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A B S T R A C T

The limited intra-hour variability of globally available hourly renewable energy system data leads to inaccuracies 
in the modeling of renewable energy systems. While sub-hourly data can improve model accuracy, such data are 
not globally available. The existing approaches to increase the temporal resolution of solar irradiance often rely 
on site specific measurements or complex models, limiting global scalability. This work, therefore, presents a 
methodology to increase the temporal resolution of the global horizontal irradiance from 1 h to 1 min using non- 
dimensional irradiance and parameters matching based on daily irradiance characteristics for arbitrary locations. 
The methodology is validated using statistical methods and energy system optimization. The hourly annual 
normalized root mean square error and Kolmogorov-Smirnov Integral range from 5 to 7 % and 0.1–0.7, 
respectively, for different locations consisting of varying weather conditions. The energy system optimization 
results of the synthetic data demonstrate superiority in terms of cost and feasibility relative to the average hourly 
resolution data. The use of synthetic minute resolution data significantly improves the design accuracy of dy
namic components such as inverters and storage systems. The globally applicable method, based on Köppen- 
Geiger classification coverage, will enable more reliable energy systems modeling in the future.

1. Introduction

High-resolution solar irradiance data has gained importance in the 
last decades, primarily due to the growing incorporation of renewable 
energy sources into the energy mix [1]. The prevalence of hourly 
resolved measured, reanalyzed, and predicted data, along with the 
disproportionate increase in model complexity at higher resolution, has 
prompted numerous researchers to use it for modeling purposes. How
ever, intra-hourly fluctuations, which are not captured in the prevailing 
hourly resolutions [2], may have severe impacts on future grid stability. 
This issue becomes even more critical as the balancing power provided 
by rotating masses from conventional power plants declines, increasing 
the risk of grid imbalances [3]. Therefore, modeling in high temporal 
resolution is imperative in applications such as photovoltaic system 
design, solar energy forecasting, and grid management [4].

Previous research [5] investigated the impact of sub-hourly resolu
tion on energy system modeling, and showed that sub-hourly resolution 
is important for policy analysis, electric sector planning, and technology 
valuation [6]. Furthermore, it was demonstrated that coarser temporal 
resolution leads to underestimation of total annualized cost (TAC), with 
a discrepancy of up to 2 % between hourly and minutely resolutions [5,
7,8], generator cycling and flexible generation [9], energy storage ca
pacity and utilization [9–11], ramping [12], inverter clipping losses 
[13–15], and the levelized cost of electricity [16,17], among others. It is 
important to note that modeling at hourly resolution can also result in an 
infeasible system design. Particularly in the context of renewable energy 
systems, the undersizing of dynamically operating components such as 
inverters and batteries is an issue when relying on coarse temporal 
resolution data [5]. While the main drivers for the use of coarser reso
lutions have been data scarcity and computational complexity, the latter 
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can be mitigated by averaging time series sub-samples [18], time series 
aggregation [19,20] and parallelization [20].

Several methods have been used so far to increase the temporal 
resolution of renewable energy data, particularly solar irradiance. The 
approaches for solar irradiance can be classified into Markov, deter
ministic, stochastic, non-dimensional, and machine learning methods 
[21]. As illustrated in Table 1, a comparison is presented of the various 
methods, with their description and characteristics. The deterministic 
approach utilizes statistical interpolation methods, which frequently 
underperform in accurately capturing the intra-hour fluctuations of the 
irradiation. The stochastic approaches frequently employ a determin
istic approach as a foundation, yet prior to incorporating randomization 
into the interpolations, they often demonstrate superior accuracy in 
comparison to deterministic approaches. However, it should be noted 
that the accuracy of these stochastic approaches is significantly influ
enced by the employed deterministic approach. The stochastic approach 
has the capacity to engender a highly complex system through the 
introduction of the random variable. The Markov approach has 
demonstrated efficacy in capturing the sub-hourly fluctuations. How
ever, this efficacy is contingent upon the complexity stemming from the 
order of the Markov chain that links the data dependencies. Conse
quently, several Markov approaches employ first-order Markov chains, 
which are incapable of fully capturing data dependencies, thereby 
resulting in limited accuracy. The machine learning approaches consti
tute a distinct class of approach. Although their applications in this 
context remain limited, they offer considerable potential and, with ac
cess to sufficient high-quality training data, could have improved per
formance. In comparison to alternative methods, the non-dimensional 
approach is characterized as explainable and comprehensive, uses real 
data, is adaptable to arbitrary locations with good accuracy, and has no 
modular error at a low computational expense. The non-dimensional 
approach downscales low-resolution data to high-resolution by 
normalizing solar irradiance and time (see details in Box 1 and section 
2.2).

Table 1 
Methods of increasing the temporal resolution of solar irradiance.

Downscaling 
Approach

Description Characteristics

Strength Limitation

Deterministic Uses statistical interpolation methods. - Computationally cheap - Limited accuracy
- Lacks comprehension

Stochastic Applies randomness to generate high-frequency data - Comprehensive
- Good accuracy

- Computationally expensive
- Can produce unrealistic 

patterns

Markov Applies probability transitions between irradiance states. - Comprehensive
- Good accuracy

- Computationally expensive
- Complicated transitions

Machine Learning Learns patterns from historical data (e.g. neural networks) - Comprehensive - Requires large training 
datasets

- Poor generalizability
- Computationally expensive

Non-dimensional Matches low resolution to normalized high resolution profiles using daily statistical 
indicators

- Comprehensive
- Adaptable to arbitrary 

locations
- Good accuracy
- Computationally cheap

- Limited by database coverage

Box 1: The 
non-dimensional approach
For downscaling low-resolution data to high-resolution, the non- 
dimensional approach normalizes the time between the daily 
sunrise and the sunset [22], whereas the normalized irradiance is 
the ratio of the irradiance to its corresponding extraterrestrial or 
clear sky values [22]. The extraterrestrial irradiance is taken as the 
theoretical irradiance at the Earth’s upper atmosphere [23]. The 
clear-sky value is defined as the amount of irradiance that reaches 
the Earth’s surface when the effect of cloud cover is not taken into 
account [24]. Previous articles suggested to use clear sky irradi
ance when modeling or forecasting direct normal irradiance (DNI) 
and extraterrestrial irradiance when modeling or forecasting 
global horizontal irradiance (GHI) [25]. Several models have been 
developed to capture the clear sky solar irradiance data [26,27], 
such as curve fitting and the highly reviewed and benchmarked 
REST2V5 [28], MACC2 [29], and McClear models [30], among 
others. Given the inherent similarity between data from the same 
climate class, a minimum of one year of comparable data for a 
location intended for downscaling is necessary for the database of 
normalized, non-dimensional irradiance profiles [31]. Conse
quently, two databases are created, comprising the 
non-dimensional curves in minutes and the daily data. The daily 
parameters which represent the minutely non-dimensional curves 
in the database can be the clearness index (kd), the variability 
index (VI), and the distribution (Fm). An exposition of these three 
parameters can be found in section 2.2.2.2. The hourly resolution 
to be downscaled produces the daily parameters (kd, VI, and Fm) of 
the nature in the database. The most similar day from the database 
to each day of the hourly resolution to be downscaled is selected 
and processed back to irradiance to provide highly resolved 
downscaled data. A detailed explanation of the non-dimensional 
approach is provided in section 2.2.
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To the best of the authors’ knowledge, the non-dimensional 
approach was first developed by Peruchena et al. [22], who obtained 
DNI data in minutely resolution for a location from its hourly resolution 
using curve fitting for a clear sky model. Meanwhile, the used training 
data required a 1-min resolution of a location which confirmed its lo
cality. The authors further applied the methodology to different climatic 
zones [22,32–36]. Larrañeta et al. [31,37,38] improved the methodol
ogy of Peruchena et al. [22] by applying Köppen-Geiger weather clas
sification1 [39] to categorize the database into different climate zones 
and matching the parameters of a location to be downscaled to a similar 
location with the same Köppen-Geiger weather classification. Larrañeta 
et al. also improved the daily parameters from the kd as utilized by 
Peruchena et al. [22] to include the VI and the Fm [40]. Furthermore, the 
matching between similar days to be downscaled and the used database 
was improved by utilizing the k-nearest neighbors instead of the 
Euclidean distance, cutting down the computational time. Larrañeta 
et al. [31] also developed the ND tool [41] which downscales DNI or 
coupled DNI + GHI from 1 h to 1 min resolution and was used for 
application studies in Refs. [36,42].

