be adapt-
ed to near-real-time implementation using a regularly updated database.
This renders it suitable for incorporation into forecasting pipelines.
Future integration with real-time satellite data or numerical weather
prediction could further enhance its forecasting ability.

5. Conclusion and outlook

This work provides a globally applicable, non-dimensional method-
ology for increasing the temporal resolution of hourly global horizontal
irradiance to minutely resolution. The methodology builds on the
developed work of Peruchena et al. [22] and Larraneta et al. [31] by
matching the daily irradiance characteristics of the data to be down-
scaled with a robust database of non-dimensional minutely and daily
parameters, across diverse Koppen-Geiger weather, ensuring its global
applicability. The proposed methodology, by means of synthesized data,
facilitates the consideration of transient phenomena, such as intra-hour
fluctuations and passing clouds, in energy system modeling, conse-
quently, enhancing its accuracy.

The methodology is validated using statistical metrics and a self-
sufficient building energy system model. Across diverse locations, the
synthetic data achieves mean hourly normalized root mean square error
values between 5.6 % and 7.3 %, and mean hourly Kolmogorov-Smirnov
integral test values between 0.1 % and 0.7 %. The outcomes of these
analyses are contingent upon the atmospheric clarity, with clear days
generally yielding more precise results compared to cloudy days. The
statistical metrics reveal good representation and distribution of the
synthetic data relative to the measured data. Furthermore, the synthetic
data demonstrates improved system performance in terms of cost,
feasibility, and component sizing when compared to the common hourly
average, as evidenced by the results of the self-sufficient building energy
system model. While the hourly average data underestimates the total
annualized cost of the system by up to 1.3 %, the synthetic data over-
estimates it by up to only 0.2 %. It also improved on the significant
undersizing of highly dynamic components, reducing inverter capacity
underestimation from 58 % to 0 % and battery capacity underestimation
from 25 % to 4 %. The methods of reducing complexities employed on
the synthetic data displayed a high computational management
compared to the fully resolved 1-min data, and a more accurate result
compared to the hourly average data.

The main contributions of this study are summarized as follows:
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- A globally applicable and high accuracy temporal downscaling
method for global horizontal irradiance is proposed.

A comprehensive database of non-dimensional curves and daily
irradiance parameters, constructed across diverse Koppen-Geiger
climate zones, is created.

The high-resolution synthetic irradiance data leads to improved en-
ergy system modeling performance, including reliable cost estima-
tion and more accurate components’ sizing.

Accelerated computation methods as alternatives to full 1-min res-
olution models are applied to provide an improved model accuracy
at an equivalent computational time of 1 h resolution models.

The limitation of the developed method is its inability to downscale
historical data prior to 2004, due to the applicability of the McClear
clear sky model being limited to years from 2004 onwards. Other models
to obtain the extraterrestrial irradiance could be employed in this case.
Moving forward, further expansion of the database with real-time
measurement for sites, particularly for underrepresented regions of
cold and polar Koppen-Geiger climates, will enhance its applicability
and robustness. In addition, integration of the proposed methodology
with machine learning approaches holds promise for enhancing its ac-
curacy, particularly during instances of cloud cover when precise
matching days cannot be obtained from the created database. Future
work could also explore the integration of satellite-based irradiance
products with resolutions below 1 h as input data and machine learning-
based downscaling techniques. Consequently, the augmentation of
location validation and energy system optimization holds promise in the
development and implementation of a more robust validation of the
methodology. Despite these limitations, the developed methodology will
support planners and decision makers, regardless of location, to design
solar-energy-based energy systems more accurately than previous
approaches.
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Appendix A

Table 6

Summary of the Five-Step Downscaling Procedure

Renewable Energy 256 (2026) 124551

Description

Input(s)

Output(s)

Step Step Name

1 Collection and
Preparation of Input
Parameters

2 Extraction of Defining
Parameters from Low-
Resolution Data

3 Matching Algorithm

4 Selection of High-
Resolution Data

5 Unpacking the 1 Minute

Data

Site metadata and simulation duration are used to
compute solar angles and extraterrestrial irradiance using
McClear model.

Compute the daily defining parameters (kq, VI, NVI, Fy,,
and ICCDF) from hourly irradiance data.

Match daily defining parameters with the closest day in
the daily database using k-nearest neighbor algorithm
with 1 neighbor and Euclidean distance.

Retrieve non-dimensional irradiance profile
corresponding to the matched day from the daily
database.

Scale the non-dimensional data back to the standard
irradiance value in W/m? and optimize daily scaling
factor, k, to minimize the daily cummulative energy
difference between the synthetic and the measured
irradiance.

Latitude, longitude, simulation start and
end time.

Hourly-resolution data, extraterrestrial
irradiance, solar angles, climate class.

