001     1047437
005     20260203123846.0
024 7 _ |a 10.1002/smll.202507089
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04300
|2 datacite_doi
024 7 _ |a 40855670
|2 pmid
024 7 _ |a WOS:001556214700001
|2 WOS
037 _ _ |a FZJ-2025-04300
082 _ _ |a 620
100 1 _ |a Weiling, Matthias
|0 P:(DE-Juel1)190810
|b 0
|e Corresponding author
245 _ _ |a Drawing from the Old‐The First Ever Sultone as Electrolyte Additive in High‐Voltage NMC811 || AG+SiOx Multilayer Pouch Cells
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768304430_26444
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The addition of a small amount of silicon to the anode material is a widely used approach to increase the energy density of lithium-ion batteries (LIBs). However, its (de-)lithiation leads to volume changes, resulting in structural degradation and the formation of an insufficient solid-electrolyte interphase (SEI), limiting the cycle life and electrochemical performance. Therefore, the formation of an effective SEI is imperative to overcome these challenges. Sulfur-containing electrolyte additives are garnering attention due to their abundant supply and advantageous chemistry in LIBs. With 1,8-naphthosultone (1,8-NS) as an electrolyte additive, a notably enhanced electrochemical performance in high-voltage NMC811 || artificial graphite(AG) + 20 % SiOx cells is observed. Employing advanced spectrometric and spectroscopic characterization techniques, complemented with theoretical calculations, the degradation products and pathways of 1,8-NS in the cell are elucidated. This includes 1,8-NS reduction, sultone ring opening, and chemical degradation with electrolyte solvent degradation products. The formation of these products is traced back to the SiOx anode, where an effective, layered SEI with various 1,8-NS degradation products is formed. This SEI is suggested to exhibit improved mechanical and electrochemical parameters, resulting in the observed improvement of the electrochemical performance of the cells.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
536 _ _ |a Elektrolytformulierungen für Lithiumbatterien der nächsten Generation mit großer Energiedichte und hoher Beständigkeit (13XP5129)
|0 G:(BMBF)13XP5129
|c 13XP5129
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lechtenfeld, Christian-Timo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stuckenberg, Silvan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pfeiffer, Felix
|0 P:(DE-Juel1)188450
|b 3
700 1 _ |a Wang, Jian-Fen
|0 P:(DE-Juel1)199048
|b 4
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Küpers, Verena
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Baghernejad, Masoud
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1002/smll.202507089
|g Vol. 21, no. 41, p. e07089
|0 PERI:(DE-600)2168935-0
|n 41
|p e07089
|t Small
|v 21
|y 2025
|x 1613-6810
856 4 _ |u https://juser.fz-juelich.de/record/1047437/files/Small%20-%202025%20-%20Weiling%20-%20Drawing%20from%20the%20Old%E2%80%90The%20First%20Ever%20Sultone%20as%20Electrolyte%20Additive%20in%20High%E2%80%90Voltage%20NMC811%20%20%20%20AG.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047437
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190810
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188450
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)199048
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2022
|d 2025-11-05
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL : 2022
|d 2025-11-05
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21