Although several approaches (as presented in Table 1) have been 
proposed by numerous studies to downscale GHI from hourly to sub- 
hourly resolutions [43–45], the non-dimensional approach is 
outstanding in terms of high accuracy, easy adaptability, and low 
complexity. Most existing approaches are either deficient in accurately 
capturing sub-hourly fluctuation, site-specific or lack generalizability 
across diverse climatic conditions. Furthermore, the current global tool, 
ND tool, which is based on the non-dimensional approach has been 
predominantly developed for the DNI or coupled DNI + GHI, with no 
robust standalone implementation for the GHI. Moreover, the ND tool 
relies on the clear-sky index, which is utilized for DNI without distinctly 
adapting the GHI dynamics. The objective of this study is to develop a 
more robust, parameter-based non-dimensional method to downscale 
hourly solar GHI data to a 1-min resolution using a comprehensive 
database of non-dimensional curves and defining parameters, to enable 
accurate globally applicable data. Furthermore, the downscaled syn
thetic dataset is validated using an energy system model. Methodologies 
that reduce the complexity of energy system modeling are employed to 

mitigate complexity arising from sub-hourly resolution data from the 
model. Fig. 1 illustrates the workflow of this study, which is divided into 
two sections: 

1) Data: The data set encompasses the measured 1-min resolution data, 
which is converted to hourly resolution (by averaging). The non- 
dimensional methodology is then applied to downscale the 
measured hourly resolution data to 1-min synthetic data

2) Validation: The validation section is employed to assess the accu
racy of the synthetic 1-min data in comparison to the 1-min 
measured data and 1-h measured data. The validation approaches 
employed encompass statistical methods and energy system 
modeling. As sub-hourly resolution can lead to increased complexity, 
approaches for complexity management in regular samplings and 
clustering-based time series aggregations are investigated.

The remainder of this work is structured as follows: Section 2 de
scribes the used data, its preprocessing steps, and the proposed meth
odology. The methodology encompasses the database constructions to 
the downscaling procedures, as well as the validation and performance 
metrics of the profile’s statistics and their application to the energy 
system model. Section 3 presents the result of both the statistical and 
energy system modeling validation of the methodology, which are dis
cussed in section 4. Finally, section 5 concludes this study.

Fig. 1. The workflow of the methodology developed in this study.

Table 2 
High-resolution (1-min) irradiance data from ground-based measurements.

City Latitude 
(◦)

Longitude 
(◦)

Height 
(m)

Köppen- 
Geiger 
Climate2

Years

Adelaide − 34.95 138.52 2 Csb 14
Alice Springs − 23.80 133.89 546 BWh 14
Broome − 17.95 122.24 7.42 BSh 14
Cape Grim − 40.68 144.69 95 Cfb 11
Cobar − 31.48 145.83 260 BSh 1
Cocos Island − 12.19 96.83 3 Ocean/Cfb 10
Darwin − 12.42 130.89 30.4 Aw 13
Geraldton 

Airport
− 28.80 114.70 29.7 Csa 6

Geraldton 
Airport Comp.

− 28.80 114.70 33 Csa 2

Kalgoorlie- 
Boulder

− 30.78 121.45 365.3 BSh 4

Learmonth − 22.24 114.10 5 BWh 5
Melbourne − 37.66 144.83 113.4 Cfb 12
Mildura − 34.24 142.09 50 BSk 2
Mt Gambia − 37.75 140.77 63 Csb 2
Rockhampton − 23.38 150.48 10.4 Cfa 10
Tennant_Creek − 19.64 134.18 377.1 BSh 2
Townsville − 19.25 146.77 4.34 Aw 4
Wagga − 35.16 147.46 212 Cfa 13

1 The Köppen-Geiger classification is divided into Major groups [Precipita
tion (Temperature)] as follows: A – tropical [f – Rainforest, m – Monsoon, w – 
Savanah], B – Arid [W – Desert (h – Hot, k – Cold), S – Steppe (h – Hot, k – 
Cold)], C – Temperate [s – Dry summer (a – Hot summer, b – Warm summer, c – 
Cold summer), w – Dry winter (a – Hot summer, b – Warm summer, c – Cold 
summer), f – Without dry season (a – Hot summer, b – Warm summer, c – Cold 
summer)], D – Cold [s – Dry summer (a – Hot summer, b – Warm summer, c – 
Cold summer), w – Dry winter (a – Hot summer, b – Warm summer, c – Cold 
summer), f – Without dry season (a – Hot summer, b – Warm summer, c – Cold 
summer)], E – Polar [T – Tundra, F – Frost].
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2. Data and methodology

2.1. Data description

This section presents the data used for the developed methodology. 
Section 2.1.1 describes the data source for database construction, 
encompassing diverse climatic conditions classified according to the 
Köppen-Geiger system and multiple years of data. Section 2.1.2 details 

the data employed for the validation of the methodology, including 
various weather classifications and conditions.

2.1.1. Data for database construction
The 1-min resolution data in Table 2, which was utilized for database 

construction, was obtained from the Australian Bureau of Meteorology.2

Fig. 2 provides the geographic distribution and climate diversity of the 
selected cities of Australia, encompassing diverse Köppen-Geiger 
climate zones. As the McClear clear sky model [30] includes data 
starting from 2004, this is the earliest year represented in the database 
and hence the earliest downscaling year of the methodology. 

Fig. 2. Köppen-Geiger weather classification of Australia for the selected sites for the non-dimensional database construction [39].

Table 3 
Correlated Köppen-Geiger climate.

Location Number 
of Days

Correlated 
Köppen-Geiger 
Climate2

Köppen-Geiger

Climate Represented2

Darwin, Townsville 4531 Aw Aw, Am, Af, As
Broome, Cobar, 

Kalgoorlie Boulder, 
Tennant Creek, 
Mildura

6552 Bsh Bsh, Bsk

Alice Springs, 
Learmonth

6942 Bwh Bwh, Bwk

Rockhampton, Wagga 7123 Cfa Cfa
Cape Grim, Melbourne, 6507 Cfb Cfb, Cfc
Geraldton, Geraldton 

Airport
2453 Csa Csa

Adelaide, Mt Gambia 5150 Csb Csb, Csc, Cwa, Cwb, 
Cwc

Rockhampton, Wagga, 
Cape Grim, 
Melbourne, Cocos 
Island

15527 Cfa/Cfb/Ocean Dfa, Dfb, Dfc, Dsa, 
Dsb, Dsc, Dwa, Dwb, 
Dwc, EF, ET

Table 4 
Validation irradiance data measurements.

Location Latitude 
(◦)

Longitude 
(◦)

Height 
(m)

Köppen- 
Geiger 
Climate

Year

Berlin, 
Germany

52.46 13.52 34 Cfb 2017
2018
2019
2020

Milan, Italy 45.50 9.16 120 Cfa 2017
Tamanrasset, 

Algeria
22.79 5.53 1385 BWh 2009

Tateno, Japan 36.06 140.13 25 Cfa 2013
Toravere, 

Estonia
58.24 26.46 70 Dfb 2008

2 https://reg.bom.gov.au/climate/reg/oneminsolar/index.shtml.
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Consequently, the non-dimensional database spans from 2004 to 2021. 
The GHI measurements obtained from the Australian Bureau of Meteo
rology were derived from CM-11 pyranometers manufactured by the 
company Kipp&Zonen. The Australian Bureau of Meteorology adheres 
to the World Meteorological Organization-approved standard of the 
‘Alternate Method’ [46] for reporting and calibration. The GHI data 
undergoes quality control procedures by pvanalytics [47], and any days 
meeting the following criteria are excluded from the analysis: 

⁃ Measurements with night values
⁃ GHI data with values less than 0 (negative data), or greater than the 

solar constant of 1361.1W/m2 [48]
⁃ Data with gaps or stale data
⁃ Data with any measurement errors or unavailable values

Since Table 2 does not contain all the Köppen-Geiger climate zones, a 
correlated Köppen-Geiger climate is provided as shown in Table 3 to 
represent all the Köppen-Geiger climates [41] in the database. The final 
database encompasses 50,749 days from the 18 different locations in 
Table 2, with each day having 1000 non-dimensional data points, 
yielding 41,155 days after the quality control (Table 3), retaining 81.1 % 
of the original data in Table 2.

2.1.2. Data for validation
The validation data (see Table 4) is obtained from open sources, 

including Berlin [49], Milan [50], and Baseline Surface Radiation 
Network (BSRN) locations of Tamanrasset, Tateno, and Toravere [51]. 
The Berlin data was measured with the combination of SP-Lite2, CMP11, 
and SMP21 pyranometers of Kipp&Zonen using weather data of HTW 
Berlin. Data preprocessing, including the handling of missing values, 
was carried out by HTW Berlin. The missing values were imputed or 
replaced depending on the data gap. For gaps shorter than 1 h, linear 
interpolation was used for imputation. For gaps exceeding 1 h, missing 
values were replaced using data from the previous hour or the same hour 
of the previous day. The Milan data of 2017 has about 1 % of missing 
data points. Of these missing data points, two complete days (days 115 
and 116) are replaced by their previous days and other days with 
missing data are imputed using k-nearest neighbors as suggested by 
Mantuano et al. [52]. The BSRN locations of Tamanrasset, Tateno, and 
Toravere were measured with Pyranometer, Eppley, PSP, SN 30123 F3, 
WRMC No. 42001; Pyranometer, Kipp & Zonen, CMP21, SN 090229, 
WRMC No. 16035; and Pyranometer, Kipp & Zonen, CM11, SN 903301, 
WRMC No. 9005, respectively. The Tamanrasset and Toravere have 8 

and 3 missing days, respectively, with the missing days being replaced 
by their previous days. The locations are selected to represent diverse 
Köppen-Geiger climates, demonstrating the methodology’s applicability 
across a wide range of global conditions.