Daily defining parameters, weather class

Matched days, highly resolved database

Selected high resolution profile, daily
sunrise and sunset, extraterrestrial
irradiance, measured irradiance, daily
scaling factor, k.

Extraterrestrial irradiance, solar
angles, climate class.

Daily defining parameters (kq,
VI, NVI, Fy,, and ICCDF) and
weather class
Closest-matching day

Selection of high resolution non-
dimensional data from the highly
resolved database

Synthetic 1-min irradiance in W/
m2
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Fig. 14. Four random days in Delhi, India, to see the effect of extraterrestrial irradiance and clear sky irradiance in a polluted environment for variability capture.
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Appendix C

Normalization Workflow

Data: Measured irradiance, extra-terrestrial
irradiance, Solar angles

Filter: Exclusion criteria
(see section 2.1)

Non-dimensional time: Irradiance values
between sunrise and sunset

Non-dimensional irradiance: Divide
measured irradiance by the extraterrestrial
irradiance

Extrapolate: Resample each day to 1000
normalized samples

Clip: Clip values greaterthan 1to 1

Fig. 15. Normalization workflow of the non-dimensional curves.
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Appendix D

Table 7
Cost parameters of the self-sufficient building model by Knosala et al. [60].

Capex Opex Lifetime
Components Fixed Capacity-Specific Fixed + Capacity-Specific
Photovoltaic Ground - - 4000.00 €/kWp, 1.00 % Inv./a 20 a
Photovoltaic Rooftop - - 769.00 €/kWp 1.00 % Inv./a 20 a
Inverter - - 75.00 €/kW, - - 20 a
Battery - - 301.00 €/kWh, - - 15 a
Reversible Solid Oxide Cell 5000.00 € 2400.00 €/kWy; 1.00 % Inv./a 15 a
Heat Pump 4230.00 € 504.90 €/kWn 1.50 % Inv./a 20 a
Thermal Storage - - 90.00 €/kWhgp, 0.01 % Inv./a 25 a
E-Heater & E-Boiler - - 60.00 €/kWy, 2.00 % Inv./a 30 a
Tank - - 0.79 €/kWhyo - - 25 a
Dibenzyltoluene - - 1.25 €/kWhyp - - 25 a
Hydrogen Vessels - - 15.00 €/kWhyp - - 25 a
Hydrogenizer 2123.30 € 761.10 €/kWy 1.00 % Inv./a 20 a
Dehydrogenizer 1140.00 € 408.60 €/kWh2 1.00 % Inv./a 20 a
Low Pressure Compressor - - 1716.71 €/kWp, 1.00 % Inv./a 25 a
High Pressure Compressor 560.00 1329.80 €/kWp, 1.00 % Inv./a 25 a
Heat-Exchangers 1 and 2 - 1.00 €/kWy, 1.00 % Inv./a - a
Expanders 1 and 2 - - 1.00 €/kW, 1.00 % Inv./a 25 a
Appendix E
Table 8
Building demand parameters.
Buildingl (Milan 2017) Building2 (Berlin 2019)
Number of occupants 4 4
H_ceiling/ww _ratio 2.4/0.2 2.5/0.25
Size (m?) 200 200
Height (Stories) 1 2
Annual demand (kWh) Electricity 3087.85 3050.98
Heat 16257.05 16611.26
Mean (kWmin) Electricity 0.3525 0.3483
Heat 1.8558 1.8963
Standard deviation (kWmin) Electricity 0.5109 0.4930
Heat 1.9761 2.0088
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Appendix F
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Appendix G
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Fig. 18. Box plot showing the statistical properties between the measured and synthetic data for different validation locations.
Appendix H

Table 9

Influence of location diversity on the accuracy of the downscaling method.
Correlated Koppen-Geiger Climate? NRMSE Hour (W/m?) KSI Hour (%)
Aw 7.76 0.84
Bsh 7.49 0.76
Bwh 7.50 0.84
Cfa 6.93 0.74
Cfb 6.95 0.77
Csa 7.85 0.79
Csb 7.94 0.76
Cfa/Cfb/Ocean 7.14 0.75
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Table 10
Influence of database size on the accuracy of the downscaling method.
Database size (Years) NRMSE Hour (W/m?) KSI Hour (%)
1 7.85 0.74
4 7.83 0.74
8 7.88 0.74
12 7.11 0.74
16 6.94 0.75
Full (19.52) 6.93 0.74

Appendix I

Table 11
Table of results for Milan 2017 using different data in measured, average hourly, synthetic data, average of 60 hourly samples in 1-min, typical days of 160, and typical
days of 365.