2.2. Methods

Fig. 3 below shows the flow chart of the developed methodology. 
Two databases are used: Firstly, the non-dimensional minutely resolved 
solar GHI against the non-dimensional time (non-dimensional highly 
resolved database or database 1). Secondly, the non-dimensional daily 
matching parameters (non-dimensional daily database or database 2) 
containing the kd, VI, normalized variability index (NVI), Fm, and inte
grated complementary cumulative distribution function (ICCDF) for 
each day of the minutely resolved solar GHI in database 1. The exposi
tion of database 1 and database 2 is found in sections 2.2.2.1 and 2.2.2.2, 
respectively. The 1-h resolution (green color) data to be downscaled 
requires the input parameters of the hourly resolved GHI, simulation 
duration (start and end time), and the site metadata (latitude, longitude, 
and elevation of the location). From these, the daily matching parame
ters (blue color) are calculated and matched with database 2, and the 
closest day to each day using the k-nearest neighbor algorithm is 
selected. The corresponding high-resolution data (orange color) to the 
selected day is substituted to the hour resolution.

The methodology section comprises the downscaling procedure 
(section 2.2.1), the database construction (section 2.2.2), as well as the 
validation and performance metrics split into statistics and energy sys
tem modeling (section 2.2.3).

2.2.1. Downscaling procedure
The developed downscaling procedure includes five steps, which are 

explained in the following. 

⁃ Step 1: Collection and Preparation of Input Parameters.

The input data to be downscaled is collected, extracted, and pro
cessed. This includes the simulation duration, which states the start and 
end time of the downscaling process, and the site metadata (latitude, 
longitude, and altitude) through which the solar angles from pvlib [53] 
and Köppen-Geiger weather class are obtained. The combination of the 
simulation duration and the site metadata produces the extraterrestrial 
irradiance from the McClear clear sky model. 

Fig. 3. Flow chart of the non-dimensional methodology of this study.
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⁃ Step 2: Extraction of Defining Parameters from Low-Resolution Data

The defining parameters (kd, VI, NVI, Fm, and ICCDF) are calculated 
for each day from hourly resolution data to be downscaled. These pa
rameters are detailed in section 2.2.2.2. The Köppen-Geiger weather 
class is also obtained to determine the closest weather class to the 
defining parameters. 

⁃ Step 3: Matching Algorithm

The daily defining parameters obtained in step 2 are compared 
against database 2, which contains the corresponding daily defined 
minutely resolved profiles in the same correlated Köppen-Geiger 
weather class (see Table 3). The comparison is performed using the k- 
nearest neighbor machine learning algorithm with one neighbor, 
enabling the selection of the single most similar day matching. The 

matching is performed using the five daily indicators elaborated in 
section 2.2.2.2. The Euclidean distance is used to determine similarity in 
the five-dimensional feature space. The day in the database with the 
smallest distance to the current day’s indicators is selected as the best 
match. 

⁃ Step 4: Selection of High-Resolution Data

The best match from step 3 and the corresponding highly resolved 
data from database 1 is selected. The selected highly resolved profile is 
non-dimensional and needs to be converted to a dimensional solar 
irradiance in W/m2. 

⁃ Step 5: Unpacking the 1 Minute Data

The specific time of the day between sunrise and sunset is obtained 

Fig. 4. Non-dimensional database construction consisting of daily non-dimensional irradiance over non-dimensional time.
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for each day. The highly resolved data from step 4 is then distributed 
over the daytime to create the non-dimensional irradiance. This, in turn, 
is multiplied by the 1-min extraterrestrial irradiance and a constant 
daily value k, to create a 1-min resolution synthetic GHI. The value of k 
is optimized for each day such that the difference between the daily sum 
of measured data and the daily sum of the synthetic data is minimized.

2.2.1.1. Optimization of k factor for daily Cummulative 

min
(

GHImeasured − GHIsyn

/60

)

(1) 

GHIsyn = k × knd × Io (2) 

where, GHImeasured is the measured irradiance in hourly resolution, 
GHIsyn is the synthetic irradiance in minutely resolution, k is the daily 
scaling factor, knd is the non-dimensional irradiance, Io is the extrater
restrial irradiance.

A summary of the downscaling procedure, consisting of the steps, 
descriptions, inputs, and outputs, is presented in Table 6 of Appendix A.

2.2.2. Database construction
The two databases explained in the following sections 2.2.2.1 and 

2.2.2.2 are constructed and categorized based on their Köppen-Geiger 
weather conditions.

2.2.2.1. Database 1 with one minute resolution data. The non- 
dimensional highly resolved database comprises non-dimensional GHI 
and time. The database 1 comprises several daily profiles of minutely 
non-dimensional irradiance against the non-dimensional time as shown 
in Fig. 4, which presents three consecutive days in 2004 for Adelaide as 
shown in Table 2. As evident in Fig. 4, the extraterrestrial irradiance 
provides a better GHI envelope as compared to the clear sky irradiance, 
hence its adoption for GHI, irrespective of the cloudiness of the location. 
For further illustrations, Fig. 14 in Appendix B presents the plots of 
measured, clear sky and extraterrestrial irradiance in a polluted climate 
of Delhi, India (latitude = 28.58◦, longitude = 77.45◦, altitude = 207m). 
It is evident that even though this location is prone to high pollution, the 
clear sky irradiance envelope does not accurately capture the variability 
of the measured irradiance as compared to the extraterrestrial irradi
ance. Therefore, the extraterrestrial irradiance which is determined 
solely by astronomical factors such as the Earth’s distance from the sun 
and the solar zenith angle, is considered instead of the clear sky irra
diance for GHI [25]. The clear sky irradiance instead depends on the 
local atmospheric conditions such as water vapor, aerosol levels, and 
surface albedo, and therefore limits the GHI due to the air mass passage 
of the irradiance [25]. The non-dimensional solar irradiance is therefore 
the ratio of the measured irradiation to the extraterrestrial irradiance, 
while the non-dimensional time is the normalization of the daily time 
between sunrise and sunset. The normalization workflow involving the 
creation of this database is presented in Fig. 15 of Appendix C.

2.2.2.2. Database 2 with daily parameter aggregates. Database 2 contains 
the daily profiles of the defining parameters for the minutely resolved 
non-dimensional database in section 2.2.2.1. The defining parameters 
are clearness index kd, VI, NVI, Fm, and ICCDF. These parameters, which 
are elaborated in the following, are both purely statistical and 
geographically influenced: 

⁃ Clearness Index:

The clearness index, kd, is the ratio of the measured irradiance of a 
location to its corresponding extraterrestrial irradiance [25]. Mathe
matically, kd is expressed as shown in Equation (3). 

kd =
H
Ho

(3) 

Here, kd is the daily clear sky index, H is the daily measured irradi
ance, and Ho is the daily extraterrestrial irradiance from the McClear 
model [30]. The kd indicates the cloudiness of the day, and ranges from 
0 (cloudy or overcast atmospheric conditions) to 1 (clear atmospheric 
conditions). 

⁃ Variability Index:

The variability index, VI, is the ratio of the length of the variations of 
the daily measured irradiance of locations to its corresponding extra
terrestrial irradiance [54]. The VI provides information about the vari
ability of the day and is quantified by Equation (4). 

VI=

∑n

k=2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Hk − Hk− 1)
2
+ Δt2

√

∑n

k=2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Ho,k − Ho,k− 1

)2
+ Δt2

√ (4) 

Here, VI is the variability index, Hk and Hk-1 are measured irradiance at 
time steps k and k-1, respectively, Ho,k and Ho,k-1 are measured extra
terrestrial irradiance at k and k-1, respectively. 

⁃ Normalized Variability Index:

The concept of the normalized variability index, NVI, was proposed 
by Moreno-Tejera et al. [55]. The VI is not purely statistical as it depends 
on the time of the year and geographical location, but the NVI is a sta
tistical approach which normalizes the irradiance without considering 
its corresponding atmospheric conditions. With the NVI, the statistical 
variability of a location can be assessed without atmospheric influence. 
The NVI (see Equation (5)) is the ratio of the length of the variations of 
the daily irradiance of a location to the length of the maximum vari
ability of the daily profile. 

NVI=

∑n

k=2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Hk − Hk− 1)
2
+ Δt2

√

∑n

k=2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Hmax,k − Hmax,k− 1

)2
+ Δt2

√ (5) 

Here, NVI is the normalized variability index, Hk and Hk-1 are measured 
irradiance at time steps k and k-1, respectively, Hmax,k and Hmax,k-1 are 
maximum measured irradiance at k and k-1, respectively. 