Components Unit Measured Average Synthetic Sampling TD160 TD365

TAC € 3629.417 3595.703 3629.454 3632.78 3662.524 3620.727
PV kw, 11.59839 11.58171 11.56093 11.65135 11.8213 11.58258
Inverter kW, 6.852589 3.342544 6.852589 5.309767 5.441717 5.629491
Heatpump kW 6.196846 6.159355 6.208509 6.2066 6.091244 6.200098
Eheater kWi 0.417623 0.420109 0.410928 0.393729 0.391022 0.411217
Eboiler kW, 0.354864 0.291255 0.082257 0.038161 1.69E-07 0.006359
rSOEC kWe 3.889021 3.909791 3.881362 3.863531 4.000791 3.881812
rSOFC kWey 3.889021 3.909791 3.881362 3.863531 4.000791 3.881812
Compressorl kWp 0.222103 0.223289 0.221537 0.213067 0.214523 0.221108
Compressor2 kW, 0.09834 0.098906 0.097189 0.094056 0.095881 0.097174
Expanderl kW 2.21419 2.195638 2.199464 2.186055 2.059239 2.218102
Expander2 kW, 0.884721 0.873775 0.887396 0.901041 0.620621 0.89411
HYD kW 1.630156 1.637925 1.646672 1.570328 1.553913 1.639502
DEHYD kWi 3.569166 3.56825 3.574803 3.566195 3.75101 3.573592
Hex1 kWi 0.782836 0.703242 0.774399 0.743904 0.77608 0.802651
Hex2 kW, 0.778922 0.699725 0.770527 0.785389 0.7722 0.798637
Battery kWh,, 4.693275 4.326669 4.881476 5.362296 4.944058 4.918613
Hydrogen kWhyo 27.39216 28.00643 25.52363 27.42508 25.78829 25.05461
Thermal kWhy, 14.57971 14.64694 13.87878 17.04399 19.55655 14.22859
LOHC kWhyy 5692.606 5706.05 5720.426 5615.955 5645.661 5704.336

Table 12

Table of results for Berlin 2019 using different data in measured, average hourly, synthetic data, average of 60 hourly samples in 1-min, typical days of 160, and typical
days of 365.

Components Unit Measured Average Synthetic Sampling TD160 TD365
TAC € 3451.345 3406.54 3458.167 3445.172 3473.29 3449.053
PV kWp 12.25917 12.53615 12.32266 12.51231 12.70191 12.59147
Inverter kWp 7.767394 3.234016 7.767394 4.920022 6.310086 6.310086
Heatpump kW 5.141412 5.050618 5.126538 5.0881 5.17923 5.087491
Eheater kW, 0.207596 0.216709 0.20672 0.242299 0.222506 0.211598
Eboiler kW, 0.705865 1.114323 0.880538 0.925693 0.049019 1.115286
rSOEC kWey 2.796084 2.833836 2.804396 2.861852 2.908456 2.822959
rSOFC kW 2.796084 2.833836 2.804396 2.861852 2.908456 2.822959
Compressorl ]((Wp 0.159685 0.161841 0.16016 0.163441 0.166103 0.16122
Compressor2 kW, 0.05589 0.057476 0.055799 0.058164 0.059185 0.056699
Expander1 kW 1.512302 1.457043 1.489925 1.585914 1.549227 1.459782
Expander2 kW 0.615835 0.815505 0.6296 0.720863 0.837233 0.834884
HYD kWyo 1.512302 1.513616 1.522705 1.525827 1.548969 1.520595
DEHYD kW 2.560854 2.584322 2.568795 2.551617 2.571468 2.581835
Hex1 kW 0.410794 0.449026 0.424612 0.463865 0.453261 0.430166
Hex2 kW, 0.433205 0.457439 0.422492 0.509458 0.451067 0.42802
Battery kWh, 6.509155 4.898356 6.505433 5.951915 5.526527 5.709567
Hydrogen kWhy 19.04732 17.48451 17.98086 21.17836 22.62168 17.444
Thermal kWhg, 11.79202 14.73149 12.11029 13.10544 13.56881 13.68301
LOHC kWhyo 5311.545 5286.443 5316.186 5305.21 5358.64 5287.662

Table abbreviations.

TAC - Total Annualized Cost.

PV - Photovoltaic.

SOEC - Solid Oxide Electrolyzer Cell.
SOFC - Solid Oxide Fuel Cell.

HYD - Hydrogenation.
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DEHYD - Dehydrogenation.
Hex — Heat Exchanger.
LOHC - Liquid Organic Hydrogen Carrier.

TD -

Typical Day.

Data availability

All data supporting the findings of this study are openly available at:
https://github.com/FZJ-IEK3-VSA/ETHOS.TISED. The repository con-
tains the non-dimensional databases, code, and documentation neces-
sary to replicate the results and conduct further analysis.
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