⁃ Distribution:

The distribution, Fm (see Equation (6)), is the ratio of the total 
morning fraction of the irradiance to the total daily irradiance [31]. 

Fm =
Hmn

HT
(6) 

Here, Fm is the distribution, Hmn is the total morning fraction of the 
irradiance, and HT is the total daily irradiance. The total morning frac
tion is obtained by extracting the irradiance value when the hour angle3

is below zero. Analysis of the distribution fraction allows for the quan
tification of the diurnal radiation profile, specifically assessing the 
concentration of irradiance between the pre-and post-solar noon 
intervals. 

⁃ Integrated Complementary Cumulative Distribution Function:

The integrated complementary cumulative distribution function, 
ICCDF (see Equation (7)), is another statistical parameter which pro
vides the overall picture of the solar irradiance variability. The ICCDF is 

3 The hour angle is the angular displacement of the Sun from its position at 
solar noon, measured relative to the local solar time.
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calculated as the area under the complementary cumulative distribution 
function daily curve [56]. Mathematically, the ICCDF is calculated 
below: 

ICCDF=

∫Hmax

Hmin

CCDF(H) dH (7) 

Here, ICCDF is the integrated complementary cumulative distribution 
function, and CCDF is the complementary cumulative distribution 
function. The CCDF is 1 – CDF, where CDF is the cumulative distribution 
function. The Hmin and Hmax represent the minimum and the maximum 
values of the irradiance, respectively.

2.2.3. Validation and performance metrics
To validate the developed model for downscaling solar irradiance, 

three different validation metrics are considered, namely the normalized 
root mean square error (NRMSE), the Kolmogorov-Smirnov Integral test 
(KSI), and an energy system model, to which the synthesized minutely 
resolved data is applied. 

⁃ Normalized Root Mean Square Error (NRMSE)

The root mean square error is the measure of the root of the squared 
errors between synthetic data and the original measured data [21]. The 
NRMSE is the root mean square error that is normalized between the 
minimum and the maximum values of the measured data. The lower the 
value of the NRMSE, the more accurate the synthetic data is, relative to 
the measured data. Equation (8) below gives the mathematical repre
sentation of the NRMSE. 

NRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1
(yi − ŷi)

2

√

ymax − ymin
(8) 

Here, yi is the synthetic data, ŷi is the measured data, n is the number of 
data points, and ymin and ymax are the minimum and maximum values of 
measured data, respectively. 

⁃ Kolmogorov-Smirnov Integral Test

The Kolmogorov-Smirnov Integral (KSI) Test is used for comparing 
the statistical distribution of downscaled data with actual measurements 
(see Equations (9)–(11)) (KSI) [31]. 

KSI=

∫xmax

xmin

|F(x) − G(x)|dx

acritical
(9) 

acritical =Vc(xmax − xmin) (10) 

Vc =
1.63

̅̅̅
n

√ ; n ≥ 35 (11) 

Here, F(x) is the synthetic data, G(x) is the measured data, xmin and xmax 
are the minimum and the maximum values of the measured data, and n 
is the number of data points. 

⁃ Energy System Modeling

As discussed by Mantuano et al. [52], highly resolved renewable 
time series data is increasingly applied to energy system models. 
Therefore, synthesized minutely resolved time series may also be eval
uated by determining whether they yield similar results to measured 
data when applied to energy system models. For that sake, we consider a 
self-sufficient building energy system model in this study (see Fig. 5). 
Energy self-sufficiency means that the building is off-grid and powered 
by its own renewable energy system [57]. The model optimizes the 

Fig. 5. The self-sufficient building model as presented by Knosala et al. [60]. The rSOC is a reversible solid oxide cell and the LOHC is a liquid organic 
hydrogen carrier.
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building energy by integrating renewable energy with efficient energy 
storage systems, including battery, thermal storage, hydrogen storage, 
and liquid organic hydrogen carriers to achieve the optimal utilization 
of solar energy for meeting electrical and thermal demands. The un
derlying equations of the capacity expansion optimization problems of 
the models are described by Omoyele et al. [5]. The model is optimized 
using the ETHOS.FINE [58] optimization framework with the objective 
of optimizing the TAC of the system (see Equation (12)). Table 7 in 
Appendix D presents the techno-economic parameters of the 
self-sufficient building model. The demand for the self-sufficient build
ing energy system modeling is in 1-min resolution and simulated using 
SynPro [59], which is presented in Table 8 of Appendix E for Milan 2017 
and Berlin 2019. 

TAC=CAPEX ×

(
i

1 − (1 + i)− n +OPEXrel

)

(12) 

Where the TAC is the total annualized cost, CAPEX is the capital 
expenditure, OPEXrel is the operational expenditure relative to the 
capital expenditure, i is the interest rate, and n is the components’ 
lifetime.

Validation: For validation purposes, the model is solved with 
minutely resolved measured data. Then it is also solved with the 
minutely resolved synthetic data. The percentage of variation in terms of 
the TAC and the capacities of the installed technologies is quantified. 
Since the 1-h resolution is the most common resolution for energy sys
tem modeling, the model is also solved for a 1-h resolution. The per
centage of accuracy loss between the measured minutely resolution to 
hourly resolution that can be recovered by the synthetic minutely res
olution data is also quantified.

Reducing Complexity: Apart from the lack of sub-hourly resolution 
data for sub-hourly resolved modeling, another deterrent is the 
computational complexity and associated long runtimes that arise owing 
to the significantly larger number of constraints and variables in 
minutely resolved optimization models as compared to hourly resolved 
ones. To ameliorate this, different methods ranging from non-exact 
heuristics to exact methods based on brute-force computational power 
and parallelization can be leveraged to overcome this problem [18]. 
These methods are the mean of the regular hourly samples of the 1-min 
resolution and the time series aggregation using a hierarchical clustering 
algorithm. The mean of the regular samples is obtained by solving the 60 
different samples of the 1-min resolution (00:00, 01:00, 02:00 … 23:00 
for sample 1; 00:01, 01:01, 02:01 … 23:01 for sample 2 up to 00:59, 
01:59, 02:59 … 23:59 for sample 60). In this case, 60 different hourly 
resolution optimizations are obtained, and the average is taken [5,15].

The time series aggregation utilizes clustering algorithms to reduce 
the number of data points which can be in typical periods or segments 
[19,61]. The typical period is the representative periods or days the time 
series data can be reduced to, while the segment is the number of data 
points that each typical period contains. Both typical periods and 

segments rely on feature-based data selection using hierarchical clus
tering [62,63]. The time series aggregation package used is an 
open-access Python package, tsam4 [19,63]. The aim is to achieve ac
curate and reliable designs while taking significantly less computing 
time than the 1-min resolution modeling. As recommended by Omoyele 
et al. [18] for a highly resolved self-sufficient building model, 160 or 
365 typical days with 24 segments are employed (other configurations 
can be used with tsam). The 160 typical days with 24 segments can be 
denoted by TD160, while the 365 typical days with 24 segments can be 
denoted by TD365. In terms of the computational runtime, the 60 
different hourly optimizations from the regular sampling can be solved 
with a computing cluster array in parallel. Hence, making the whole 
process run at the computational speed of the traditional average hourly 
resolution of the original time series. Tsam technically reduces the data 
points to 160 or 365 typical periods and 24 segments which is still 
typically reducing the data points around average hourly resolution 
(365 x 24 = 8760, which is the annual average hourly resolution time 
series). This makes the optimization solve at a significantly reduced 
computational runtime while maintaining accuracy [64].

3. Results

The results are split into two parts, which are the statistical valida
tion of the methodology and the energy system modeling, comparing the 
measured data, synthetic data, average hourly resolution of the 
measured data, as well as additional methods to accelerate computa
tional time, concretely, by means of regular samples and clustering- 
based time series aggregation methods.

3.1. Statistical validation

Table 5 below presents the statistical results of the validation in the 
predefined locations comprising different climatic conditions. The 
validation metrics used are the NRMSE and the KSI. The minutely and 
hourly NRMSE are both determined. The hourly resolution data of these 
locations is determined by taking the hourly average of their respective 
minutely resolution data.

For the minutely resolved measurement data of Milan, Berlin 2019, 
Tamanrasset, Tateno, and Toravere, extended validation results are 
presented in Figs. 6–10, respectively. Figs. 6–10 delve deeper into the 
statistical validation by presenting line and CDF plots of the locations for 
measured and synthetic profiles. Each of the figures is divided into 4 
parts based on its daily NRMSE values. Part (a) represents three selected 
random days. Part (b) represents the days with the lowest NRMSE 
values. Part (c) represents days with the highest NRMSE values, and Part 
(d) is the plot of the annual daily NRMSE values. The lower the NRMSE, 
the better the result of the synthetic irradiance profile. Therefore, Part 
(b) and Part (c) of the profiles correspond to the best and worst days 
captured, respectively. A clearer exposition of Figs. 6 and 7 showing the 
comparison of measured and synthetic GHI in Milan 2017 and Berlin 
2019 for three different days are presented in Figs. 16 and 17 of Ap
pendix F. Furthermore, box plots showing the statistical properties of the 
measured and synthetic data for each location are presented in Fig. 18 in 
Appendix G.

The validation data spans across different locations, years, and 
weather classes. This helps to perform some sensitivity analyses on the 
methodology. For example, to assess the database diversity, the Milan 
validation site is tested across the entire database to see which database 
matches the location, as presented in Table 9 of Appendix H. Further
more, the validation site of Milan is tested for database size across 
different years of the corresponding weather class database, which is 
presented in Table 10 of Appendix H.

Table 5 
Validations of different locations. Due to a lack of data availability, the inter
annual uncertainty analysis could only be performed for Berlin.

Location Köppen- 
Geiger 
Climate

Year NRMSE 
Minute (%)

NRMSE 
Hour (%)

KSI 
Hour 
(%)

Berlin, 
Germany

Cfb 2017 9.11 7.45 0.12
2018 8.32 6.95 0.11
2019 8.33 6.97 0.11
2020 8.80 6.71 0.10

Milan, Italy Cfa 2017 8.42 6.93 0.74
Tamanrasset, 

Algeria
BWh 2009 7.85 5.58 0.14

Tateno, Japan Cfa 2013 9.32 7.09 0.21
Toravere, 

Estonia
Dfb 2008 8.26 7.34 0.24

4 https://github.com/FZJ-IEK3-VSA/tsam.
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Fig. 7. Comparison of measured and synthetic GHI in Berlin 2019 for (a) three random days, (b) days with lowest normalized root mean squared error, (c) days with 
highest normalized root mean squared error, (d) annual daily normalized root mean squared error. The CDF is the cumulative distribution function.

Fig. 6. Comparison of measured and synthetic GHI in Milan 2017 for (a) three random days, (b) days with lowest normalized root mean squared error, (c) days with 
highest normalized root mean squared error, (d) annual daily normalized root mean squared error. The CDF is the cumulative distribution function.
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Fig. 8. Comparison of measured and synthetic GHI in Tamanrasset for (a) three random days, (b) days with lowest normalized root mean squared error, (c) days with 
highest normalized root mean squared error, (d) annual daily normalized root mean squared error. The CDF is the cumulative distribution function.

Fig. 9. Comparison of measured and synthetic GHI in Tateno for (a) three random days, (b) days with lowest normalized root mean squared error, (c) days with 
highest normalized root mean squared error, (d) annual daily normalized root mean squared error. The CDF is the cumulative distribution function.
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3.2. Energy system modeling validation

Different data are tested in the energy system optimization model to 
quantify the accuracy relative to the measured original data of the Milan 
2017 and Berlin 2019 locations. The results are presented in Figs. 11–13, 
with comprehensive data provided in of Tables 11 and 12 of Appendix I. 
While Fig. 11 presents the bar plot of the TAC, the corresponding 
computational time of each input data method (in purple), and the 
associated cost deviation from the original measured result (in green), 
Figs. 12 and 13 present the capacity deviation of the components of the 
self-sufficient building model.

4. Discussion

The discussion is divided into two parts: Sections 4.1 and 4.2 present 
statistics and energy system modeling, respectively.

4.1. Statistics

It can be inferred from the daily line plot that the synthetic data 
captures the measured data effectively. The selected days in Fig. 6 (a) to 
Fig. 10 (a) are all cloudy (days without smooth curves) days, and it can 
be shown that even though the daily NRMSE varies between 0 % and 35 
%, the days with large NRMSE still have similar profiles for both 
measured and synthetic data, and their large NRMSE values arise from 
the high irradiation values of such days. While the cloudy days are 
subject to high fluctuations and may therefore have medium to high 
NRMSE, the clear days (days with smooth curves) have the best NRMSE, 
as shown in Fig. 6 (b)–10 (b). This means that the clear days are sta
tistically well captured. Fig. 6 (c) to Fig. 10 (c) present the daily highest 
NRMSE corresponding to the worst-represented days, where the model 
does not find perfect non-dimensional data matching the days. This 

problem is primarily due to the limitation of the database arising from 
the lack of sufficient 1-min resolution data in the database. It may also 
be as a result of the possible inaccuracies of the measured data of such 
days, which are not subject to quality control. For example, in Fig. 6 (c), 
the worst selected days are affected by problems with the measured 
data. These problems come from interpolations, large jumps in the 
irradiance data, and stale data. However, some of these days have low 
irradiance values, and therefore, the deviations have less impact on the 
energy system modeling and optimization. Fig. 6 (d)–10 (d), which 
depict the annual daily NRMSE, show that there exists a strong agree
ment between the synthetic and measured irradiance, with an hourly 
average NRMSE of approximately 7 %. These data are recorded at a 
minute resolution and checked for adverse measurement error and un
available data. For instance, in the case of Milan, two days in 2017 were 
completely replaced by their previous days and other missing data are 
imputed with k-nearest neighbors (as discussed in section 2.2.1).

The corresponding CDF plot of the line plots of Figs. 6–10 is plotted 
to show the distribution of the measured and the synthetic CDFs, indi
cating that the model accurately captures the overall distribution of the 
irradiance. While the CDF plots demonstrate strong alignment between 
the measured and the synthetic GHI in Fig. 6 (a and b) to Fig. 10 (a and 
b), a discrepancy is observed in the distribution of GHI, particularly in 
the high irradiance ranges in Fig. 6 (c)–10 (c). The average hourly KSI 
test is also presented with values less than 1 % indicating a good match 
in the distribution of the measured and the synthetic values. While both 
Milan and Tateno are classified under the temperate climate of Cfa, their 
KSI values differ markedly from 0.74 % for Milan to 0.21 % for Tateno, 
despite the similar NRMSE around 7.0 %. The elevated KSI at Milan may 
be due to the specific dynamics that are not prevalent in Tateno. For 
example, Milan is situated in the Po Valley, a region prone to low-level 
haze, fog, and aerosol accumulation [65]. These factors introduce 
complex irradiance patterns which are more difficult to model, as 

Fig. 10. Comparison of measured and synthetic GHI in Toravere for (a) three random days, (b) days with lowest normalized root mean squared error, (c) days with 
highest normalized root mean squared error, (d) annual daily normalized root mean squared error. The CDF is the cumulative distribution function.
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compared to other locations with lower KSI values. This phenomenon 
illustrates the influence of the regional meteorological factors on the 
performance of the downscaling model. The analysis of interannual 
uncertainty revealed a NRMSE range between 6.71 % and 7.45 % for the 
Berlin location, with an average NRMSE of 7.02 %. The KSI is averaged 
at 0.11 % with minor standard variation, suggesting excellent consis
tency in capturing irradiance distribution and relatively stable model 
performance across the years. Furthermore, the box plots across multi
ple locations (see Figure 5) illustrate the annual distribution of GHI 
values, with both measured and synthetic data closely matching in 
median, interquartile range, and variability. The plotted mean and 
standard deviation markers further confirm the consistency of the syn
thetic data in capturing the central tendency and spread of measured 
GHI values. Minor variations in extreme values are visible through the 
whiskers and outliers, which are expected given natural variability and 
model approximations. Overall, these box plots reinforce the reliability 
of the synthetic irradiance data in representing the observed measure
ments across diverse climatic conditions.

For the various climates considered during the validation process, 
the location of Tamanrasset (see Fig. 8), which corresponds to the arid 
hot desert location (BWh), demonstrated remarkable performance. This 
location is characterized by minimal seasonal variability and predomi
nantly clear skies. The Tamanrasset achieved an exceptional result, with 
an hourly NRMSE of 5.58 and a KSI of 0.14. Conversely, the temperate 
climate of Cfa and Cfb, analogous to the climates of Tateno (see Fig. 9), 
Milan (see Fig. 6), and Berlin (see Fig. 7), exhibits intermediate char
acteristics. Despite the decline in model accuracy in these climates 
compared to Tamanrasset, which exhibits less variability, the daily CDF 
plots demonstrate a high degree of correspondence with the observed 
data. This suggests that the models possess notable strengths in preser
ving distributions under varying dynamics. These arid (B climate class) 

and temperate (C climate class) climates corroborate the effectiveness of 
the model performance in clear climates with less variability over cloudy 
climates with high variability. The Toravere region, characterized by a 
cold, no dry season and warm summer, exhibits pronounced seasonal 
variability. This phenomenon is characterized by low irradiance values 
in winter and high ones in summer, transitioning to low NRMSE values 
in winter and high NRMSE in summer.

As indicated in Appendix H, Tables 9 and 10 show sensitivity ana
lyses on the impact of location diversity and database size on the 

Fig. 11. Results of the total annualized cost for (a) Milan in 2017 (b) Berlin in 
2019, using different data in measured, average hourly, synthetic data, average 
of 60 hourly samples in 1-min, typical days of 160 (TD160), and typical days of 
365 (TD365). The corresponding computational time and the deviation from 
the measured value of each input data method is on the bar plot in purple and 
green colors, respectively.

Fig. 12. Result of the components’ capacity deviation of different optimization 
and acceleration approaches from the measured data in percentage for the self- 
sufficient building for Milan in 2017. TAC – Total Annualized Cost; PV – 
Photovoltaic; SOEC – Solid Oxide Electrolyzer Cell; SOFC – Solid Oxide Fuel 
Cell; HYD – Hydrogenation; DEHYD – Dehydrogenation; Hex – Heat Exchanger; 
LOHC – Liquid Organic Hydrogen Carrier; TD – Typical Days.
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downscaling method. For the location tested (Milan), the best-matching 
climate with the lowest NRMSE and KSI is its corresponding Köppen- 
Geiger class of Cfa, which corresponds to a temperate climate with no 
dry season and a hot summer. However, a Cfb corresponding to a 
temperate climate, no dry season, and warm summer, yields a nearly 
identical result. This is attributable to the marked similarity between the 
two climate classes. Furthermore, the effect of database size on model 
performance is evident in the decrease in NRMSE with increasing 
database size (see Table 5). For instance, the NRMSE decreases from 

7.85 % with a one-year database to 6.93 % with a database spanning 
19.5 years. Conversely, the KSI remains virtually constant at 0.74 % 
across all database sizes, indicating that a modest training database of 
one year is adequate for reproducing the distribution of the profiles. The 
negligible changes in KSI suggest that the model already captures the 
key distributional characteristics of the irradiance data with limited 
data. This outcome is indicative of the efficacy of the underlying 
matching algorithm in reproducing distributional characteristics.

Having a historical data of the site to downscale is useful in 
improving the methodology significantly. However, the developed 
methodology has a global application without sites’ historical mea
surements. An improvement of the climate classes in cold and polar 
Köppen-Geiger climates with currently little or no data in the database 
may help improve the results. In addition, other machine learning al
gorithms may be incorporated into the methodology to capture days 
better, which have profiles that do not have perfect equivalents in the 
created database.

4.2. Energy system modeling

From the energy system modeling result, it can be inferred that 
comparing the synthetic result and the average hourly result, the syn
thetic data provides a better result in terms of the TAC as compared to 
the widely used hourly average result, as it deviates less from the results 
obtained for the real measured data (see Fig. 8). The average hourly 
result shows an underestimation of the TAC by 0.9 % and 1.3 % for 
Milan 2017 and Berlin 2019, respectively. This underestimation is 
attributable to the hourly resolution’s incapacity to adequately capture 
the inherent intra-hour fluctuations present in the sub-hourly data. 
Consequently, the process of averaging leads to a minimization of the 
maxima and a maximization of the minima of the input data. The syn
thetic data shows an overestimation of the TAC by only 0.0 % and 0.2 % 
for Milan 2017 and Berlin 2019, respectively. The very low over
estimation by the synthetic data is attainable through the introduction of 
the daily sum match between the measured and the synthetic data (as 
discussed in step 5 of section 2.2.1), which significantly improved the 
results. The computational acceleration methods [18] using the mean of 
the regular samples, as well as clustering-based time series aggregation 
of 160 and 365 typical days with 24 segments (TD160 and TD365), are 
also applied to the optimization (Fig. 11).

While TD160 successfully reduces the computational runtime, it fails 
to accurately capture the result of the 1-min resolution data due to over- 
aggregation of the model. Consequently, an overestimation of 0.9 % and 
0.6 % for Milan and Berlin, respectively, is observed. Therefore, a more 
precise result would be one that captures the entirety of the dataset 
without significant aggregation. In this case, the regular samples 
average (sampling) and TD365 are the most appropriate metrics. The 
most effective computational acceleration method results in terms of 
TAC are obtained by these two metrics. It is important to note that 
TD160 considers 160 typical days and 24 segments. This results in a 
reduction of the input data from 525,600 datapoints (the full 1-min 
resolution) to 3840 (160 x 24). In contrast, the TD365 reduces the 
input datapoints from 525,600 to 8760 (365 x 24 or full 1-h resolution). 
The TD160 is less accurate than the TD365, yet it is more efficient in 
terms of computational runtime savings.

The optimal accuracy-complexity compromise is obtained for TD365 
as recommended by Omoyele et al. [18], and thus the best approach for 
optimizing the minutely resolved energy system model with an 
aggregation-based method that reduces computational time to a level 
comparable to optimizations at hourly resolution. The TD365 shows an 
underestimation of the TAC by 0.2 % and 0.1 % for Milan 2017 and 
Berlin 2019, respectively. The highly dynamic components (inverters 
and storage, e.g., the battery) are subject to large deviations when 
optimized using average hourly resolution (see Figs. 12 and 13), which 
leads to the infeasibility of the model when such capacities are tested for 
feasibility using the measured data. However, this is ameliorated using 

Fig. 13. Result of the components’ capacity deviation of different optimization 
and acceleration approaches from the measured data in percentage for the self- 
sufficient building for Berlin in 2019. TAC – Total Annualized Cost; PV – 
Photovoltaic; SOEC – Solid Oxide Electrolyzer Cell; SOFC – Solid Oxide Fuel 
Cell; HYD – Hydrogenation; DEHYD – Dehydrogenation; Hex – Heat Exchanger; 
LOHC – Liquid Organic Hydrogen Carrier; TD – Typical Days.
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the synthetic data, as the initial inverter underestimation for Milan 2017 
and Berlin 2019 of 51.2 % and 58.4 % respectively are now 0 %, and the 
battery underestimation for Milan 2017 and Berlin 2019 of 7.8 % and 
24.7 %, respectively are now replaced by 4 % overestimation and 0.1 % 
underestimation yielding a more feasible energy system model design, 
as illustrated in Figs. 12 and 13. For the two cases of Milan 2017 and 
Berlin 2019, the mean of regular samples and TD365 give an improved 
result as compared to the mean hourly resolution for the capacities of 
highly dynamically operated components such as the inverter and the 
battery.

While the energy system analysis of this study has been on a self- 
sufficient building system, the proposed methodology demonstrates 
strong potential for scalability to grid-connected solar energy system 
applications. The ability of the methodology to generate high-quality, 
high-resolution synthetic irradiance data across diverse climatic sys
tems underscores its generalizability and robustness. For further appli
cation to real-time grid-connected systems, the methodology can 
support operation forecasting and decision-making by providing high- 
quality sub-hourly irradiance data in locations where high-quality 
data are limited. Due to its computational tractability, it can be adapt
ed to near-real-time implementation using a regularly updated database. 
This renders it suitable for incorporation into forecasting pipelines. 
Future integration with real-time satellite data or numerical weather 
prediction could further enhance its forecasting ability.

5. Conclusion and outlook

This work provides a globally applicable, non-dimensional method
ology for increasing the temporal resolution of hourly global horizontal 
irradiance to minutely resolution. The methodology builds on the 
developed work of Peruchena et al. [22] and Larrañeta et al. [31] by 
matching the daily irradiance characteristics of the data to be down
scaled with a robust database of non-dimensional minutely and daily 
parameters, across diverse Köppen-Geiger weather, ensuring its global 
applicability. The proposed methodology, by means of synthesized data, 
facilitates the consideration of transient phenomena, such as intra-hour 
fluctuations and passing clouds, in energy system modeling, conse
quently, enhancing its accuracy.

The methodology is validated using statistical metrics and a self- 
sufficient building energy system model. Across diverse locations, the 
synthetic data achieves mean hourly normalized root mean square error 
values between 5.6 % and 7.3 %, and mean hourly Kolmogorov-Smirnov 
integral test values between 0.1 % and 0.7 %. The outcomes of these 
analyses are contingent upon the atmospheric clarity, with clear days 
generally yielding more precise results compared to cloudy days. The 
statistical metrics reveal good representation and distribution of the 
synthetic data relative to the measured data. Furthermore, the synthetic 
data demonstrates improved system performance in terms of cost, 
feasibility, and component sizing when compared to the common hourly 
average, as evidenced by the results of the self-sufficient building energy 
system model. While the hourly average data underestimates the total 
annualized cost of the system by up to 1.3 %, the synthetic data over
estimates it by up to only 0.2 %. It also improved on the significant 
undersizing of highly dynamic components, reducing inverter capacity 
underestimation from 58 % to 0 % and battery capacity underestimation 
from 25 % to 4 %. The methods of reducing complexities employed on 
the synthetic data displayed a high computational management 
compared to the fully resolved 1-min data, and a more accurate result 
compared to the hourly average data.

The main contributions of this study are summarized as follows: 

⁃ A globally applicable and high accuracy temporal downscaling 
method for global horizontal irradiance is proposed.

⁃ A comprehensive database of non-dimensional curves and daily 
irradiance parameters, constructed across diverse Köppen-Geiger 
climate zones, is created.

⁃ The high-resolution synthetic irradiance data leads to improved en
ergy system modeling performance, including reliable cost estima
tion and more accurate components’ sizing.

⁃ Accelerated computation methods as alternatives to full 1-min res
olution models are applied to provide an improved model accuracy 
at an equivalent computational time of 1 h resolution models.

The limitation of the developed method is its inability to downscale 
historical data prior to 2004, due to the applicability of the McClear 
clear sky model being limited to years from 2004 onwards. Other models 
to obtain the extraterrestrial irradiance could be employed in this case. 
Moving forward, further expansion of the database with real-time 
measurement for sites, particularly for underrepresented regions of 
cold and polar Köppen-Geiger climates, will enhance its applicability 
and robustness. In addition, integration of the proposed methodology 
with machine learning approaches holds promise for enhancing its ac
curacy, particularly during instances of cloud cover when precise 
matching days cannot be obtained from the created database. Future 
work could also explore the integration of satellite-based irradiance 
products with resolutions below 1 h as input data and machine learning- 
based downscaling techniques. Consequently, the augmentation of 
location validation and energy system optimization holds promise in the 
development and implementation of a more robust validation of the 
methodology. Despite these limitations, the developed methodology will 
support planners and decision makers, regardless of location, to design 
solar-energy-based energy systems more accurately than previous 
approaches.
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Appendix A 

Table 6 
Summary of the Five-Step Downscaling Procedure

Step Step Name Description Input(s) Output(s)

1 Collection and 
Preparation of Input 
Parameters

Site metadata and simulation duration are used to 
compute solar angles and extraterrestrial irradiance using 
McClear model.

Latitude, longitude, simulation start and 
end time.

Extraterrestrial irradiance, solar 
angles, climate class.

2 Extraction of Defining 
Parameters from Low- 
Resolution Data

Compute the daily defining parameters (kd, VI, NVI, Fm, 
and ICCDF) from hourly irradiance data.

Hourly-resolution data, extraterrestrial 
irradiance, solar angles, climate class.

Daily defining parameters (kd, 
VI, NVI, Fm, and ICCDF) and 
weather class

3 Matching Algorithm Match daily defining parameters with the closest day in 
the daily database using k-nearest neighbor algorithm 
with 1 neighbor and Euclidean distance.

Daily defining parameters, weather class Closest-matching day

4 Selection of High- 
Resolution Data

Retrieve non-dimensional irradiance profile 
corresponding to the matched day from the daily 
database.

Matched days, highly resolved database Selection of high resolution non- 
dimensional data from the highly 
resolved database

5 Unpacking the 1 Minute 
Data

Scale the non-dimensional data back to the standard 
irradiance value in W/m2 and optimize daily scaling 
factor, k, to minimize the daily cummulative energy 
difference between the synthetic and the measured 
irradiance.

Selected high resolution profile, daily 
sunrise and sunset, extraterrestrial 
irradiance, measured irradiance, daily 
scaling factor, k.

Synthetic 1-min irradiance in W/ 
m2

Appendix B

Fig. 14. Four random days in Delhi, India, to see the effect of extraterrestrial irradiance and clear sky irradiance in a polluted environment for variability capture.
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Appendix C

Fig. 15. Normalization workflow of the non-dimensional curves.
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Appendix D 

Table 7 
Cost parameters of the self-sufficient building model by Knosala et al. [60].

Capex Opex Lifetime

Components Fixed Capacity-Specific Fixed + Capacity-Specific

Photovoltaic Ground – – 4000.00 €/kWp 1.00 % Inv./a 20 a
Photovoltaic Rooftop – – 769.00 €/kWp 1.00 % Inv./a 20 a
Inverter – – 75.00 €/kWp – – 20 a
Battery – – 301.00 €/kWhp – – 15 a
Reversible Solid Oxide Cell 5000.00 € 2400.00 €/kWel 1.00 % Inv./a 15 a
Heat Pump 4230.00 € 504.90 €/kWth 1.50 % Inv./a 20 a
Thermal Storage – – 90.00 €/kWhth 0.01 % Inv./a 25 a
E-Heater & E-Boiler – – 60.00 €/kWth 2.00 % Inv./a 30 a
Tank – – 0.79 €/kWhH2 – – 25 a
Dibenzyltoluene – – 1.25 €/kWhH2 – – 25 a
Hydrogen Vessels – – 15.00 €/kWhH2 – – 25 a
Hydrogenizer 2123.30 € 761.10 €/kWH2 1.00 % Inv./a 20 a
Dehydrogenizer 1140.00 € 408.60 €/kWH2 1.00 % Inv./a 20 a
Low Pressure Compressor – – 1716.71 €/kWp 1.00 % Inv./a 25 a
High Pressure Compressor 560.00 € 1329.80 €/kWp 1.00 % Inv./a 25 a
Heat-Exchangers 1 and 2 – – 1.00 €/kWth 1.00 % Inv./a – a
Expanders 1 and 2 – – 1.00 €/kWth 1.00 % Inv./a 25 a

Appendix E 

Table 8 
Building demand parameters.

Building1 (Milan 2017) Building2 (Berlin 2019)

Number of occupants 4 4
H_ceiling/ww_ratio 2.4/0.2 2.5/0.25
Size (m2) 200 200
Height (Stories) 1 2
Annual demand (kWh) Electricity 3087.85 3050.98

Heat 16257.05 16611.26
Mean (kWmin) Electricity 0.3525 0.3483

Heat 1.8558 1.8963
Standard deviation (kWmin) Electricity 0.5109 0.4930

Heat 1.9761 2.0088
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Appendix F

Fig. 16. Comparison of measured and synthetic GHI in Milan 2017 for three different days.

Fig. 17. Comparison of measured and synthetic GHI in Berlin 2019 for three different days.
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Appendix G

Fig. 18. Box plot showing the statistical properties between the measured and synthetic data for different validation locations.

Appendix H 

Table 9 
Influence of location diversity on the accuracy of the downscaling method.

Correlated Köppen-Geiger Climate2 NRMSE Hour (W/m2) KSI Hour (%)

Aw 7.76 0.84
Bsh 7.49 0.76
Bwh 7.50 0.84
Cfa 6.93 0.74
Cfb 6.95 0.77
Csa 7.85 0.79
Csb 7.94 0.76
Cfa/Cfb/Ocean 7.14 0.75
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Table 10 
Influence of database size on the accuracy of the downscaling method.

Database size (Years) NRMSE Hour (W/m2) KSI Hour (%)

1 7.85 0.74
4 7.83 0.74
8 7.88 0.74
12 7.11 0.74
16 6.94 0.75
Full (19.52) 6.93 0.74

Appendix I 

Table 11 
Table of results for Milan 2017 using different data in measured, average hourly, synthetic data, average of 60 hourly samples in 1-min, typical days of 160, and typical 
days of 365.

Components Unit Measured Average Synthetic Sampling TD160 TD365

TAC € 3629.417 3595.703 3629.454 3632.78 3662.524 3620.727
PV kWp 11.59839 11.58171 11.56093 11.65135 11.8213 11.58258
Inverter kWp 6.852589 3.342544 6.852589 5.309767 5.441717 5.629491
Heatpump kWth 6.196846 6.159355 6.208509 6.2066 6.091244 6.200098
Eheater kWth 0.417623 0.420109 0.410928 0.393729 0.391022 0.411217
Eboiler kWth 0.354864 0.291255 0.082257 0.038161 1.69E-07 0.006359
rSOEC kWel 3.889021 3.909791 3.881362 3.863531 4.000791 3.881812
rSOFC kWel 3.889021 3.909791 3.881362 3.863531 4.000791 3.881812
Compressor1 kWp 0.222103 0.223289 0.221537 0.213067 0.214523 0.221108
Compressor2 kWp 0.09834 0.098906 0.097189 0.094056 0.095881 0.097174
Expander1 kWth 2.21419 2.195638 2.199464 2.186055 2.059239 2.218102
Expander2 kWth 0.884721 0.873775 0.887396 0.901041 0.620621 0.89411
HYD kWH2 1.630156 1.637925 1.646672 1.570328 1.553913 1.639502
DEHYD kWH2 3.569166 3.56825 3.574803 3.566195 3.75101 3.573592
Hex1 kWth 0.782836 0.703242 0.774399 0.743904 0.77608 0.802651
Hex2 kWth 0.778922 0.699725 0.770527 0.785389 0.7722 0.798637
Battery kWhp 4.693275 4.326669 4.881476 5.362296 4.944058 4.918613
Hydrogen kWhH2 27.39216 28.00643 25.52363 27.42508 25.78829 25.05461
Thermal kWhth 14.57971 14.64694 13.87878 17.04399 19.55655 14.22859
LOHC kWhH2 5692.606 5706.05 5720.426 5615.955 5645.661 5704.336

Table 12 
Table of results for Berlin 2019 using different data in measured, average hourly, synthetic data, average of 60 hourly samples in 1-min, typical days of 160, and typical 
days of 365.

Components Unit Measured Average Synthetic Sampling TD160 TD365

TAC € 3451.345 3406.54 3458.167 3445.172 3473.29 3449.053
PV kWp 12.25917 12.53615 12.32266 12.51231 12.70191 12.59147
Inverter kWp 7.767394 3.234016 7.767394 4.920022 6.310086 6.310086
Heatpump kWth 5.141412 5.050618 5.126538 5.0881 5.17923 5.087491
Eheater kWth 0.207596 0.216709 0.20672 0.242299 0.222506 0.211598
Eboiler kWth 0.705865 1.114323 0.880538 0.925693 0.049019 1.115286
rSOEC kWel 2.796084 2.833836 2.804396 2.861852 2.908456 2.822959
rSOFC kWel 2.796084 2.833836 2.804396 2.861852 2.908456 2.822959
Compressor1 kWp 0.159685 0.161841 0.16016 0.163441 0.166103 0.16122
Compressor2 kWp 0.05589 0.057476 0.055799 0.058164 0.059185 0.056699
Expander1 kWth 1.512302 1.457043 1.489925 1.585914 1.549227 1.459782
Expander2 kWth 0.615835 0.815505 0.6296 0.720863 0.837233 0.834884
HYD kWH2 1.512302 1.513616 1.522705 1.525827 1.548969 1.520595
DEHYD kWH2 2.560854 2.584322 2.568795 2.551617 2.571468 2.581835
Hex1 kWth 0.410794 0.449026 0.424612 0.463865 0.453261 0.430166
Hex2 kWth 0.433205 0.457439 0.422492 0.509458 0.451067 0.42802
Battery kWhp 6.509155 4.898356 6.505433 5.951915 5.526527 5.709567
Hydrogen kWhH2 19.04732 17.48451 17.98086 21.17836 22.62168 17.444
Thermal kWhth 11.79202 14.73149 12.11029 13.10544 13.56881 13.68301
LOHC kWhH2 5311.545 5286.443 5316.186 5305.21 5358.64 5287.662

Table abbreviations.
TAC – Total Annualized Cost.
PV – Photovoltaic.
SOEC – Solid Oxide Electrolyzer Cell.
SOFC – Solid Oxide Fuel Cell.
HYD – Hydrogenation.
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DEHYD – Dehydrogenation.
Hex – Heat Exchanger.
LOHC – Liquid Organic Hydrogen Carrier.
TD – Typical Day.

Data availability

All data supporting the findings of this study are openly available at: 
https://github.com/FZJ-IEK3-VSA/ETHOS.TISED. The repository con
tains the non-dimensional databases, code, and documentation neces
sary to replicate the results and conduct further analysis.
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variability index of daily solar radiation, in: AIP Conference Proceedings, AIP 
Publishing, 2020, https://doi.org/10.1063/5.0028919 vol. 2303, no. 1.

[56] R. Blaga, M. Paulescu, Quantifiers for the solar irradiance variability: a new 
perspective, Sol. Energy 174 (2018) 606–616, https://doi.org/10.1016/j. 
solener.2018.09.034.

[57] M. Kleinebrahm, J.M. Weinand, E. Naber, R. McKenna, A. Ardone, W. Fichtner, 
Two million European single-family homes could abandon the grid by 2050, Joule 
7 (11) (2023) 2485–2510, https://doi.org/10.1016/j.joule.2023.09.012.

[58] T. Klütz, et al., ETHOS. FINE: a framework for integrated energy System 
assessment, J. Open Source Softw. 10 (105) (2025) 6274, https://doi.org/ 
10.21105/joss.06274.

[59] D. Fischer, T. Wolf, J. Scherer, B. Wille-Haussmann, A stochastic bottom-up model 
for space heating and domestic hot water load profiles for German households, 
Energy Build. 124 (2016) 120–128, https://doi.org/10.1016/j. 
enbuild.2016.04.069.

[60] K. Knosala, et al., Hybrid hydrogen home storage for decentralized energy 
autonomy, Int. J. Hydrogen Energy 46 (42) (2021) 21748–21763, https://doi.org/ 
10.1016/j.ijhydene.2021.04.036.

[61] M. Hoffmann, et al., A review of mixed-integer linear formulations for framework- 
based energy system models, Adv. Appl. Energy (2024) 100190, https://doi.org/ 
10.1016/j.adapen.2024.100190.

[62] M. Kittel, H. Hobbie, C. Dierstein, Temporal aggregation of time series to identify 
typical hourly electricity system states: a systematic assessment of relevant cluster 
algorithms, Energy 247 (2022) 123458, https://doi.org/10.1016/j. 
energy.2022.123458.

[63] L. Kotzur, P. Markewitz, M. Robinius, D. Stolten, Impact of different time series 
aggregation methods on optimal energy system design, Renew. Energy 117 (2018) 
474–487, https://doi.org/10.1016/j.renene.2017.10.017.

[64] P. Esling, C. Agon, Time-series data mining, ACM Comput. Surv. 45 (1) (2012) 
1–34, https://doi.org/10.1145/2379776.2379788.

[65] K. Cugerone, C. De Michele, A. Ghezzi, V. Gianelle, Aerosol removal due to 
precipitation and wind forcings in milan urban area, J. Hydrol. 556 (2018) 
1256–1262, https://doi.org/10.1016/j.jhydrol.2017.06.033.

O. Omoyele et al.                                                                                                                                                                                                                               Renewable Energy 256 (2026) 124551 

23 

https://doi.org/10.1063/5.0028267
https://doi.org/10.1016/j.solener.2018.10.019
https://doi.org/10.1175/1520-0426(1996)013&percnt;3C0638:ANMFCR&percnt;3E2.0.CO;2
https://doi.org/10.1175/1520-0426(1996)013&percnt;3C0638:ANMFCR&percnt;3E2.0.CO;2
https://www.osti.gov/biblio/1887283
https://www.osti.gov/biblio/1887283
https://doi.org/10.1016/j.solener.2018.04.067
https://doi.org/10.1016/j.solener.2018.04.067
https://doi.org/10.5281/zenodo.6675646
https://doi.org/10.5281/zenodo.6675646
https://doi.org/10.21227/42v0-jz14
https://doi.org/10.21227/42v0-jz14
https://doi.org/10.1594/PANGAEA.880000
https://doi.org/10.1594/PANGAEA.880000
https://doi.org/10.1016/j.enconman.2025.119857
https://doi.org/10.1016/j.enconman.2025.119857
https://doi.org/10.21105/joss.00884
https://doi.org/10.21105/joss.00884
https://www.osti.gov/servlets/purl/1078490
https://www.osti.gov/servlets/purl/1078490
https://doi.org/10.1063/5.0028919
https://doi.org/10.1016/j.solener.2018.09.034
https://doi.org/10.1016/j.solener.2018.09.034
https://doi.org/10.1016/j.joule.2023.09.012
https://doi.org/10.21105/joss.06274
https://doi.org/10.21105/joss.06274
https://doi.org/10.1016/j.enbuild.2016.04.069
https://doi.org/10.1016/j.enbuild.2016.04.069
https://doi.org/10.1016/j.ijhydene.2021.04.036
https://doi.org/10.1016/j.ijhydene.2021.04.036
https://doi.org/10.1016/j.adapen.2024.100190
https://doi.org/10.1016/j.adapen.2024.100190
https://doi.org/10.1016/j.energy.2022.123458
https://doi.org/10.1016/j.energy.2022.123458
https://doi.org/10.1016/j.renene.2017.10.017
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1016/j.jhydrol.2017.06.033

	A high-resolution downscaling approach for solar irradiance using statistical parameter matching
	1 Introduction

	Box 1: The non-dimensional approach
	2 Data and methodology
	2.1 Data description
	2.1.1 Data for database construction
	2.1.2 Data for validation

	2.2 Methods
	2.2.1 Downscaling procedure
	2.2.1.1 Optimization of k factor for daily Cummulative

	2.2.2 Database construction
	2.2.2.1 Database 1 with one minute resolution data
	2.2.2.2 Database 2 with daily parameter aggregates

	2.2.3 Validation and performance metrics


	3 Results
	3.1 Statistical validation
	3.2 Energy system modeling validation

	4 Discussion
	4.1 Statistics
	4.2 Energy system modeling

	5 Conclusion and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Acknowledgements
	Appendix B Acknowledgements
	Appendix C Acknowledgements
	Appendix D Acknowledgements
	Appendix E Acknowledgements
	Appendix F Acknowledgements
	Appendix G Acknowledgements
	Appendix H Acknowledgements
	Appendix I Acknowledgements
	Data availability
	References


